
Hou et al. BMC Genetics 2012, 13:91
http://www.biomedcentral.com/1471-2156/13/91

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
CORRESPONDENCE Open Access
Systems mapping of HIV-1 infection
Wei Hou1,2, Yihan Sui1, Zhong Wang3, Yaqun Wang3, Ningtao Wang3, Jingyuan Liu3, Yao Li4, Maureen Goodenow5,
Li Yin5, Zuoheng Wang6 and Rongling Wu1,3*
Abstract

Mathematical models of viral dynamics in vivo provide incredible insights into the mechanisms for the nonlinear
interaction between virus and host cell populations, the dynamics of viral drug resistance, and the way to eliminate
virus infection from individual patients by drug treatment. The integration of these mathematical models with
high-throughput genetic and genomic data within a statistical framework will raise a hope for effective treatment
of infections with HIV virus through developing potent antiviral drugs based on individual patients’ genetic
makeup. In this opinion article, we will show a conceptual model for mapping and dictating a comprehensive
picture of genetic control mechanisms for viral dynamics through incorporating a group of differential equations
that quantify the emergent properties of a system.
Introduction
To control HIV-1 virus, antiviral drugs have been devel-
oped to prevent the infection of new viral cells or stop
already-infected cells from producing infectious virus
particles by inhibiting specific viral enzymes [1,2].
Because of the multifactorial complexity of viral-host
association, however, the development and delivery of
clinically more beneficial novel antiviral drugs have
proved a difficult goal [3]. In this essay, we argue that
this bottleneck may be overcome by merging two recent
advances in mathematical biology and genotyping tech-
niques toward precision medicine. First, viral-drug inter-
actions constitute a complex dynamic system, in which
different types of viral cells, including uninfected cells,
infected cells, and free virus particles, cooperate with
each other and together fight with host immune cells to
determine the pattern of viral change in response to
drugs [4-6]. A number of sophisticated mathematical
models have been developed to describe viral dynamics
in vivo, providing incredible insights into the mechan-
isms for the nonlinear interaction between virus and
host cell populations, the dynamics of viral drug resistance,
and the way to eliminate virus infection from patients by
drug treatment [7-15]. Second, the combination between
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novel instruments and an increasing understanding of mo-
lecular genetics has led to the birth of high-throughput
genotyping assays such as single nucleotide polymorphisms
(SNPs). Through mapping or associating concrete nucleo-
tides or their combinations with the dynamic process of
HIV infection [16,17], we can precisely taxonomize this
disease by its underlying genomic and molecular causes,
thereby enabling the application of precision medicine to
diagnose and treat it.

Systems mapping: a novel tool to dissect
complex traits
Beyond a traditional mapping strategy focusing on the
static performance of a trait, systems mapping dissolves
the phenotype of the trait into its structural, functional
or metabolic components through design principles
of biological systems, maps the interrelationships and
coordination of these components and identifies genes
involved in the key pathways that cause the end-point
phenotype [18-23]. Systems mapping not only preserves
the capacity of functional mapping [24-26] to study the
dynamic pattern of genetic control on a time and space
scale, but also shows a unique advantage in revealing the
dynamic behavior of the genetic correlations among
different but developmentally related traits. Its methodo-
logical innovation is to integrate mathematical aspects
of phenotype formation and progression into a genetic
mapping framework to test the interplay between genes
and development. Various differential equations which
have been instrumental for studying nonlinear and
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complex dynamics in engineering [27] have shown
increasing value and power to quantify the emergent
properties of a biological system and interpret experi-
mental results [9-12,28,29].
The past two decades have witnessed an excellent suc-

cess in modeling HIV dynamics with differential equa-
tions [9-12]. Treating viral-host interactions as a system,
Appendix 1 gives a basic model composed of three
ordinary differential equations (ODE) for describing the
short-term overall dynamics of uninfected cells (x),
infected cells (y), and free virus particles (v). These three
components together determine the extent and process
of pathogenesis according to six ODE parameters, i.e.,
the rates of production and death of uninfected cells, the
rate of production of infected cells from free viruses, the
rate of death of infected cells, and the rates of produc-
tion and death of new viruses from infected cells. Thus,
by changing the values of these parameters singly or in
combination, the dynamic properties of viral infection,
such as viral half life, the limiting ratio of infected to
uninfected cells, and the basic reproductive ratio of the
virus, can be quantified and predicted [10]. By embed-
ding a system of ODEs within a mixture model frame-
work (Appendix 1), we can use systems mapping to
identify specific host genes and their interactions for
the pattern of viral dynamics and infection inside a
host body. Figure 1 illustrates the characterization of a
hypothesized gene that contributes to variation in viral
dynamic behavior. Per these genotype-specific changes,
an optimal strategy for HIV treatment in terms of the
dose and time at which an antiviral drug is admini-
strated can be determined, thus providing a first step
toward personalized medicine [23].
In practice, a drug may be resisted if HIV-1 viruses

mutate to create new strains [30]. The emergence of
drug resistance is a consequence of evolution and pre-
sents a response to pressures imposed on the viruses.
Figure 1 Numerical simulation showing how a gene affects the dynam
cells (y), and virus particles (v), as described by a basic model (1) in A
each displaying a different time trajectory for each of these three cell types
gene affects the emerging properties of viral dynamic system, such as aver
(indicated by triangles) when the system converges to an equilibrium state
(12, 0.01, 0.005, 0.6, 8, 3), and (12, 0.008, 0.005, 0.55, 8, 4) for genotypes AA,
Different viruses vary in their sensitivity to the drug used
and some with greater fitness may be capable of sur-
viving drug treatment [31,32]. In order to understand
how viruses are resistant to drugs through mutation,
the basic model of Appendix 1 should be expanded to
include three additional variables, cells infected by
mutant virus, mutant virus particles, and the probability
of mutation from wild-type to resistant mutant during
reverse transcription of viral RNA into proviral DNA
[9]. Systems mapping shows tremendous power to detect
genes for virus drug resistance [21] and predict the dy-
namics of drug resistance (Figure 2). Systems mapping
can not only better interpret the genetic mechanisms
of drug resistance from experimental data, but also pro-
vide scientific guidance on the administration of new
antiviral drugs.

Mapping triple genome interactions
It has been widely accepted that the symptoms and
severity of infectious diseases are determined by pathogen-
host specificity through cellular, biochemical and signal
exchanges [4,33-35]. This specificity, established by
undermining a host’s immunological ability to mount an
immune response against a particular pathogen, is found
to be under genetic determination. Current genetic stud-
ies of pathogen-host systems focus on either the host or
the pathogen genome, but there is increasing recognition
that the complete genetic architecture of pathogen-host
specificity, described by the number, position, effect, plei-
otropy, and epistasis among genes, involves interactive
components from both host and viral genomes [35-38].
In other words, the infection phenotype does not merely
result from additive effects of host and pathogen geno-
types, but also from specific interactions between the
two genomes [35,37].
While many molecular studies define pathogen-host

interactions, regardless of the type of hosts, epidemiological
ics of HIV-1 infection, composed of uninfected cells (x), infected
ppendix 1. The simulated gene has three genotypes AA, Aa and aa,
. Based on these differences, one can test and determine how the
age life-times of different cell types and the points of three variables
. The parameter values are (λ, d, β, a, k, u) = (10, 0.01, 0.005, 0.5, 10, 3),
Aa and aa, respectively.



Figure 2 Simulated genotype-specific differences in the dynamics of drug resistance as described by a model (2) in Appendix 1.
The system simulation focuses on uninfected cell, x (A), infected cells, y, for wild-type virus (solid line) and mutant virus (dash lines) (B), and
free virus, v, for wild-type virus (solid line) and mutant virus (dash line) (C), and relative frequency of mutant virus in free virus (solid line) and
infected cell population (dash line) (D).
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models distinguish the difference of hosts as a recipient
and transmitter to better characterize the epidemic struc-
ture of disease infection, given that infectious diseases like
HIV/AIDS are transmitted from an infected person to an-
other [39-41]. From this point of view, the infection
outcome should be determined differently but simultan-
eously by genes from transmitters and recipients. To
chart a comprehensive picture of genetic control mechan-
isms for viral dynamics, we need to address the questions
of how genes from viral and host genomes interact to in-
fluence viral dynamics and how genetic interactions
between recipients and transmitters of virus play a part in
the dynamic behavior of viruses. Li et al. [42] pioneered
the unification of quantitative genetic theory and epi-
demiological dynamics for characterizing triple-genome
interactions from viruses, transmitters and recipients.
Systems mapping described in Appendix 2 should

be embedded within Li et al.’s [42] unifying model to
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include the interactions of genes derived from the three
genomes. This integration allows main genetic effects
and epistatic interactions expressed at the genome level
to be tested and characterized, including additive effects
from the (haploid) viral genome, additive and dominant
effects from the transmitter genome, additive and dom-
inant effect from the recipient genome as well as all
possible interactions among these main effects. It is
interesting to note that the integrated system mapping
is capable of estimating and testing high-order epistasis
from the viral, recipient and transmitter genomes. Given
a growing body of evidence that high-order epistasis is
an important determinant of the genetic architecture of
complex traits [43-45], systems mapping should be
equipped with triple genome interaction modeling.
It should be pointed out that virus evolves through

gene recombination and mutations. The genetic machin-
eries that cause viral evolution can be incorporated into
systems mapping without technical difficulty. Through
such incorporation, systems mapping will provide a use-
ful and timely incentive to detect the genetic control
mechanisms of viral dynamics and antivirus drug resist-
ance dynamics and ultimately to design personalized
medicine to treat HIV-1 infection from increasingly
available genome and HIV data worldwide.

Toward precision medicine
A major challenge that faces drug development and
delivery for controlling viral diseases is to develop com-
putational models for analyzing and predicting the
dynamics of decline in virus load during drug therapy
and further providing estimates of the rate of emergence
of resistant virus. The integration of well-established
mathematical models for viral dynamics with high-
throughput genetic and genomic data within a statistical
framework will raise a hope for effective diagnosis and
treatment of infections with HIV virus through develop-
ing potent antiviral drugs based on individual patients’
genetic makeup.
In this opinion article, we have provided a synthetic

framework for systems mapping of viral dynamics dur-
ing its progression to AIDS. This framework is equipped
with unified mathematical and statistical power to
extract genetic information from messy data and possess
the analytical and modeling efficiency which does not
exist for traditional approaches. By fitting the rate of
change of virus infection with clinically meaningful
mathematical models, the spatio-temporal pattern of
genetic control can be illustrated and predicted over a
range of time and space scales. Statistical modeling
allows the estimation of mathematical parameters that
specify genetic effects on viral dynamics. By genotyping
both host and viral genomes, systems mapping is able to
identify which viral genes and which human genes from
recipients and transmitters determine viral dynamics
additively or through non-linear interactions. In this
sense, it paves a new way to chart a comprehensive
picture of the genetic architecture of viral infection.
An increasing trend in drug development is to inte-

grate it with systems biology aimed to gain deep insights
into biological responses. Large-scale gene, protein and
metabolite (omics) data that found the building blocks
of complex systems have become essential parts of the
drug industry to design and deliver new drug [46,47].
However, the true wealth of systems biology will critic-
ally rely upon the way of how to incorporate it into
human cell and tissue function that affects pathogen-
esis. By integrating knowledge of organ and system-level
responses and omics data, systems mapping will help to
prioritize targets and design clinical trials, promising to
improve decision making in pharmaceutical development.
Appendix 1. Mathematical models of
viral dynamics
Basic model
Bonhoeffer et al. [10] developed a basic model for short-
term virus dynamics. The model includes three variables:
uninfected cells, x, infected cells, y, and free virus parti-
cles, v. These three types of cells interact with each
other to determine the dynamic changes of virus in a
host’s body, which can be described by a system of
differential equations:

x_ ¼ λ� dx� βxv
y_ ¼ βxv� ay
v_ ¼ ky� uv

ð1Þ

where uninfected cells are yielded at a constant rate, λ,
and die at the rate dx; free virus infects uninfected cells
to yield infected cells at rate βxv; infected cells die at
rate ay; and new virus is yielded from infected cells at
rate ky and dies at rate uv. The system (1) is defined by
six parameters (λ,d,β,a,k,u) and some initial conditions
about x, y, and v.
The dynamic pattern of this system can be determined

and predicted by the change of these parameters and the
initial conditions of x, y, and v. The basic reproductive
ratio of the virus is defined as R0 = βλk/(adu). If R0

is larger than one, then system converges in damped
oscillations to the equilibrium x* = au/(βk), y* = λ/a –
du/(βk), and v* = λk/(au) – d/β. The average life-times
of uninfected cells, infected cells, and free virus are given
by 1/d, 1/a, and 1/u, respectively. The average number
of virus particles produced over the lifetime of a single
infected cell (the burst size) is given by k/a.
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Resistance model
When a treatment is used to control HIV-1, the viruses
will produce the resistance to the drug through
mutation. The dynamics of drug resistance can be
modeled by

x_ ¼ λ� dx� βxv� βmxvm
y_ ¼ β 1� εð Þxv� ay
ym_ ¼ βεxvþ βmxvm � aym
v_ ¼ ky� uv
vm_ ¼ kmym � uvm

ð2Þ

where y, ym, v, and vm denote cells infected by wild-type
virus, cells infected by mutant virus, free wild-type virus,
and free mutant virus, respectively [10]. The mutation
rate between wild-type and mutant is given by ε (in both
directions). For a small ε, the basic reproductive ratios
of wild-type and mutant virus are R0 = βλk/(adu) and
R0m = βmλkm/(adu).
Model (2) shows that the expected pretreatment

frequency of resistant mutant depends on the number
of point mutations between wild-type and resistant
mutant, the mutation rate of virus replication, and the
relative replication rates of wild-type virus, resistant
mutant, and all intermediate mutants. Whether or
not resistant virus is present in a patient before ther-
apy will crucially depend on the population size of
infected cells.

Cell diversity model
The infected cells may harbor actively replicating virus
(y1), latent virus (y2) and defective virus (y3). The basic
model (1) can be expanded to include these three types,
expressed as

x_ ¼ λ� dx� βxv
yw_ ¼ qwβxv� awyw; w ¼ 1; 2; 3
v_ ¼ ky1 þ cy2 � uv

ð3Þ

where q1, q2, and q3 (q1 + q2 + q3 = 1) are the propor-
tions that the cell will immediately enter active viral rep-
lication at a rate of virus production k, become latently
infected with the virus at a (much slower) rate of
virus production c, and produce a defective provirus
that will not produce any offspring virus, respectively;
and a1, a2, and a3 are the decay rates of actively produ-
cing cells, latently infected cells, and defectively infected
cells, respectively.
The basic reproductive ratio of the wild-type is

R0 = βλA/(du). If R0 is larger than one, then system con-

verges to the equilibrium x* = u/(βA), y�1 ¼ q1
a1

λ� du
βA

� �
;

y�2 ¼ a1
a2

q2
q1
y�1; y

�
3 ¼ a1

a3
q3
q1
y�1, and v�¼ λ

u A� d
β , where A¼ kq1

a1
þ cq2

a2
.

A full model of viral dynamics can be obtained by uni-
fying the resistance model and cell diversity model to
form a system of nine ODEs, expressed as

x_ ¼ λ� dx� βxv� βmxvm
yw_ ¼ qwβ 1� εð Þxv� awyw; w ¼ 1; 2; 3
ywm_ ¼ qwβεxvþ qwβmxvm � awywm; w ¼ 1; 2; 3
v_ ¼ ky1 þ cy2 � uv
vm_ ¼ kmy1m þ cmy2m � uvm

ð4Þ

This group of ODEs provides a comprehensive descrip-
tion of how viral loads change their rate in a time course,
how infected cells are generated in response to the
emergence of viral particles, and how viral mutation
impacts on viral dynamics and drug resistance dynamics.
The emerging properties of system (4) were discussed in
ref. [10], which can be integrated with systems mapping
described in Appendix 2.

Appendix 2. Systems mapping of viral dynamics
Systems mapping allows the genes and genetic interactions
for viral dynamics to be identified by incorporating ODEs
into a mapping framework. Consider a segregating popula-
tion composed of n HIV-infected patients genotyped for a
set of molecular markers. These patients were repeated
sampled to measure uninfected cells (x), infected cells
(y) and viral load (v) in their plasma at a series of time
points. If specific genes exist to affect the system (1) in
Appendix 1, the parameters that specify the system should
be different among genotypes. Genetic mapping uses a mix-
ture model-based likelihood to estimate genotype-specific
parameters. This likelihood is expressed as

L x; y; vð Þ ¼
Yn
i¼1

ω 1jið Þf1 xi; yi; við Þ þ . . .þ ω J jið ÞfJ xi; yi; við Þ� �

ð1Þ
where xi = (xi(t1), . . ., x(

tTi)) , yi = (yi(t1), . . ., y(
tTi)) and

vi = (vi(t1), . . ., vi(
tTi)) are the phenotypic values of x, y,

and v for subject i measured at Ti time points, ωj|i is the
conditional probability of QTL genotype j (j = 1, . . ., J)
given the marker genotype of patient i, and fj(xi,yi,vi) is a
multivariate normal distribution with expected mean
vector for patient i that belongs to genotype j,

mxjji;myjji;mvjji
� �� mxjji t1ð Þ; . . . ;mxjji tTið Þ;myjji t1ð Þ; . . . ;�

myjji tTið Þ;mvjji t1ð Þ; . . . ;mvjji tTið Þ� ð2Þ
and covariance matrix for subject i,

Σi ¼
Σxi Σxiyi Σxivi
Σyixi Σyi Σyivi
Σvixi Σviyi Σvi

0
@

1
A ð3Þ

with Σxi , Σyi and Σvi being (Ti × Ti) covariance matrices
of time-dependent x, y and v values, respectively, and
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elements off-diagonal being a (Ti × Ti) systematical
covariance matrix between the two variables.
For a natural population, the conditional probability of

functional genotype given a marker genotype (ωj|i) is
expressed in terms of the linkage disequilibria between
different loci [48]. In systems mapping, we incorporate
ODEs (1) of Appendix 1 into mixture model (1) to esti-
mate genotypic means (2) specified by ODE param-
eters for different genotypes, expressed as (λj,dj,βj,aj,kj,uj)
for j = 1, . . ., J. Since x, y and v variables obey dynamic
system (1) of Appendix 1, the derivatives of genotypic
means can be expressed in a similar way. Let gkj|i(t,μkj|i)
denote the genotypic derivative for variable k (k = x, y,
or z), i.e.,

gðkjjiÞðt;μkjjiÞ ¼
dμðkjjiÞ
dt

:

We use μkj|i to denote the genotypic mean of variable j
for individual i belonging to genotype j at an arbitrary
point in a time course. The Runge–Kutta fourth order
algorithm can be used to solve the ODEs.
Next, we need to model the covariance structure by

using a parsimonious and flexible approach such as an
autoregressive, antedependence, autoregressive moving
average, or nonparametric and semiparametric approaches.
Yap et al. [49] provided a discussion of how to choose a
general approach for covariance structure modeling. In
likelihood (1), the conditional probabilities of functional
genotypes given marker genotypes can be expressed as
a function of recombination fractions for an experimental
cross population or linkage disequilibria for a natural
population [48,50]. The estimation of the recombination
fractions or linkage disequilibria can be implemented with
the Expectation-Maximization (EM) algorithm.
To demonstrate the usefulness of systems mapping,

we assume a sample of n HIV-infected patients drawn
from a natural human population at random. The sam-
ple is analyzed by systems mapping, leading to the detec-
tion of a molecular marker which is associated with a
QTL that determines the dynamics of drug resistance in
a way described by (2) in Appendix 1. At the QTL
detected, there are three genotypes AA, Aa and aa, each
with a different set of curve parameters (λ, d, β, βm, a, k,
km, u, ε) estimated by systems mapping. We assume that
these parameters are estimated as (10, 0.01, 0.005, 0.02,
0.5, 10, 10, 3, 0.0001) for genotype AA, (12, 0.01, 0.005,
0.02, 0.6, 8, 8, 3, 0.0001) for genotype Aa, and (12, 0.008,
0.005, 0.02, 0.55, 8, 12, 4, 0.0001) for genotype aa. Using
these estimated values, we draw the curves of drug
resistance dynamics for each genotype (Figure 2). Pro-
nounced differences in the form of these curves indicate
that the QTL plays an important part in determining the
resistance dynamics of drugs used to treat HIV/AIDS.
The model for systems mapping described above can
be expanded in two aspects, mathematical and genetic,
to better characterize the genetic architecture of viral
dynamics. The mathematical expansions are to incorpor-
ate the drug resistance model (2), the cell diversity
model (3) and the unifying resistance and cell diversity
model (4). These expansions allow the functional genes
operating at different pathways of viral-host reactions to
be identified and mapped, making system mapping more
clinically feasible and meaningful. The genetic expan-
sions aim to not only model individual genes from the
host or pathogen genome but also characterize epistatic
interactions between genes from different genomes. This
can be done by expanding the conditional probability of
functional genes given marker genotypes ωj|i using a
framework derived by Li et al. [42].
By formulating and testing novel hypotheses, system

mapping can address many basic questions. For example,
they are

1) How do DNA variants regulate viral dynamics?
2) How do these genes affect the average life-times of

uninfected cells, infected cells, and free virus,
respectively?

3) How do genes determine the emergence and
progression of drug resistance?

4) Are there specific genes that control the possibility
of virus eradication by antiviral drug?

5) How important are gene-gene interactions and
genome-genome interactions to the dynamic
behavior of viral load with or without treatment?

Acknowledgements
This work is supported by Florida Center for AIDS Research Incentive Award,
NIH/NIDA R01 DA031017, and NIH/UL1RR0330184.

Author details
1Center for Computational Biology, Beijing Forestry University, Beijing
100081, China. 2Department of Biostatistics, University of Florida, Gainesville,
FL 32611, USA. 3Center for Statistical Genetics, Pennsylvania State University,
Hershey, PA 17033, USA. 4Division of Public Health Sciences, Fred Hutchinson
Cancer Research Center, Seattle, WA 98109, USA. 5Department of Pathology,
Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
32610, USA. 6Division of Biostatistics, Yale University, New Haven, CT 06510,
USA.

Received: 9 May 2012 Accepted: 27 September 2012
Published: 23 October 2012

References
1. Smith K, Powers KA, Kashuba AD, Cohen MS: HIV-1 treatment as

prevention: the good, the bad, and the challenges. Curr Opin HIV AIDS
2011, 6(4):315–325.

2. Padian NS, McCoy SI, Karim SSA, Hasen N, Kim J, et al: HIV prevention
transformed: the new prevention research agenda. Lancet 2011,
378:269–278.

3. Padian NS, McCoy SI, Balkus JE, Wasserheit JN: Weighing the gold in the
gold standard: challenges in HIV prevention research. AIDS 2010,
24:621–635.

4. Fellay J, Shianna KV, Telenti A, Goldstein DB: Host genetics and HIV-1:
The final phase? PLoS Pathog 2010, 6(10):e1001033.



Hou et al. BMC Genetics 2012, 13:91 Page 7 of 7
http://www.biomedcentral.com/1471-2156/13/91
5. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D: Antibody-based
protection against HIV infection by vectored immunoprophylaxis. Nature
2012, 481:81–84.

6. Sobieszczyk ME, Lingappa JR, McElrath MJ: Host genetic polymorphisms
associated with innate immune factors and HIV-1. Curr Opin HIV AIDS
2011, 6:427–434.

7. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, et al: Rapid
turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.
Nature 1995, 373:123–126.

8. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, et al: Viral dynamics
in human immunodeficiency virus type 1 infection. Nature 1995,
373:117–122.

9. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD: HIV-1
dynamics in vivo: virion clearance rate, infected cell life-span, and viral
generation time. Science 1996, 271:1582–1586.

10. Bonhoeffer S, May RM, Shaw GM, Nowak MA: Virus dynamics and drug
therapy. Proc Natl Acad Sci USA 1997, 94:6971–6976.

11. Perelson AS: Modelling viral and immune system dynamics. Nat Rev
Immunol 2002, 2:28–36.

12. Wodarz D, Nowak MA: Mathematical models of HIV pathogenesis and
treatment. Bioessays 2002, 24:1178–1187.

13. Simon V, Ho DD: HIV-1 dynamics in vivo: implications for therapy. Nat Rev
Microbiol 2003, 1:181–190.

14. Ribeiro RM, Bonhoeffer S: Production of resistant HIV mutants during
antiretroviral therapy. Proc Natl Acad Sci USA 2000, 97:7681–7686.

15. Rong L, Gilchrist MA, Feng Z, Perelson AS: Modeling within-host HIV-1
dynamics and the evolution of drug resistance: trade-offs between viral
enzyme function and drug susceptibility. J Theor Biol 2007, 247:804–818.

16. Troyer JL, Nelson GW, Lautenberger JA, Chinn L, McIntosh C, et al: Genome-
wide association study implicates PARD3B-based AIDS restriction. J Infect
Dis 2011, 203:1491–1502.

17. The International HIV Controllers Study: The major genetic determinants of
HIV-1 control affect HLA class I peptide presentation. Science 2010,
330:1551–1557.

18. Fu GF, Luo J, Berg A, Wang Z, Li JH, et al: A dynamic model for functional
mapping of biological rhythms. J Biol Dyn 2010, 4:1–10.

19. Fu GF, Wang Z, Li JH, Wu RL: A mathematical framework for functional
mapping of complex systems using delay differential equations. J Theor
Biol 2011, 289:206–216.

20. Luo JT, Hager WW, Wu RL: A differential equation model for functional
mapping of a virus-cell dynamic system. J Math Biol 2010, 65:1–15.

21. Guo YQ, Luo JT, Wang JX, Wu RL: How to compute which genes control
drug resistance dynamics. Drug Discov Today 2011, 16:334–339.

22. Wu RL, Cao JG, Huang ZW, Wang Z, Gai JY, et al: Systems mapping: How
to improve the genetic mapping of complex traits through design
principles of biological systems. BMC Syst Biol 2011, 5:84.

23. Ahn K, Luo J, Keefe D, Wu RL: Functional mapping of drug response with
pharmacodynamic-pharmcokinetic principles. Trend Pharmacolog Sci
2010, 31:306–311.

24. Ma CX, Casella G, Wu RL: Functional mapping of quantitative trait loci
underlying the character process: a theoretical framework. Genetics 2002,
161:1751–1762.

25. Wu RL, Lin M: Functional mapping – How to map and study the genetic
architecture of dynamic complex traits. Nat Rev Genet 2006, 7:229–237.

26. Li Y, Wu RL: Functional mapping of growth and development. Biol Rev
2010, 85:207–216.

27. Beretta E, Kuang Y: Geometric stability switch criteria in delay differential
systems with delay dependent parameters. SIAM J Math Anal 2002,
33:1144–1165.

28. Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s
functional organization. Nat Rev Genet 2004, 5:101–113.

29. Boone C, Bussey H, Andrews BJ: Exploring genetic interactions and
networks with yeast. Nat Rev Genet 2007, 8:437–449.

30. McKeegan KS, Borges-Walmsley MI, Walmsley AR: Microbial and viral drug
resistance mechanisms. Trends Microbiol 2002, 10:s8–s14.

31. Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol
Mol Biol Rev 2010, 74:417–433.

32. Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R: Evolutionary
paths to antibiotic resistance under dynamically sustained drug
selection. Nat Genet 2011, 44:101–105.
33. Thompson JN, Burdon JJ: Gene-for-gene coevolution between plants and
parasites. Nature 1992, 360:121–126.

34. Tetard-Jones C, Kertesz MA, Gallois P, Preziosi RF: Genotype-by-genotype
interactions modified by a third species in a plantinsect system. Am Nat
2007, 170:492–499.

35. Lambrechts L: Dissecting the genetic architecture of host–pathogen
specificity. PLoS Pathog 2010, 6(8):e1001019.

36. Persson J, Vance RE: Genetics-squared: combining host and pathogen
genetics in the analysis of innate immunity and bacterial virulence.
Immunogenetics 2007, 59:761–778.

37. Wang Z, Hou W, Wu R: A statistical model to analyse quantitative trait
locus interactions for HIV dynamics from the virus and human genomes.
Stat Med 2006, 25:495–511.

38. Martinez J, Fleury F, Varaldi J: Heritable variation in an extended
phenotype: the case of a parasitoid manipulated by a virus. J Evol Biol
2012, 25:54–65.

39. Galvin SR, Cohen MS: The role of sexually transmitted diseases in HIV
transmission. Nat Rev Microbiol 2004, 2:33–42.

40. Coombs RW, Reichelderfer PS, Landay AL: Recent observations on HIV
type-1 infection in the genital tract of men and women. AIDS 2003,
17:455–480.

41. Gupta K, Klasse PJ: How do viral and host factors modulate the sexual
transmission of HIV? Can transmission be blocked? PLoS Med 2006,
3(2):e79.

42. Li Y, Berg A, Chang MN, Du P, Ahn K, et al: A statistical model for genetic
mapping of viral infection by integrating epidemiological behavior. Stat
Appl Genet Mol Biol 2009, 8(1):38.

43. Wang Z, Liu T, Lin ZW, Hegarty J, Koltun WA, et al: A general model for
multilocus epistatic interactions in case–control studies. PLoS One 2010,
5(8):e11384.

44. Pettersson M, Besnier F, Siegel PB, Carlborg Ö: Replication and explorations
of high-order epistasis using a large advanced intercross line pedigree.
PLoS Genet 2011, 7(7):e1002180.

45. Imielinski M, Belta C: Exploiting the pathway structure of metabolism to
reveal high-order epistasis. BMC Syst Biol 2008, 2:40.

46. Butcher EC, Berg EL, Kunkel EJ: Systems biology in drug discovery.
Nat Biotech 2004, 22:1253–1259.

47. Hopkins AL: Network pharmacology: the next paradigm in drug
discovery. Nat Chem Biol 2008, 4:682–690.

48. Wu RL, Zeng ZB: Joint linkage and linkage disequilibrium mapping in
natural populations. Genetics 2001, 157:899–909.

49. Yap J, Fan JWRL: Nonparametric modeling of covariance structure
in functional mapping of quantitative trait loci. Biometrics 2009,
65:1068–1077.

50. Wu RL, Ma CX, Casella G: Statistical Genetics of Quantitative Traits: Linkage,
Maps, and QTL. New York: Springer; 2007.

doi:10.1186/1471-2156-13-91
Cite this article as: Hou et al.: Systems mapping of HIV-1 infection. BMC
Genetics 2012 13:91.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Systems mapping: a novel tool to dissect complex traits
	Mapping triple genome interactions
	Toward precision medicine
	Appendix 1. Mathematical models of viral dynamics
	Basic model

	ty
	Resistance model
	Cell diversity model

	Appendix 2. Systems mapping of viral dynamics
	Acknowledgements
	Author details
	References

