
REVIEW

The effects of capillary dysfunction on oxygen and glucose
extraction in diabetic neuropathy

Leif Østergaard & Nanna B. Finnerup & Astrid J. Terkelsen & Rasmus A. Olesen &

Kim R. Drasbek & Lone Knudsen & Sune N. Jespersen & Jan Frystyk &

Morten Charles & Reimar W. Thomsen & Jens S. Christiansen &

Henning Beck-Nielsen & Troels S. Jensen & Henning Andersen

Received: 14 September 2014 /Accepted: 6 November 2014 /Published online: 16 December 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Diabetic neuropathy is associatedwith disturbances
in endoneurial metabolism and microvascular morphology,
but the roles of these factors in the aetiopathogenesis of
diabetic neuropathy remain unclear. Changes in endoneurial
capillary morphology and vascular reactivity apparently pre-
date the development of diabetic neuropathy in humans, and
in manifest neuropathy, reductions in nerve conduction veloc-
ity correlate with the level of endoneurial hypoxia. The idea
that microvascular changes cause diabetic neuropathy is
contradicted, however, by reports of elevated endoneurial
blood flow in early experimental diabetes, and of unaffected
blood flow when early histological signs of neuropathy first
develop in humans. We recently showed that disturbances in
capillary flow patterns, so-called capillary dysfunction, can
reduce the amount of oxygen and glucose that can be extracted

by the tissue for a given blood flow. In fact, tissue blood flow
must be adjusted to ensure sufficient oxygen extraction as
capillary dysfunction becomes more severe, thereby changing
the normal relationship between tissue oxygenation and blood
flow. This review examines the evidence of capillary dysfunc-
tion in diabetic neuropathy, and whether the observed relation
between endoneurial blood flow and nerve function is consis-
tent with increasingly disturbed capillary flow patterns. The
analysis suggests testable relations between capillary dysfunc-
tion, tissue hypoxia, aldose reductase activity, oxidative stress,
tissue inflammation and glucose clearance from blood. We
discuss the implications of these predictions in relation to the
prevention and management of diabetic complications in type
1 and type 2 diabetes, and suggest ways of testing these
hypotheses in experimental and clinical settings.

L. Østergaard (*) :R. A. Olesen :K. R. Drasbek : S. N. Jespersen
Center of Functionally Integrative Neuroscience and MINDLab,
Institute of Clinical Medicine, Aarhus University Hospital,
Building 10G, Nørrebrogade 44, DK-8000 Aarhus C,
Denmark
e-mail: leif@cfin.au.dk

L. Østergaard
Department of Neuroradiology, Aarhus University Hospital,
Aarhus, Denmark

N. B. Finnerup :A. J. Terkelsen : L. Knudsen : T. S. Jensen
Danish Pain Research Center, Institute of Clinical Medicine, Aarhus
University, Aarhus, Denmark

A. J. Terkelsen : T. S. Jensen :H. Andersen
Department of Neurology, Aarhus University Hospital, Aarhus,
Denmark

L. Knudsen
Spinal Cord Injury Centre, Department of Neurology, Viborg
Regional Hospital, Viborg, Denmark

S. N. Jespersen
Department of Physics and Astronomy, Aarhus University, Aarhus,
Denmark

J. Frystyk : J. S. Christiansen
Department of Endocrinology and Diabetes, Aarhus University
Hospital, Aarhus, Denmark

M. Charles
Department of Clinical Epidemiology, Aarhus University Hospital,
Aarhus, Denmark

R. W. Thomsen
Department of Public Health, Aarhus University, Aarhus, Denmark

H. Beck-Nielsen
Department of Endocrinology, Odense University Hospital, Odense,
Denmark

H. Beck-Nielsen
Institute of Clinical Research, University of Southern Denmark,
Odense, Denmark

Diabetologia (2015) 58:666–677
DOI 10.1007/s00125-014-3461-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81058163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords Capillary dysfunction . Diabetic
complications . Diabetic neuropathy . Glucose
intolerance . Glucose transport . Microvascular disease

Abbreviations
BDNF Brain-derived neurotrophic factor
CTH Capillary transit time heterogeneity
DNP Distal symmetric sensorimotor polyneuropathy
HIF-1 Hypoxia inducible factor 1
MTT Mean erythrocyte transit time
NF-κB Nuclear factor-κB
OEF Oxygen extraction fraction
ROS Reactive oxygen species
STZ Streptozotocin
TBF Tissue blood flow
tPA Tissue plasminogen activator

Introduction

Diabetic neuropathy affects up to 50% of patients with diabe-
tes [1]. Distal symmetric sensorimotor polyneuropathy (DNP)
is by far the most common form, carrying a high risk of foot
ulcers and limb amputation [1]. In addition, one third of
patients with neuropathy develop pain, with severe conse-
quences for their quality of life [1, 2]. Despite being the most
common complication of diabetes, the pathophysiological
mechanisms underlying diabetic neuropathy are largely un-
known. The scientific community has generally been divided
into two schools of thought, one of which favours a metabolic
mechanism, and one proposing a vascular origin of diabetic
neuropathy [3]. The latter hypothesis is founded in observa-
tions that diabetic neuropathy is associatedwith microvascular
changes in the affected nerve trunks. Nerve biopsies reveal
capillary basement membrane thickening, loss of capillary
pericyte coverage, and endothelial hyperplasia [4] in
endoneurial microvessels (Fig. 1). In fact, changes in
endoneurial capillary density and luminal area appear to pre-
cede the development of impaired glucose tolerance and dia-
betes [5]. Nutritive perfusion is reduced in nerve trunks af-
fected by diabetic neuropathy, and their conduction velocities
are typically reduced in proportion to the reduction in their
oxygen tension [6, 7]. Indeed, changes in vascular reactivity
can be recorded prior to the onset of hyperglycaemia in
individuals at risk of type 2 diabetes [8]. This ‘vascular’
hypothesis is contradicted, however, by observations that
endoneurial blood flow is elevated early after the induction
of experimental diabetes in rats [9, 10], and observations that
sural nerve blood flow in patients with mild diabetes remained
constant over a 1-year time period during which nerve fibre
density decreased [11]. Meanwhile, several metabolic path-
ways have been shown to cause nerve damage [12], and it

therefore appears that both vascular and metabolic mecha-
nisms may be involved in the pathogenesis of diabetic neu-
ropathy [1, 6].

We recently showed that if capillary flow patterns become
disturbed, then the transit times of portions of the blood
become too short for oxygen [13] and glucose [14] to be
extracted by the tissue. We demonstrated that this ‘physiolog-
ical shunt’ requires compensatory changes in blood flow to
meet the metabolic needs of the tissue and, as a consequence,
that tissue may be hypoxic in the absence of demonstrable
signs of ischaemia [15]. In this review, we briefly describe the
effects of capillary flow disturbances on oxygen and glucose
extraction in tissue, and discuss whether capillary changes
may contribute to the conflicting endoneurial blood flow
findings in early diabetes, to the activity of abnormal meta-
bolic pathways that contribute to diabetic complications, and
more generally, to the aetiopathogenesis of glucose intoler-
ance and diabetic complications.

The relationship between tissue perfusion, capillary
transit time heterogeneity and tissue oxygenation

Historically, tissue oxygenation—defined as the maximum
metabolic rate of oxygen that can be supported by the blood-
stream—is inferred from the flow of oxygenated blood
through the tissue. This assumption is rooted in the classic
flow-diffusion equation [13], which predicts a one-to-one
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Fig. 1 (a, b) Endoneurial capillaries from the sural nerve of a diabetic
patient without neuropathy (a) and a patient with neuropathy (b). Note
basement membrane (BM) thickening and endothelial cell [e] prolifera-
tion in (b). Reproduced from [6] with permission from the publisher. (c)
Histograms of the median basement membrane area (in μm2) of
endoneurial microvessels in 54 diabetic patients (25 with type 1 diabetes,
29 with type 2 diabetes) and 50 controls. The areas were based on
transverse electron micrographs of 433 microvessels from diabetic pa-
tients and 366 from controls. Note that basement membrane thickening is
particularly prevalent in diabetes with neuropathy. Reproduced from
Giannini and Dyck [4] with permission from the publisher
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correspondence between tissue blood flow (TBF; in ml blood
per 100 ml tissue per minute) and oxygen availability (ml O2

per 100 ml tissue per minute) when arterial blood oxygen
content is at normal levels (Fig. 2). This equation assumes,
however, that all tissue capillaries are equally perfused. This
condition is rarely met in the tissue, where blood velocities
normally vary considerably among capillaries—a phenome-
non we refer to as capillary transit time heterogeneity (CTH).
We recently generalised the flow-diffusion equation to express
tissue oxygenation in terms of TBF, CTH, and tissue oxygen
tension (PtO2) [13]. For simplicity, we described the distribu-
tion of capillary transit times across the capillary bed by a
realistic distribution, for which CTH is simply the standard
deviation of capillary transit times, whereas the mean eryth-
rocyte transit time (MTT) is given as the capillary blood
volume fraction divided by TBF. Figure 2 shows tissue oxy-
genation for neural tissue as a function of TBF for different
levels of CTH at constant PtO2. In normal tissue, TBF in-
creases are accompanied by reductions in CTH, which limits
‘physiological shunting’ and maintains efficient oxygen ex-
traction. If capillary function is impaired, however, such that
CTH increases and capillary flows fail to homogenise during
vasodilation, then increases in TBF lead to little improvement

in tissue oxygenation. This phenomenon, dubbed capillary
dysfunction, is the result of blood passing through capillaries
at transit times too short to permit efficient extraction of its
oxygen by the tissue. For capillary dysfunction with modest
increases in CTH, the poorer oxygen extraction can be com-
pensated for by higher TBF to meet metabolic needs in tissue,
and mild capillary dysfunction is therefore predicted to elicit
compensatory tissue hyperaemia. If CTH increases, however,
the oxygen loss due to capillary dysfunction can exceed the
normal oxygenation benefits of vasodilation and hyperaemia.
This paradoxical condition is termed ‘malignant CTH’ and is
imminent if both CTH and TBF are high: in Fig. 2, this is
observed at high TBF levels where oxygenation improves
little with further TBF increases because physiological
shunting is already high, even for negligible CTH. Therefore,
flow increases must be suppressed as TBF approaches the
limit of malignant CTH in order to avoid a paradoxical
reduction in tissue oxygenation. If TBF responses are instead
suppressed so that physiological shunting of blood is reduced,
then the resulting fall in tissue oxygen tension (the result of
ongoing cellular oxygen metabolism) will increase blood–
tissue concentration gradients such that more efficient oxygen
extraction can further help meet metabolic demands [13].
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Fig. 2 The classic flow-diffusion equation (black curve) describes the
relationship between TBF and the amount of a freely diffusible substance,
in this case oxygen, that can be extracted by the tissue [13]. The curve is
based on the extraction properties of a single capillary with blood flowing
through it with a certain velocity. Note that the slope of the curve
decreases with flow, indicating that the OEF decreases towards higher
TBF. In generalising this relationship to tissue, it was assumed that all
capillaries have identical extraction properties. Any deviation from this
assumption, in the form of CTH, reduces oxygen availability in relation to
the classic flow-diffusion equation’s predictions. In normal tissue, CTH is
high during rest but is reduced during hyperaemia. Reductions in CTH
improve oxygenation for a given TBF and thereby counteract the tenden-
cy for OEF to fall during hyperaemia. If the capillary wall is damaged or
blood viscosity increased, CTH may be elevated and fail to homogenise

during vasodilation. As a result, TBF increases lead to little improve-
ments in tissue oxygenation, a phenomenon referred to as capillary
dysfunction. CTH can become so high that vasodilation no longer im-
proves tissue oxygenation—a combination of TBF and CTH referred to
as malignant CTH. From this point, blood flow responses must be
attenuated to limit the extent of ‘oxygen shunting’. Continued tissue
metabolism tends to lower tissue oxygen tension, thereby increasing
blood–tissue concentration gradients and oxygen extraction efficacy.
The metabolic needs of nerve function can therefore be supported until
the oxygen extraction fraction approaches unity and oxygen tension
becomes negligible. Note that, as a result of these biophysical conse-
quences of CTH, both critical reductions in TBF (ischaemia) and critical
increases in CTH (capillary dysfunction) can lead to hypoxic tissue injury.
Adapted from Østergaard at al [59]
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The dynamics of blood flow, blood flow responses
and tissue oxygen tension as CTH increases

Mild CTH increase: the hyperaemic state Figure 3 summa-
rises the metabolic and haemodynamic consequences of cap-
illary disturbances that elevate flow heterogeneity during rest,
and prevent the normal flow homogenisation during
hyperaemia. Elevated CTH reduces the maximum oxygen
extraction fraction (OEFmax) that can be attained for a given

tissue oxygen tension [13], and the metabolic needs of tissue
can therefore be met by slight increases in TBF during rest,
and to some extent during activity/hyperaemic challenges. We
therefore refer to states of mild CTH increases as hyperaemic.

The findings of increased sciatic blood flow [9, 10] after
induction of diabetes by streptozotocin (STZ) in rats are
therefore consistent with compensatory increases in blood
flow to compensate for poorer oxygen extraction due to subtle
changes in capillary flow patterns.

b Hyperaemic state
CTH ↑
OEF ↓
Resting blood flow ↑ 

c Flow suppression state
CTH ↑↑
Resting blood flow ↓  
OEF ↑ 
Flow responses ↓ 
Endoneurial oxygen 
tension ↓
Arteriolar tone ↑ 
Oxidative stress ↑ 

d Hypoxic state
CTH ↑↑↑ 
Resting blood flow ↓↓ 
OEF ↑
Flow responses ↓↓ 
Endoneurial oxygen 
tension ↓↓
Oxidative stress ↑↑ 
Nerve conduction velocity ↓ 
Tissue damage

a Normal state

Rest Hyperaemia

Fig. 3 (a) Capillary flow patterns homogenise during hyperaemia in
normal tissue, counteracting the drop in OEF that would otherwise result
from increased tissue blood flow (explained in Fig. 2). If CTH increases
and/or fails to homogenise during functional hyperaemia, OEF is re-
duced. Small reductions in OEF can be compensated by higher flow
and/or flow responses to meet the metabolic needs of the tissue. The
hyperaemic state (b) corresponds to increases in CTH that can still be
compensated for by elevated flow and/or flow responses, while the flow
suppression state (c) corresponds to larger increases in CTH for which
resting and/or activity-related flow responses must be suppressed in order
to reduce the proportion of blood that passes through the capillary bed too

fast to permit efficient oxygen extraction, and to permit the lower tissue
oxygen tension (indicated by a darker blue background) to improve
blood–tissue concentration gradients, and hence OEF. The suppression
of flow responses (endothelial dysfunction) and low tissue oxygen ten-
sion is associated with oxidative stress and tissue inflammation. As CTH
increases further and oxygen availability and tissue oxygen tension
become critically low (dark blue background), the metabolic needs of
normal nerve conduction can no longer be met, and nerve function
becomes impaired (d). The degree of hypoxia in this state is thus predict-
ed to reflect the degree of metabolic impairment and the severity of
diabetic neuropathy. Modified from Østergaard et al [59]
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Moderate CTH increase: the flow suppression state As
changes in capillary morphology or blood rheology accumu-
late and CTH increases further, increases in TBF can no longer
compensate for the parallel reduction in OEFmax. Instead, TBF
must be suppressed to meet the metabolic demands of neural
tissue [13]. The blood supply in peripheral nerves originates
from two blood supplies: an extrinsic, regional vascular sys-
tem of small arteries and arterioles that connect to epineurial
vessels, and a longitudinal, intrinsic system characterised by
relatively wide endoneurial capillaries [16]. The two systems
are interconnected by numerous epineurial and perineurial
collaterals that confer considerable resistance to ischaemic
damage—see Low et al for a comprehensive overview of
peripheral nerve blood flow and metabolism and their relation
to nerve damage under diabetic and ischaemic conditions [16].
The tone of epineurial arteries and arterioles is affected by
dense perivascular plexuses of noradrenergic, serotonergic
and peptidergic nerve fibres, while the intrinsic arterioles
display a relative lack of vascular smooth muscle cells [16].
Any reductions in flow or flow responses in relation to in-
creasing capillary dysfunction would therefore be expected to
involve epineurial microvessels.

Suppression of endoneurial blood flow and impaired relax-
ation of epineurial resistance vessels in response to
standardised vasodilatory stimuli, so-called endothelial dys-
function, is observed in STZ-induced diabetes in rats prior to
any reductions in motor nerve conduction velocity (MNCV)
and Na+/K+ ATPase [17]. Indeed, endoneurial oxygen tension
has been observed to decrease prior to the decrease in neural
blood flow and the onset of neuropathy in STZ-induced
diabetes [18], consistent with the prediction that flow suppres-
sion represents a compensatory mechanism to ensure suffi-
cient oxygen extraction, rather than the primary cause of nerve
dysfunction. Endothelial dysfunction is associated with in-
creased production of reactive oxygen species (ROS) in the
vessel wall, and with parallel depletion of the vasodilator NO
as it reacts with ROS to produce peroxynitrite [19]. However,
oxidative stress [20] and NO depletion [21] are also powerful
capillary constrictors. The reversal of endothelial dysfunction
and nerve conduction deficits following antioxidant treatment
in rats with STZ-induced diabetes [22, 23] may therefore
reflect the reversal of capillary dysfunction. If capillary dys-
function is irreversible owing to permanent capillary damage,
then restoration of nerve blood flow would not be expected to
result in improved endoneurial oxygenation. According to this
prediction, antioxidant treatment is therefore expected to be
less efficacious in disease models and patients with irrevers-
ible capillary flow disturbances.

The prediction that increasing CTH is associated with a
transition from endoneurial hyperperfusion, when capillary
changes are still mild, to normo- and then hypoperfusion when
capillary changes becomemore severe, distinguishes capillary
dysfunction from a condition in which blood flow, rather than

oxygen extraction, is limited by microvascular changes.
Tesfaye et al measured epineurial perfusion in the sural nerve
and found reduced blood flow in diabetic patients with chron-
ic sensorimotor neuropathy compared with controls, but in-
creased flow in diabetic patients without neuropathy [24].
These findings are therefore consistent with a progression in
capillary dysfunction, with sural nerve hyperperfusion (with
preserved oxygen supply–demand balance) in diabetic pa-
tients prior to the development of neuropathy, progressing to
hypoperfusion (with oxidative stress and hypoxia) as their
neuropathy develops.

Large CTH increase: the hypoxic state and reduced nerve
conduction velocity If CTH increases even further, the parallel
reduction of tissue oxygen tension can contribute to neural
tissue dysfunction or damage in several ways. First, the lack of
oxygen, and thus of ATP to fuel neural functions, is likely to
cause tissue dysfunction. Second, a reduction in tissue oxygen
tension upregulates the expression of hypoxia inducible factor
1 (HIF-1) and nuclear factor-κB (NF-κB), both of which are
strong pro-inflammatory signals [25]. Indeed, NF-κB levels
are elevated in peripheral nerves and dorsal root ganglia in
experimental diabetic neuropathy [26], and in humans, both
central and peripheral levels of inflammatory markers corre-
late with the severity of DNP [27]. Third, HIF-1 also
upregulates levels of NADPH oxidase 2 (NOX-2) levels
[28], a major source of ROS in endothelial dysfunction [29].
ROS in turn react with NO to produce peroxynitrite [19], a
source of severe nitrosative tissue damage. In addition,
peroxynitrite inactivates tissue plasminogen activator (tPA),
consistent with the lack of detectable tPA in endo- and
epineurial vessels in patients with diabetic neuropathy [30].
In neuronal tissue, tPA levels determine the formation of
brain-derived neurotrophic factor (BDNF) from its precursor,
proBDNF. Whereas BDNF is known to provide trophic sup-
port for neurons and astrocytes, proBDNF induces neuronal
apoptosis [31]. The reduction in distal muscle BDNF and
nerve growth factor (NGF) levels indeed correlate with the
severity of neuropathy in diabetic patients [32]. This pathway
mediates neurodegeneration in diabetic neuropathy [33] and
provides a mechanism by which gradual reductions in oxygen
availability cause a gradual shift from a state of trophic sup-
port for neuronal survival and function to a state of gradual
reduction in neuronal fibre number to better match oxygen
availability. The relationships between pro-neurotrophins and
nociception are discussed in Richner et al [34].

The prediction that nerve fibre function may be sup-
ported until the stage where low tissue oxygen tension
can no longer secure sufficient oxygen extraction is
consistent with the finding that reductions in sural nerve
sensory conduction velocity correlate better with nerve
oxygen tension than with blood flow values in patients
with diabetic neuropathy [35, 36].

670 Diabetologia (2015) 58:666–677



Intuitively, one might expect tissue hypoxia to elicit angio-
genesis and hence the formation of new capillaries to improve
tissue oxygenation. Such capillaries would, however, tend to
become immediate shunts for blood that would otherwise pass
through capillaries with higher resistance, yet more efficient
oxygen extraction [14] (see Fig. 4). Angiogenesis may there-
fore, paradoxically, exacerbate tissue hypoxia in conditions
with pre-existing capillary damage, consistent with reports
that insulin neuritis is associated with epineurial microvascu-
lar proliferation and excessive arteriovenous shunting [37].
Pericytes are crucial in the initiation of angiogenesis [38]; we
speculate that pericyte dysfunction further limits angiogenesis
in diabetes.

ATP production when CTH is elevated: differential effects
of capillary dysfunction on oxygen and glucose extraction

Glucose and oxygen are the predominant substrates for the
production of the ATP needed for normal peripheral nerve
function [39]. The uptake of glucose into the endoneurium is
not believed to be insulin dependent [39], but the blood–nerve
barrier itself appears to limit the endoneurial extraction of
glucose analogues [40]. Unlike rats, humans have few
GLUT-1 proteins in endoneurial capillaries [41]. Endoneurial

glucose extraction is therefore thought to be limited by the
integrity of the blood–nerve barrier rather than by the kinetic
properties of glucose transporters [41], and therefore to de-
pend on CTH in much the same way as oxygen extraction.
Indeed, indicator dilution studies in the brain show that the
extraction of glucose and glucose analogues by the central
nervous system is limited by CTH, and that efficient glucose
extraction during hyperaemia depends on homogenisation of
capillary transit times [42], as discussed for oxygen above.
Using these characteristics, the ratio between glucose and
oxygen extraction in neural tissue can be assessed, based on
the assumption that endoneurial capillaries display a tenfold
higher capillary permeability to glucose than those of the brain
[40]. This may still be a conservative estimate in that the
blood–nerve barrier integrity is disturbed in diabetes, increas-
ing its permeability to glucose and glycosylated serum pro-
teins [43]. Figure 4 shows the ratio between glucose and
oxygen extraction as a function of MTT and CTH under these
assumptions. Note that, as CTH increases, this ratio is reduced
because oxygen uptake is hindered more by CTH and oxy-
gen’s binding to haemoglobin than is glucose. Below, we
briefly discuss this aspect of capillary dysfunction in relation
to the ATP needs of peripheral nerve function.

Under aerobic conditions, glucose metabolism by oxida-
tive phosphorylation generates 29–30 ATP molecules per
molecule of glucose, but when oxygen availability is limited,

Increasing
aerobic glycolysis 

MTT (s)

C
T

H
 (

s)

Increasing TBF 

Increasing
capillary
dysfunction

14

12

10

8

6

4

2

1412108642

0.3

0.29

0.28

0.27

0.26

0.25

0.24

Fig. 4 Contour plot showing the relationship between the capillary MTT
as blood flows through tissue (x-axis), its CTH along the y-axis, and the
ratio between the net extraction of oxygen and glucose, respectively, as
indicated by a colour scale. Warm colours correspond to a high ratio,
which permits oxidative phosphorylation to predominate, while blue
colours correspond to aerobic glycolysis with limited ATP yields. MTT
is defined as the capillary blood volume divided by blood flow, and
angiogenesis (which increases capillary density) therefore increases
MTT unless blood flow increases in parallel with capillary density.

Diabetic angioproliferation tends to produce chaotic microvessels with
multiple shunts [37] and would therefore be expected to cause an increase
in CTH. The red arrows illustrate two instances of elevated CTH—one in
which blood flow increased in parallel with capillary density (left), and
one in which upstream microvascular changes prevented TBF changes
(right). In both cases, the differential extraction of oxygen and glucose
favours lactate formation rather than oxidative phosphorylation. The
black lines indicate iso-contours, for which the oxygen:glucose extraction
ratio is given by numbers. Adapted from Østergaard et al [14]
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glucose undergoes anaerobic glycolysis, forming two lactate
molecules with an ATP yield of only two—down by a factor
of 15 compared with oxidative phosphorylation. In the eye,
the kidney, and the myelin sheaths of peripheral nerves, aldose
reductase enzymes are present, allowing the conversion of
glucose into sorbitol without using the two ATP molecules
that are required during the initial phosphorylation step of
oxidative phosphorylation. The aldose reductase pathway
can therefore preserve endoneurial ATP when oxygen extrac-
tion is limited by capillary dysfunction, in that it reduces the
ATP expenditure needed to maintain energy-efficient oxida-
tive phosphorylation. However, capillary dysfunction is also
predicted to reduce glucose extraction, making less glucose
available for the aldose reductase pathway. Thus, ATP pro-
duction via this pathway may be insufficient to secure normal
peripheral nerve function. The possible links between nerve
energy status (hypoxia, low pH and increased lactate levels)
and pain are discussed in more detail below.

We note that, according to this prediction, increased
utilisation of the aldose reductase pathway in diabetes is a
result of increasing capillary damage, rather than of high
blood glucose per se. In particular, inhibition of fructose
formation via this pathway would be expected to worsen the
energy crisis of peripheral nerves in diabetes by favouring
glucose metabolism via the more ATP-demanding phosphor-
ylation pathway. This is consistent with findings that sorbitol
dehydrogenase inhibitors fail to increase nerve blood flow or
conduction velocity in experimental diabetes [44] but instead
worsen nerve energy status in some studies [45], and appar-
ently exacerbate sympathetic autonomic neuropathy in STZ-
induced diabetes [46].

Despite its ability to preserve ATP production for nerve
function, activation of the aldose reductase pathway is known
to have deleterious long-term effects: the conversion of glu-
cose into sorbitol uses NADPH, and the subsequent conver-
sion of sorbitol into fructose uses NAD, both of which alter
the cell redox state [47]. In particular, NADPH is important for
the regeneration of reduced glutathione, an important reactive
oxygen species (ROS) scavenger. Long-term activation of the
aldose reductase pathway is therefore expected to cause oxi-
dative damage to peripheral nerves [47]. Aldose reductase
pathway inhibition is therefore potentially a double-edged
sword in that it reduces oxidative stress on the one hand, while
exacerbating tissue energy crisis on the other by causing a
shift to less ATP-efficient glucose metabolism. We speculate
that these effects may explain why aldose reductase inhibitors
have attenuated the progression of neuropathic changes in
some clinical trials, while failing to do so in others [48, 49].

Capi l lary damage and oxidat i ve s t ress due to
hyperglycaemia Hyperglycaemia causes the formation of
AGEs via non-enzymatic reactions between aldehyde groups
of reducing sugars with proteins, lipids and nucleic acids. The

production of AGEs is associated with ROS production, just
as AGEs interact with the AGE receptor (RAGE) causing
further ROS release [29, 47], and consequently oxidative
damage.

Hyperglycaemia [50], oxidative stress and oxidised lipo-
proteins [51, 52] disrupt the glycocalyx, a 0.5 μm thick
carbohydrate-rich matrix that covers the luminal surface of
the capillary endothelium [53]. The glycocalyx is thought to
play a key role in the control of erythrocyte flow through the
capillary bed [54], and its disruption is therefore likely to
cause capillary dysfunction. Underscoring this regulatory role,
glycocalyx disruption causes an increase in capillary
haematocrit from only 20–50% of full blood haematocrit, to
approach values similar to those found in the systemic circu-
lation [52]. Mice fed a high-fat diet to generate high levels of
oxidised lipoprotein and oxidative stress develop reduced
nerve conduction velocities and sensory deficits before glu-
cose tolerance is impaired [55]. This finding is consistent with
a role of generalised capillary dysfunction in the development
of glucose intolerance, alongside the development of reduced
nerve conduction velocity as a result of endoneurial capillary
dysfunction and hypoxia; see below.

Sources of pain in diabetic neuropathy

While progressive changes in capillary morphology and func-
tion may cause reductions in nerve function and even nerve
damage, these mechanisms fail to explain the mechanical
hyperalgesia and tactile allodynia (sensation of pain in re-
sponse to otherwise non-painful stimuli) experienced by near-
ly half of patients with diabetic neuropathy [3]. Endoneurial
hypoxia is associated with upregulation of HIF-1 and NF-κB
[25] (see above). NF-κB is crucial in the regulation of devel-
opmental and synaptic plasticity and can prevent the death of
neurons by the production of anti-apoptotic proteins [56].
While the activation of NF-κBmay thus serve to protect nerve
integrity and function under conditions of hypoxia, it also
appears to be involved in neuropathic and inflammatory pain
[57]. Notably, sulfasalazine reduces the expression of NF-κB
p50 in both sciatic nerves and dorsal root ganglia of STZ
diabetic rats, blocking their development of tactile allodynia
[58]. The relationships between pro-neurotrophin levels
(above) and nociception are discussed in detail elsewhere
[34], and the relation between tissue injury, tissue hypoxia
and pain, in Østergaard et al [59].

Painful diabetic neuropathy may be related to the function
of small, autonomic fibres in diabetic patients. Small fibre
dysfunction with sympathetic denervation of the peripheral
arterial system is thought to occur quite early in the progres-
sion of neuropathy [60]. The resulting loss of vasoconstrictor
tone and peripheral vasodilatation gives rise to the appearance
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of a warm, oedematous neuropathic foot [60]. The high pe-
ripheral blood flow passes through arteriovenous shunts [60],
and it was recently hypothesised that excessive microvascular
shunting may give rise to tissue hypoxia, despite the high
blood flow [61]. Our model of oxygen extraction in tissue
[13] supports this notion, and predicts that failure to suppress
blood flow in capillary dysfunction can be the source of severe
oxidative stress, microvascular injury and pain [59]. Archer
et al [62] showed that blood flow in the feet of patients with
diabetic neuropathy is five times higher than in normal con-
trols. While patients with painful diabetic neuropathy had
slightly lower blood flow than those without pain, the groups
differed further by the preserved ability of sympathetic stimuli
to suppress blood flow in the group with painful diabetic
neuropathy. Furthermore, reductions in blood flow were asso-
ciated with a reduction in neuropathic pain, similar to the pain
relief reported by some patients when cooling the feet (which
would be expected to cause local vasoconstriction) [62]. Tak-
en together, these observations support the role of hypoxia in
painful diabetic neuropathy and suggest that small sympathet-
ic fibres play a role in the pain mechanism, possibly in relation
to their vasomotor action under conditions where suppression
of peripheral blood flow appears important to meet the meta-
bolic needs of the tissue.

The role of capillary pericytes in diabetic complications

Loss of pericytes is evident in biopsy material from patients
with diabetic neuropathy [4], and pericyte loss is closely
related to the severity of diabetic retinopathy [63, 64]. In the
central nervous system [65, 66] and the retina [67–69],
pericytes regulate capillary diameter according to local meta-
bolic needs. Pericytes and endothelial cells form the capillary
basal membrane [38], which (in addition to those of peripheral
nerves) is thickened in several organs in diabetes [70, 71].
Based on their proposed role in maintaining efficient oxygen
extraction, means of supporting pericyte function and survival
might therefore be expected to alleviate diabetic neuropathy.
This notion is in agreement with animal models of diabetic
retinopathy, where the development of retinal damage appears
to be closely related to pericyte apoptosis [64]. Of note, the
rescue of retinal pericytes was recently shown to prevent
diabetic retinopathy in animal models [64].

The control of pericyte tone remains much less studied than
that of arteriolar tone [72]. Studies of retinal capillaries sug-
gest that pericytes react to intrinsic signalling in much the
same way as smooth muscle cells. Pericyte constriction has
been observed in response to mechanical stretch, exposure to
angiotensin II (via AT1 receptors) [73], and endothelin-1 (via
ETA receptors) [74], by a Ca2+ dependent mechanism [75].
Retinal pericytes relax in response to NO [21] and adrenergic
(via β2 receptors) [75] stimulation. In cerebral pericytes,

ischaemia and oxidative stress cause irreversible capillary
constriction [20, 66].

Restoration of capillary NO levels would be expected
to improve CTH (homogenising capillary flow patterns)
by facilitating pericyte relaxation. This may be achieved
in ways that do not require oxygen as a substrate for
NO synthesis, namely by dietary administration of ni-
trate or nitrite, which is readily converted to NO in the
tissue [76]. Green leafy vegetables are sources of die-
tary nitrate and seemingly reduce the risk of developing
type 2 diabetes [77]. Meanwhile, topical application of
nitrate reduces neuropathic pain and burning sensation,
but not other sensory modalities, in patients with painful
diabetic neuropathy [78]. Pharmacologically, antihyper-
tensive drugs would be expected to modulate the effects
of angiotensin and endothelin on pericyte tone, or its
Ca2+ dependent regulation. ACE inhibitor treatment has
been shown to improve nerve conduction, but not auto-
nomic function, vibration perception threshold, or neu-
ropathy symptom and deficit score, in normotensive
diabetic patients [79]. Furthermore, ACE inhibitor and
angiotensin II receptor antagonist treatment improved
nerve conduction velocities, reduced oxidative stress,
and reverted endoneurial flow suppression in STZ mice
[80]. Interestingly, ACE inhibitor administration prior to
the induction of diabetes by STZ in rats was found to
prevent development of nerve conduction abnormalities
[81]. Calcium blocker treatment has also been reported
to reverse flow suppression in the vasa nervorum of
STZ diabetic rats [82], and to improve their motor-
and sensory nerve conduction velocity [83].

Potential implications for diabetes management

Our review suggests that early loss of capillary flow control
and changes in capillary morphology may play a central role
in the aetiopathogenesis of diabetic neuropathy.

The prediction that elevated CTH impairs both oxygen and
glucose extraction in tissue also implies that strategies to
prevent diabetic complications may differ between patients
with type 1 and type 2 diabetes, respectively. The diagnosis of
type 1 diabetes marks the onset of hyperglycaemia-related
capillary damage to peripheral nerves (as explained above)
and organ microvasculature in general, to an extent that would
be expected to depend on the cumulative exposure to
hyperglycaemia. Early, intensive glycaemic control indeed
delays the onset of type 1 diabetes complications, including
diabetic neuropathy [84]. By contrast, type 2 diabetes and its
associated complications, risk factors such as age, obesity and
hypertension, are all associated with either degenerative
changes in capillary morphology [85] or dysfunctional angio-
genesis [86] prior to the onset of type 2 diabetes. Indeed, given
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the effects of CTH on glucose clearance from blood, the
progressive capillary dysfunction of the systemic microcircu-
lation caused by type 2 diabetes risk factors is likely to reduce
glucose tolerance, and hence contribute to what we define as
type 2 diabetes. We therefore suggest that type 2 diabetes
complications represent the progression of systemic capillary
dysfunction from more moderate levels already present when
type 2 diabetes is diagnosed. This is consistent with recent
observations of early small fibre loss in the cornea of patients
with impaired glucose tolerance [87] and recently diagnosed
type 2 diabetes [88], keeping in mind that while the cornea is
avascular, the proximal course of its fibres depend on capillary
function to maintain function and trophic support.

The prediction that hyperglycaemia is one of many sources
of capillary dysfunction in type 2 diabetes suggests that its
comorbidities and risk factors, including hypertension, sys-
temic inflammation, hypercholesterolaemia and smoking,
should be viewed and managed as separate, modifiable
sources of additional capillary dysfunction. (1) In angiotensin
II models of hypertension, flow responses are indeed attenu-
ated in some organs prior to the development of increased
blood pressure [89], suggesting that the increased peripheral
resistance in hypertension represents a systemic response to
preserve tissue oxygenation in response to widespread
capillary/pericyte constrictions and elevated CTH in response
to this powerful pericyte constrictor. (2) Animal studies of
systemic inflammation have shown that capillary flow pat-
terns are sensitive to the size, viscosity, number and endothe-
lial adhesion of blood cells, and undergo profound changes as
part of the low-grade vascular inflammation that accompanies
many cardiovascular risk factors [51, 90]. In diabetic patients,
blood viscosity at low shear rates is indeed elevated, correlat-
ing with the extent of their microvascular diabetic complica-
tions [91]. See also a discussion of blood viscosity changes in
diabetes in Low et al [16]. (3) Plasma lipid levels also affect
blood viscosity, and high triacylglycerol and cholesterol levels
are therefore predicted to represent an independent risk factor
for type 2 diabetes and its complications, while lipid-lowering
therapy would be predicted to reduce CTH and hence improve
endoneurial oxygenation while reducing oxidative damage
and the development and progression of diabetic neuropathy.
This is consistent with observations that triacylglycerol levels
correlate with the progression of diabetic neuropathy [92],
with clinical trials [93], cohort studies [94, 95] showing ben-
efits of statin treatment in type 2 diabetes, and with animal
studies showing restoration of vasa nervorum function and
reversal of diabetic neuropathy after statin treatment [96].
Importantly, fibrates (which lower triacylglycerol and choles-
terol levels) and statins seem more efficient than intensive
blood glucose control in reducing the rate of amputation in
type 2 diabetes [97]. While plasma viscosity may represent a
putative target for diabetes management, we propose that
observations of neuropathic pain severity during infections,

where leucocytosis causes capillary flow patterns to become
more disturbed [90], would serve as an indirect confirmation
of the role of capillary dysfunction in diabetic neuropathy. (4)
Nicotine upregulates the expression of adhesion molecules in
the capillary endothelium [98] and increases leucocyte rolling
[99], consistent with findings that smoking represents an
independent risk factor for diabetic neuropathy [100]. Cessa-
tion of nicotine exposure would therefore be predicted to
alleviate both symptoms and progression of diabetic neurop-
athy. Similarly, high homocysteine levels increase blood vis-
cosity and the adhesion of monocytes to the capillary wall,
and increase the oxidation of low-density lipoproteins [101]
(see the section on glycocalyx function above). These effects
would be expected to cause capillary dysfunction and pro-
gression of neuropathy, consistent with reports that homocys-
teine is independently associated with diabetic neuropathy in
patients with type 2 diabetes [102]. Similarly, findings of more
severe neuropathy in type 2 diabetic patients who had received
metformin may be related to the accompanying increases in
blood homocysteine levels, in addition to the effects of long-
term reduction in cobalamine (vitamin B12) levels [103].

Conclusion

The proposed hypothesis that capillary dysfunction causes
diabetic neuropathy (and some degree of glucose intoler-
ance) gives rise to a range of predictions that lend them-
selves to further scrutiny in animal experiments, epidemi-
ological studies and clinical trials. The hypothesis relates
type 2 diabetes risk factors, and effects of poor glycaemic
control on capillary function in both type 1 and type 2
diabetes, to their effects on blood rheology and the mor-
phology and function of capillaries. Accordingly, we pre-
dict that animal models of diabetic complications should
display capillary dysfunction or damage similar to that
observed in human nerves, kidney and retina in order to
predict the translational potential of experimental therapies.
Pericyte function and pericyte damage also appear to be
important to our understanding of diabetic neuropathy.

Capillary dysfunction is summarised in a single parameter,
CTH, which we propose determines the derived effects on
extraction of oxygen and glucose in various tissue types. So
far, studies of diabetic neuropathy have focused on nerve
blood flow rather than its capillary distribution. To extend
the indirect evidence of capillary dysfunction presented here,
capillary flow velocities [104] and nerve oxygen tension [105]
must therefore be imaged longitudinally and related to nerve
function in animal models of diabetes. To translate such
studies into human disease, microvascular flow distributions
and CTH may be estimated noninvasively by dynamic track-
ing of intravascular contrast agent retention after bolus
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injection [106], using, for example, contrast enhanced ultra-
sound to capture the haemodynamics in peripheral nerves.
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