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Esterel belongs to the family of synchronous programming languages, which are affected by cyclic signal dependencies. This pro-
hibits a static scheduling, limiting the choice of available compilation techniques for programs with such cycles. This work proposes
an algorithm that, given a constructive synchronous Esterel program, performs a semantics-preserving source code level transfor-
mation that removes cyclic signal dependencies. The transformation is divided into two parts: detection of cycles and iterative
resolution of these cycles. It is based on the replacement of cycle signals by a signal expression involving no other cycle signals,
thereby breaking the cycle. This transformation of cyclic Esterel programs enables the use of efficient compilation techniques,
which are only available for acyclic programs. Furthermore, experiments indicate that the code transformation can even improve
code quality produced by compilers that can already handle cyclic programs.
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1. INTRODUCTION

One of the strengths of synchronous languages [1] is their
deterministic semantics in the presence of concurrency. Syn-
chronicity implies instantaneous interactions between con-
current threads, which makes it possible to write a syn-
chronous program that contains cyclic interdependencies
among concurrent threads. Depending on the nature of this
cycle, the program may still be valid; however, translat-
ing such a cyclic program poses challenges to the compiler.
Therefore, not all approaches that have been proposed for
compiling synchronous programs are applicable to all valid
cyclic programs. Cyclic programs are currently only translat-
able by techniques that are relatively inefficient with respect
to execution time, code size, or both.

This paper proposes a technique for transforming valid,
cyclic synchronous programs into equivalent acyclic pro-
grams, at the source code level, thus extending the range of
efficient compilation schemes that can be applied to these
programs. The focus of this paper is on the synchronous lan-
guage Esterel [2]; however, the concepts introduced here are
applicable to other synchronous languages as well, such as
Lustre [3].

Next we will provide an introduction to Esterel and cyclic
programs, followed by an overview of previous work on
compiling Esterel programs and handling cycles. Section 2

describes how to find cycles in an Esterel program, based
on the computation of signal dependencies. Section 3 intro-
duces the transformation algorithm, which is the main con-
tribution of this paper. Optimization options are presented
in Section 4, experimental results follow in Section 5. The pa-
per concludes in Section 6, including an example of how to
apply our transformation to Lustre.

1.1. Introduction to the Esterel language

The execution of an Esterel program is divided into discrete
temporal instants, or (logical) ticks. In such an instant, the
Esterel program communicates via signals with the environ-
ment and different parts of the program itself. In each in-
stant, a signal can be in one of two states: present or absent. If
a signal is emitted in one instant, it is considered present from
the beginning of that instant on. If a signal is not emitted in
one instant, it is considered absent. All parts of the program
have in each instant, the same view of all signal states emitted
anywhere in the entire program.

The Esterel language consists of kernel statements and de-
rived statements. As the latter are essentially “syntactic sugar”
and can be derived from the former, we will restrict our
attention here to kernel statements. The draft book [4] by
Berry on the Esterel semantics provides a list and reasoning
on the selection of kernel statements. Some example Esterel
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present A then
emit B

emit C
else

end;
emit D

(a)

GO

A B

emit A;
pause;

emit B

loop

end

(b)

trap T in
present A then

exit T
end
||
emit A;
emit B;
pause;
emit C

end;
emit D

(c)

Figure 1: Three Esterel fragments and, for the first two, their translations into circuits.

program fragments are listed in Figure 1. The program in
Figure 1(a) starts with a present statement that tests the state
of signal A. If A is present, then the then branch is executed,
which executes an emit statement that sets the state of signal
B to present. Conversely, if A is absent, then the else branch
sets C to present. Both branches terminate at the end of the
present statement, and in both cases the emit D statement is
executed.

Due to its deterministic and synchronous nature, the Es-
terel language is not only suitable as a programming lan-
guage, but can also be used for the specification and synthesis
of synchronous sequential logic circuits. To give an example,
the circuits in Figures 1(a) and 1(b) depict the circuit trans-
lations of the respective Esterel codes, according to the circuit
semantics [4]. The GO wire starts the circuit and via the K0
wire the circuit signals its termination.

Figure 1(b) contains two further structural parts of Es-
terel: loop and pause. A loop infinitely restarts its enclosed
statement block when it terminates. The pause statement
stops the execution for the remainder of the current instant
and resumes execution in the following instant. The pro-
gram fragment in Figure 1(b) has the following behavior: in
the first instant, the loop starts its body, which executes the
emit A statement. The pause statement stops the execution
and nothing more happens for the remainder of the first in-
stant. In the second instant, emit B is executed and the loop
body terminates; however, the loop body is instantaneously
restarted, emit A is executed again and pause is encoun-
tered again. For all the following instants the behavior of the
second instant is repeated. Regarding the circuit translation,
note how the pause gets translated into a register, which de-
lays the GO input to the emission of B.

Figure 1(c) contains a trap and parallel threads as new
elements. The trap statement consists of the definition of a
trap signal (here T), which acts as an exception, and a body as
a scope of that signal. The body may contain an exit T state-
ment to activate the exception signal T. The control flow does
not continue after the exit statement but after the entire trap
statement. The behavior of trap and exit thus corresponds to
catch and throw, respectively.

The trap body in the example in Figure 1(c) contains two
parallel threads, separated by the concurrency operator ||.

The parallel thread block terminates when all parallel threads
are terminated. In the example in Figure 1(c), signal A is
tested in the first thread, while it is emitted in the second
thread. Since a signal’s status must be consistent in the en-
tire program for an instant, it follows that the emission of A
must happen before it is tested in the first thread. Now the
first thread is able to test A successfully, the exit T statement
is executed. This signals to all other active threads in the as-
sociated trap T block to cease execution at reaching the next
pause statement this corresponds to a weak abortion. As a
consequence the second thread executes the emit B statement
too. On reaching the pause statement control jumps imme-
diately to the end of the trap block and executes the emit D
statement.

Another type of control flow available in Esterel is a tem-
poral delay of execution by a suspend statement:

suspend p when S

The execution of code block p is suspended for all those
instants when the signal expression S is evaluated to true. An
exception is the first instant when entering p, in that instant,
S is not evaluated and no suspension takes place.

Figure 2(a) contains an Esterel program including an in-
terface to the environment. Keywords input and output in-
dicate the data direction of interface signals. The states of in-
put signals are read from the environment at the beginning
of each instant.Output signals carry their status from the Es-
terel program to the environment at the end of each instant.
Note that input signals may also be emitted internally, and
that output signals may be tested.

1.2. Cyclic programs, constructiveness

To illustrate the problem to be solved by the code transfor-
mation presented in this paper, we now introduce the con-
cept of cyclic programs. We do this rather informally here, and
adopt the terminology used in the Esterel primer [5, Chapter
5]. A more detailed treatment follows in Section 2.

As stated in the primer, the availability of instantaneous
broadcasting and control transmissionmakes it possible to write
syntactically correct but semantically nonsensical programs.



J. Lukoschus and R. von Hanxleden 3

module PAUSE CYC:
input A, B;
output C;

present A
then emit B

end;
pause;
present B
then emit A

end
||
present B
then emit C

end
endmodule

(a)

module PAUSE PREP:
input A, B;
output C;
signal A , B , ST 0,

ST 1, ST 2 in
emit ST 0;
[
present [A or A ]
then emit B

end;
pause; emit ST 1;
present [B or B ]
then emit A

end
||
present [B or B ]
then emit C

end
]

end signal
endmodule

(b)

module PAUSE ACYC:
input A, B;
output C;
signal A , B , ST 0,

ST 1, ST 2 in
emit ST 0;
[
present [A or

(ST 1 and (B or ST 0))]
then emit B

end;
pause; emit ST 1;
present [B or B ]
then emit A

end
||
present [B or B ]
then emit C

end
]

end signal
endmodule

(c)

module PAUSE OPT:
input A, B;
output C;

signal A , B in
[
present A
then emit B

end;
pause;
present [B or B ]
then emit A

end
||
present [B or B ]
then emit C

end
]

end signal
endmodule

(d)

Figure 2: Resolving a cycle: (a) original program with cycle between A and B, (b) introduction of state signals and shifting the cycle on
internal signals, (c) replacement of cycle signal A by an expression, (d) optimized version.

A simple example for such a nonsensical program is:

present A else emit A end

If A is not present at the signal test, then the else part is ex-
ecuted and A is emitted, which invalidates the former signal
test. Such a program is considered nonreactive, as it does not
produce a well-defined output (A can be neither absent nor
present). Replacing the else by a then in this example would
produce a program that would yield more than one possible
output (A could be either absent or present), which would
be considered nondeterministic. Both variants of this example
involve an instantaneous dependency cycle between A and it-
self, and both programs are considered logically incorrect and
should be rejected by the compiler.

Considering the example above, one might conclude that
all programs that contain dependency cycles should be re-
jected, and the Esterel v4 compiler did just that [6]. However,
now consider the program PAUSE CYC in Figure 2(a). This
program also contains a dependency cycle, involving mutual
dependencies between A and B. At run time, however, the de-
pendencies are separated by a pause statement into separate
execution instants. The emission of B in the first instant has
no effect on the test for B in the second instant. In such a case,
where not all dependencies are active in the same execution
instant, this is considered a false cycle [5]. Another classic ex-
ample of a cyclic, yet meaningful program, is the token ring
arbiter, shown in Figure 8 [7, 8]. The arbiter also contains
a false cycle, and, even more problematic from a compiler’s
point of view, it does not even allow a static scheduling of the
execution order.

We would like to accept programs such as PAUSE CYC,
and the Esterel v5 compiler does so by establishing that
unique values for all signals can be determined in all execu-
tion contexts. The v5 compiler accepts all programs that are

constructive [4], meaning that it forbids speculative reason-
ing, and restricts itself to fact-to-fact propagation according
to the imperative nature of Esterel. An analogy in hardware
circuitry is that a constructive Esterel program can be directly
translated into a circuit where all wires reach unique, prede-
fined voltage levels, irrespective of initial levels and propaga-
tion delays.

It is now generally agreed upon that constructive Esterel
programs are meaningful, irrespective of whether they are
cyclic or not. However, cyclicity poses a particular compila-
tion challenge in that it prevents a compiler from establishing
a static ordering for determining the signal values. As elabo-
rated further in Section 1.3, this unfortunately precludes the
application of the simulation-based compilation approaches,
which are currently the most competitive in terms of execu-
tion speed and size. This is where the transformation pre-
sented in this paper steps in: it transforms cyclic, constructive
programs into equivalent, acyclic programs, such that they
are amenable to compilation also by the efficient compilers
that require acyclicity.

As discussed further in Section 2.3, different compil-
ers may have different notions of what constitutes a cycle,
and whether they are able to handle specific cycles or not.
Our code transformation is concerned with transforming
constructive programs that are not schedulable by (some)
compilers, due to (false) dependency cycles, into equivalent,
schedulable programs. To make our transformation widely
applicable, we are fairly conservative with respect to what
constitutes a dependency and hence may lead to a cycle, and
we completely eliminate all cycles even if a smart compiler
might be able to determine them to be false.

The key observation, which the transformation presented
here builds on, is that if a program is constructive, we can
safely break a (false) cycle by replacing one of the signals
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Figure 3: Circuit representation of the program PAUSE CYC in
Figure 2 (simplified without synchronizer): (a) cycle path of the
original program PAUSE CYC, (b) transformed, acyclic program
PAUSE OPT with new local signals A and B .

contained in the cycle by a fresh signal. Consider the pro-
gram PAUSE OPT in Figure 2(d). This program is equivalent
to PAUSE CYC, but the dependency cycle is broken by replac-
ing the emission of Bwithin the cycle by a fresh signal B . This
can also be seen at the circuit level, see Figure 3; the netlist
for PAUSE CYC contains a feedback loop, which disappears
in the netlist for PAUSE OPT. To preserve program equiva-
lence, tests for B outside of the cycle must test for B as well.
However, inside the cycle, it suffices to just test for emissions
of B (outside of the cycle), thus breaking the dependency cy-
cle. The transformation mechanism presented here aims to
automatically produce such equivalent, acyclic programs.

1.3. Relatedwork

Today there exist three basic compilation techniques to syn-
thesize code for a general purpose processor: automata, cir-
cuit, and event-based code synthesis. The automata-based
Esterel v3 compiler developed by Berry and Gonthier [2] un-
folds all parallel activities in the source program into a finite
automaton with a single point of control. This removes all
internal signaling (including cyclic dependencies) with the
benefit of a very fast execution of the program. The drawback
of this method is a possible state explosion for programs with
many parallel threads.

The next generation of the Esterel compiler at Berry’s
group, the v4, implemented a different strategy. It is derived

from hardware synthesis and is based on the simulation of
circuits as the ones shown in Figure 1 in software [4]. This
method translates parallelism in Esterel programs into paral-
lel circuits, thus avoiding the state explosion of the automata
code compiler. If the synthesized circuit contains cycles, then
a dynamic schedule may be needed for the software simula-
tion of the circuit and is therefore rejected by most Esterel
compilers that use this approach.

Malik [9] describes a method to transform these cyclic
circuits into acyclic ones. It is based on an iterative algorithm
to compute the outputs of cyclic circuits with ternary simu-
lation. Effectively the simulation run is serialized into an un-
folding of the cycle path until the remaining inputs have no
influence on the outputs. These inputs are replaced by con-
stants, making the circuit acyclic. Shiple et al. [10] have de-
veloped Malik’s work further by applying optimizations and
incorporating cycles including registers into the algorithm.
An implementation of this method is available in the Esterel
v5 compiler [11].

A third approach to synthesize software is to generate an
event-driven simulator, which breaks the program down into
a number of small functional blocks that are conditionally
executed. The CEC [12, 13] and SAXO-RT [14] compilers
are based on this concept. These compilers tend to produce
code that is compact and yet almost as fast as automata-based
code. The drawback of these techniques is that so far, they
rely on the existence of a static execution schedule. Therefore
these efficient simulation-based compilation approaches are
generally unable to compile cyclic programs, as already noted
in the previous section.

The difficulties in giving a precise differentiation be-
tween cyclic and acyclic programs in different compilers (cf.
Section 2.3) are also addressed by Potop-Butucaru [15] in
his thesis. He identifies different compilation strategies and
different internal dependency representations of Esterel pro-
grams as the source for discrepancies. Potop-Butucaru pro-
poses to take the circuit synthesis [4] of Esterel programs as
a reference and develops changes to his GRC compilation
scheme tomatch the cycle properties of the v5 compiler. That
approach is followed here, too, as we use the circuit seman-
tics that underlies the v5 compiler as a reference to identify
cycles in Esterel programs.

Besides software synthesis for a general purpose proces-
sor and hardware synthesis, the reactive processing approach
makes use of specialized processors [16, 17]. However, the
designs proposed so far also require acyclicity of the given
programs, thus they could also benefit from our transforma-
tion.

One approach to overcome the limitation to cyclic pro-
grams, which is described by Edwards [18], is to unroll the
strongly connected components (cycles) of circuits. Esterel’s
constructive semantics guarantees that all unknown inputs
to these strongly connected regions can be set to arbitrary,
known values without changing themeaning of the program.

The transformation of cyclic Esterel programs presented
here builds on the work on cyclic circuits by Malik [9],
Shiple et al. [10], and Edwards [18]. The main differ-
ence is that these previous approaches work on an internal
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representation used by a particular compiler. Our transfor-
mation lifts this to the Esterel level, basically by evolving
gate duplications into duplications of signal expressions. This
makes our approach applicable to Esterel compilers in gen-
eral, without the need to access their internals.

The key ideas to resolve cycles in Esterel programs were
already described previously [8]. However, that earlier work
did not cover the identification of cyclic dependencies, the
computation of replacement expressions in the context of
parallel termination and hierarchic trap blocks. Extensions
to the algorithms to cover valued signals and alternative uses
for replacement expressions in constructiveness analysis are
presented in the dissertation of the first author [19].

The compilation of Esterel cannot only be complicated
by cyclic dependencies, but also by signal reincarnation, also
known as schizophrenia [4]. Most compilation schemes are
not able to produce correct code for Esterel programs with
schizophrenia problems. The code transformation presented
in this work is not able to work on schizophrenic programs,
either. A simplemethod to remove schizophrenia from a pro-
gram involves code duplication, with potentially exponen-
tial cost in code size [4]. Several researchers have proposed
more efficient cures for schizophrenia in Esterel programs
[4, 20, 21]. These approaches work on the source code level,
and could thus also be used as a preprocessing step to the
transformation presented here.

We generally assume that the input programs that we
transform are constructive in Berry’s sense [4], as construc-
tiveness is the property exploited by the way our algorithm
breaks dependency cycles. However, it should be noted that
this constructive semantics is not the only possible seman-
tics for Esterel. More specifically, there have been different
proposals as to which types of Esterel programs should be
considered valid and which should be rejected. Boussinot
has presented a number of alternatives, implemented in the
SugarCubes project [22]. Another approach, called maximal
causality analysis, has been suggested by Schneider et al. [23].

2. DETECTING DEPENDENCY CYCLES

We now refine the concept of program cycles that has been
introduced informally in Section 1.2, and present an algo-
rithm to detect such cycles.

2.1. Signal dependencies

We say that a signal P depends on signal S if, in some instant,
for some sequence of input events, the presence or absence of
P can only be decided on (according to the constructive se-
mantics) if the presence or absence of S has been established.
We then also say that this is a dependency from S to P. For
a simulation-based compiler (cf. Section 1.3) a dependency
represents a scheduling constraint.

The two most basic elements of a signal dependency are
the test for a signal state (present S) and the emission of a
signal (emit P). If both elements are combined in a program
fragment

present S then emit P end

then a signal dependency is created; the presence state of S
decides about the emission of P. Therefore the state of Smust
be known before the state of P can be established. In other
words, signal S is a guard for signal P, or P depends on S.

The simple fact that an emit statement is contained in a
subblock of a present statement is not a sufficient condition
for a signal dependency. Consider this program fragment

present S then emit P; pause; emit Q end

The state of S decides over the emission of P in the same in-
stant, which establishes a dependency between S and P. The
emission of P is followed by a pause statement and an emis-
sion of signal Q inside the same then branch of the present
statement. The pause statement defers the emission of Q to
the subsequent instant, therefore the emission of Q is not in-
fluenced by the state of S in the same instant. Hence, S is a
guard for P but not for Q.

While a signal emission being part of a present block is
not a sufficient condition for a signal dependency, it is neither
a necessary condition. Consider the following fragment:

present S then nothing end; emit P

In this example the emission of P is not part of the present
block, but that block must terminate before the emission can
take place. To execute the present block, the state of the sig-
nal S must be known. The fact that the then and (implicit)
else branches both contain just a nothing statement is not
relevant here. The constructive semantics of Esterel demands
nonspeculative execution of the program, and the execution
of either branches of present and subsequently emit P must
be stalled until the state of all the tested signals is established.
Therefore signal dependencies are established across sequen-
tial execution of statements, too, and S is a guard for P in this
example.

Other sources for signal dependencies originate in loops
connecting dependencies from the end to the start of the
body, watcher expressions of suspend statements, or in ex-
ceptional control flows triggered by exit statements.

In the presence of reincarnation, this view requires to dif-
ferentiate between different signal incarnations [4]. However,
as we want to separate the reincarnation problem from the
cyclicity problem, we will henceforth assume that signal rein-
carnation has been resolved by one of the known methods
(cf. Section 1.3) before we get to analyze the program, and
will assume that signals are unique.

2.2. Dependency cycles

We say that a program has a (dependency) cycle, or is cyclic,
if there is a cyclic sequence of signal dependencies; this may
also be, for example, a self-dependency. A dependency from
S to P is active during a specific instant if during that instant
the presence of P causally depends on the presence of S.

We say that a cycle is false if not all of its constituent de-
pendencies can be active at the same instant. In case we can
establish a fixed partial order among the emissions and tests
of the signals involved in the cycle, as in the PAUSE CYC ex-
ample, we consider this false cycle to be statically schedulable.
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Otherwise, it is dynamically schedulable, as for example in the
token ring arbiter. If a program contains a true cycle, this cy-
cle is not schedulable, and the program is not constructive
and not considered further here.

2.3. The compiler’s view

The definition of “signal dependencies” given in Section 2.1
and the subsequent definitions of cyclicity that build on it
refer to the constructive semantics of Esterel, as defined, for
example, by the Constructive Behavioral Semantics [4]. Ide-
ally, all Esterel compilers we are concerned with would share
exactly this view. There is indeed such a direct link between
what we consider a true cycle and the v5 compiler: the v5
compiler, when using its built-in constructiveness analysis
(option -causal), should accept a program if and only if it
does not contain a true cycle. We have noticed that there are
constructive programs (such as mejia [24]) where the con-
structiveness analysis of the v5 compiler fails; however, these
seem to be implementation imperfections (e.g., regarding cy-
cles on valued signals) and do not represent fundamental
compiler limitations. Furthermore, these programs can still
be compiled and run using the -I option, which generates
interpretative code.

The picture becomes less clear when considering cycles in
constructive programs, that is, false cycles. For a given pro-
gram, it is decidable whether the program contains a false
cycle or not, according to our definition, again based on Es-
terel’s constructive semantics. Unfortunately, different com-
pilers may have different ideas of what constitutes a (false)
cycle, and whether a detected (false) cycle is statically schedu-
lable or not. The Esterel examples discussed so far did not
pose any particular problems for a compiler. However, there
are other more involved cases that are more difficult for a
compiler. Consider the following fragment:

[ present S then nothing end || pause ]; emit A

In this example, A does not depend on S, as the pause in the
second thread causes the whole parallel statement to pause,
thus separating the present S and the emit A into disjoint
instants. The CEC does correctly detect that there is no de-
pendency here; however the v5 compiler is unable to perform
such reasoning, and assumes a dependency here. Conversely,
there are other examples where the CEC detects dependen-
cies that the v5 compiler does not [19]. The underlying rea-
son for these discrepancies is the difference in the internal
program representations used by these compilers [15].

Some compilers, such as the SAXO-RT, accept certain
cyclic programs if they can establish that all cycles are false.
The compiler tries to determine whether a cycle contains ex-
clusive dependencies, meaning that they cannot be activated
in the same instant, for example, if they belong to different
branches of a present test or if they are separated by a pause
statement. Thus, the SAXO-RT is able to compile, for exam-
ple, the PAUSE CYC program. However, this fails for cycles
which must be dynamically scheduled, such as the aforemen-
tioned token ring arbiter.

As compilers in general do not perform an exhaustive
causality analysis, they perform conservative approximations

when analyzing dependencies, and when analyzing whether
dependency cycles are statically schedulable or not. There-
fore, to make our transformation applicable as broadly as
possible, while at the same time avoiding unnecessary trans-
formations, it would be ideal if we would transform only
those cycles that are rejected by the compiler that is actually
used. Therefore that compiler would have to provide details
on rejected cycles. However, compilers typically do not pro-
vide this information, at least not in a standardized fashion.
As part of the algorithm, we detect cycles ourselves before re-
solving them. The algorithm for doing so is presented in the
next section.

2.4. Algorithm to detect dependency cycles

The algorithm presented here is divided into two parts:
(1) identification of all direct signal dependencies, and (2)
searching for cycles in signal dependencies. The first part is
specified as a structural induction on Esterel programs with
a set of signal pairs as a result. Each signal pair describes a
dependency from one signal to another. These pairs can be
interpreted as edges in a directed graph with the signal names
as nodes. The second part of the algorithm, the detection of
cycles in such a graph, is straightforward.

The method to derive signal dependencies here is based
on the Esterel circuit semantics, as also used by the v5 com-
piler. The plain circuit semantics just defines the expansion
of Esterel statements into circuits without any optimizations.
The v5 compiler actually performs additional circuit mini-
mization steps on the resulting circuit, for example, by prop-
agating constant input values. This reduces the size of the re-
sulting circuit considerably and is sometimes able to remove
signal dependencies that would lead to cyclic dependencies
otherwise.

Our method to derive signal dependencies uses no opti-
mizations, primarily because we do not explicitly generate a
circuit for the full program, making general logic optimiza-
tion algorithms not applicable. Furthermore we want to pro-
vide a conservative solution for cyclic dependencies, which
does not depend on specific optimizations implemented in
specific compilers. The drawback of this conservative ap-
proach is that cycles may be resolved unnecessarily.

All signal dependencies lead from signal emissions to sig-
nal tests. This leads to the basic idea of our approach to search
for signal dependencies in Esterel programs.

(1) The program is recursively traversed.
(2) Signals in a present condition are added to a set G of

guard signals.
(3) If an emit statement is encountered, then new depen-

dencies from all signals in G to the emitted signal are
collected in a global set D of signal dependencies.

(4) G is emptied when a pause statement is encountered.

The rule set listed in Algorithm 1 implements the
computation of signal dependencies for kernel statements
of Esterel. The suspend statement is left out for reasons
laid out in the discussion of Step (2d) of the transformation
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emit S
G(P,G,X) = G

D(P,G,X) = {〈a, S〉 | a ∈ G
} (1)

present S then

p

else

q

end

G(P,G,X) = G
(
p,G∪ {S},X)∪ G

(
q,G∪ {S},X)

D(P,G,X) =D
(
p,G∪ {S},X)∪D

(
q,G∪ {S},X) (2)

pause
G(P,G,X) = ∅
D(P,G,X) = {〈a, s〉 | a ∈ G, s ∈ X

} (3)

nothing
G(P,G,X) = G

D(P,G,X) = ∅ (4)

loop

p

end

G(P,G,X) = ∅
D(P,G,X) =D

(
p,G∪ G(p,G,X),X

) (5)

p; q
G(P,G,X) = G

(
q,G(p,G,X),X

)

D(P,G,X) =D(p,G,X)∪D
(
q,G(p,G,X),X

) (6)

trap T in

p

end

G(P,G,X)={a | 〈a,T〉 ∈D
(
p,G,X∪{T})}∪ G

(
p,G,X ∪ {T})

D(P,G,X) = {〈a, s〉 ∈D
(
p,G,X ∪ {T}) | s �= T

} (7)

exit T
G(P,G,X) = ∅
D(P,G,X) = {〈a,T〉 | a ∈ G

} (8)

p || q G(P,G,X) = G(p,G,X)∪ G(q,G,X)

D(P,G,X) =D(p,G,X)∪D(q,G,X)
(9)

signal S in

p

end

G(P,G,X) = G(p,G,X)

D(P,G,X) =D(p,G,X)
(10)

Algorithm 1: Equations to determine signal dependencies from kernel statements. Suspend is replaced by other kernel statements. D
collects signal dependencies from signal emissions, G returns the active guard signals from terminating statement blocks. P stands for the
corresponding program fragment shown on the left, G is the set of guard signals, and X is the set of trap signals in the current context.

algorithm in Figure 4. While traversing the syntactical
elements of a program P with signals Σ, two sets of active
guard signals are maintained.

G ⊂ Σ: set of signals (guards) comprising the current
present conditions.

X ⊂ Σ: set of trap signals (exceptions) in the current
scope.

Signals in X are kept separate fromG because trap signals are
not removed by pause statements. The rules to derive signal
dependencies from Esterel programs are implemented in two

functions (with Π as the set of Esterel programs and Σas the
set of signals):

D : Π× 2Σ × 2Σ −→ 2Σ×Σ (P,G,X) 
−→D(P,G,X)

G : Π× 2Σ × 2Σ −→ 2Σ (P,G,X) 
−→ G(P,G,X)

D computes the signal dependencies from the current guard
signals. The result is a set of signal pairs describing all sig-
nal dependencies in P. It uses Gto handle sequences of state-
ments. Greturns the set of guard signals that are active when
the control flow leaves the program block P. To extract the
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Input: Program P, potentially containing cycles
Output:Modified program P′′, without cycles

(1) Check constructiveness of P. If P is not constructive:
Error.

(2) Preprocessing of P:
(a) If P is composed of several modules, instantiate them

into one flatmainmodule.
(b) Expand derived statements that build on the kernel

statements, except for suspend which is handled in
Step (2d).

(c) Rename locally defined signals to make them unique
and lift the definitions up to the top level.
Furthermore, eliminate signal reincarnation.

(d) Transform suspend into equivalent present/trap
statements.

(e) Add explicit termination handling to II statements.
(f) Add emission of individual state signals ST i to the

start of the program and each pause statement.
(3) Identification of cyclic signal dependencies:

(a) Identify all signal dependencies D =D(P,∅,∅).
(b) If Ddoes not contain cycles: Done.

Otherwise: Select a shortest cycle �C, of length l.

(4) Transform P into P′; do for all σi ∈ �C, if σi is an input
signal in the module interface:

(a) Globally declare a new signal σ ′i . σ
′
i replaces σi in �C.

(b) Replace “emit σi” by “emit σ ′i .”
(c) Replace tests for σi by tests for “(σi or σ ′i ).”

(5) Transform (still cyclic) P′ into (possibly acyclic) P′′:
(a) For all σi ∈ �C determine replacement expressions

Ei = E(P′, ST 0) (see Algorithm 2).

(b) Select some cycle signal σp ∈ �C as the pivot signal
to break the cycle.

(c) Iteratively transform Ep to E∗p by replacement of all

signals σj ∈ (�C \ σp) by their expressions Ej .
(d) Transform E∗p into E∗∗p by replacing σp by false

(or true) and minimize result. Now E∗∗p does not
involve any cycle signals.

(e) Replace all tests for σp in P′ by E∗∗p resulting in P′′.
(6) Goto Step (3), treat P′′ now as P.

Figure 4: Transformation algorithm for pure signals.

signal dependencies Dfrom an Esterel program P, D is ap-
plied to P with initially empty guard sets: D =D(P,∅,∅).

As an example for how our cycle detection mimics
Esterel’s circuit semantics, consider again the example in
Figure 1(a). Here signals B and C are emitted under direct
control of signal A, therefore B and C depend on A. This is
visible in the circuit as the two and gates that depend on A
and control the activation of the signal drivers for B and C.
SignalD is emitted in sequence of the present statement. The
dependency ofD on A is visible in the circuit by following the
path through the or gate.

These kinds of dependencies are determined by collect-
ing all signals in present conditions as guard signals. The or-
der of the recursive traversal is set up to mirror the (internal,
anonymous) wires connecting the different parts of the cir-

cuit. If a pause statement is encountered, then the guard set
G is emptied because signal dependencies do not reach over
pause statements, which correspond to registers at the circuit
level.

The body p of loop is evaluated twice in D to capture
dependencies resulting from an instantaneous restart of the
loop body. In the following example signal B depends on A
because of such an instantaneous restart:

loop emit B; pause; present A then nothing end end

Trap/exit represents a different kind of flow of control
than that is followed by the recursive traversal. An exit T
statement transfers control to the surrounding trap T en-
vironment. Our recursive dependency analysis does not di-
rectly follow these exceptional control paths, but instead
stores the trap signal as a dependency on the guard set G.
When the recursive traversal of a trap T body is completed,
all currently stored guards on the trap signal are retrieved
from the dependency list and put back into the guard set. Ad-
ditionally all pause statements within a trap T environment
connect the current guard set to T to capture dependencies
resulting from parallel threads to an exit statement.

The rules in Algorithm 1 contain no optimizations re-
garding unreachable code. That simplification may lead to
the detection and subsequent transformation of cycles which
are not rejected by Esterel compilers in the first place. An ex-
tended rule set that detects dead code is given in the thesis
[19].

3. PROGRAM TRANSFORMATION

After identifying cyclic dependencies, we are now able to re-
solve those cycles by transforming the program as described
in the following.

3.1. The base transformation algorithm

Figure 4 presents the algorithm for transforming cyclic Es-
terel programs into acyclic programs. Each transformation
step is discussed along with its worst-case increase in code
size. The core of the algorithm is Step (5d), which breaks de-
pendency cycles; however, to do this step, we have to first an-
alyze and preprocess the program. The algorithm presented
here is applicable to programs with cycles that involve pure
signals only. Extensions to support valued signals as well are
presented elsewhere [19].

Step (1): the constructiveness of the Esterel program is
a precondition for the transformation. It can be performed
using, for example, the methods developed by Berry and by
Shiple et al. [4, 10]; one available implementation is offered
by the v5 compiler [25]. The constructiveness property is ex-
ploited in Step (5d) of the algorithm. Note that as acyclicity
implies constructiveness, we may first run an acyclicity test,
by the compiler, or by Step (3) of our algorithm, which is
generally cheaper than a full constructiveness analysis.

Step (2): the core algorithm is only applicable to Esterel
programs that have been preprocessed as follows.

Step (2a): the expansion of modules is a straightforward
textual replacement of module calls by their respective body.
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No dynamic run time structures are needed, since Esterel
does not allow recursions.

Step (2b): regarding the statements handling signals, the
transformation algorithm is expressed in terms of Esterel ker-
nel statements. Therefore all derived statements must be ex-
panded to kernel statements.

Step (2c): we have to eliminate locally defined signals be-
cause replacement expressions for signals computed by the
algorithm could carry references to local signals out of their
scope. (Note that the programmer may still freely use local
signal declarations.) Furthermore, the method of finding re-
placement expressions assumes that signals are unique, that
is, not reincarnated. To address the problem of reincarnation,
algorithms with different efficiency are available [4, 21].

Step (2d): the introduction of state signals fails in the
context of suspend statements, because state signals emit-
ted as part of a suspend block are suspended too. This con-
stitutes a dependency of the state signals on the—possibly
cyclic—suspension condition and may lead to a new cycle,
thus preventing a successful reduction on the number of cy-
cles.

The solution proposed here simulates the behavior of
suspend blocks by means of other kernel statements (trap,
exit, pause, present, loop), which are handled directly. The
key difference to the original suspend behavior is the han-
dling of state signals; they are emitted regardless of suspen-
sion conditions. This avoids unwanted dependencies for state
signals.

Suspension blocks are transformed by removing the sus-
pend envelope:

suspend p when S � p’

Here p denotes the suspended body and S denotes the
suspension condition. They are replaced just by the body
p′ derived from p, where all pause statements inside p are
replaced by “await not S.” This transformation emulates the
behavior of suspend by explicitly checking the suspension
condition at the start of each instant. However, as the await
statement is a derived statement, we have to transform it
further into kernel statements:

await not S �
trap T in loop
pause; present S else exit T end

end end

The complexity of this part of the transformation is a con-
stant factor of the number of pause statements inside sus-
pend statements.

When transforming cascaded suspend blocks, then each
suspension block can be treated individually. For each sus-
pend definition another layer of trap/loop blocks will be put
around included pause statements. The order of transforma-
tions of the suspend blocks is not relevant here.

An alternative solution to handle state signals inside sus-
pend blocks, which is based on a small extension to the Es-
terel language, is proposed in the thesis [19]. It is based on
the emission of state signals with no regard for suspension,
thus avoiding the introduction of dependencies from the sus-

pend condition to the enclosed state signals introduced in
later steps.

Step (2e): another case of hidden program state is present
in the termination control of parallel statements. Consider a
parallel block with two threads:

p || q

This parallel block terminates, if both subblocks p and q ter-
minate. The precise signal state of termination of the whole
parallel statement is not directly accessible, because threads
that are terminated in earlier execution instants do not emit
any signals anymore. Therefore a simple signal expression
will generally not describe the termination context of parallel
statements.

Figure 5 illustrates the addition of auxiliary signals at the
end of each thread in a parallel statement. These signals are
continuously emitted, once that thread is terminated. An ad-
ditional thread tests for the conjunction of all these auxil-
iary signals. If all auxiliary signals are present, then the en-
tire parallel statement is terminated via a trap exception. This
transformation replaces the regular termination mechanism
of parallel statements by trap exception handling, which is
covered by the regular algorithm.

Step (2f): the execution state of an Esterel program is
stored in variables defined inside the synthesized code. Un-
fortunately there is no provision at the Esterel level to access
the state of these variables. The introduction of additional
state signals makes the current state of the program available
to signal expressions. Each pause statement is supplemented
with the emission of a unique signal “pause; emit ST i.” The
emission of the first state signal “emit ST 0;” is added to the
program start. ST 0 corresponds to the boot register in the
circuit representation of Esterel programs. Note that many of
the signals may be eliminated again by subsequent optimiza-
tions, see Section 4.

Step (3): cycles in the program are identified by building
a graph representing the control flow dependencies between
present tests and signal emissions. That directed graph is
used to search for cyclic dependencies in the Esterel program.
Only signals which are part of the currently resolved cycle
are of further interest. More details on the detection of cyclic
dependencies are given in Section 2.4. If there is more than
one cycle present in the program, then Steps (4) and (5) are
performed for each cycle individually. In each cycle resolving
step the currently smallest cycle must be selected to be re-
solved. This ensures the termination of the iterative expres-
sion transformation in Step (5c).

The signals comprising the currently selected cycle are
called cycle signals in the following.

Step (4a/4b): this step splits each cycle input signal σi
into two signals σi and σ ′i . Input signals to/from sub-modules
are not addressed here, only the connections to the envi-
ronment. The motivation of this step is to distinguish be-
tween emissions from inside the Esterel program and from
the environment. The signal with the original name σi is un-
der the control of the environment. All signal emissions in
the program itself use the new signal name σ ′i . The aim of
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[
p

||
q

]

(a)

�

signal T i, T j in
trap T in
p;
sustain T i

||
q;
sustain T j

||
loop
present [T i and T j]
then exit T end;
pause

end
end

end

(b)

�

signal T i, T j in trap T in
p;
loop
emit T i; pause

end
||
q;
loop
emit T j; pause

end
||
loop
present [T i and T j]
then exit T end;

pause
end

end end

(c)

Figure 5: Making the termination state of parallel threads visible to signal expressions by continuous emission of auxiliary signals on
terminated subthreads: (a) original parallel block with threads p and q, (b) added termination handling by trap, (c) expansion of sustain
into kernel statements.

emit ST 0
present A then emit B end;
pause; emit ST 1;
present B then emit C end;
pause; emit ST 2;
present C then emit B end;
pause; emit ST 3;
present C then emit A end

(a)

Cycles:
C1 = 〈A,B,C〉
C2 = 〈B,C〉

State expressions:
A = ST 3∧ C
B = (ST 0∧ A)∨ (ST 2∧ C)
C = ST 1∧ B

(b)

C1

C2

A

B

C

(c)

Figure 6: Program with potentially nonterminating iterative signal replacement: (a) cyclic program containing two cycles with a common
dependency from B to C, (b) cycles and emission contexts of signals, (c) graphical representation of the two cycles, the common dependency
is indicated by a dashed line.

the replacement expressions (see Step (5a)) is to substitute
tests on cycle signals by expressions made up of noncycle sig-
nals. This is not possible for input signals since their behavior
cannot be derived from signals in the program. In a way, this
introduction of fresh signals, which are emitted exclusively in
the cycle, is akin to static single assignment (SSA) [26].

Step (4c): all tests for cycle input signals in the original
program are extended by tests for their replacement signals.
Using the SSA analogy, this corresponds to a φ-node [26].

Step (5a): the computation of replacement expressions E
is described in detail in Section 3.2.

Step (5b): one signal in the set of cycle signals must be se-
lected as a point to break the cyclic dependency. Any signal in
the cycle will work; for example, we may select the signal that
generates the smallest replacement expression as computed
in the next step.

Step (5c): the replacement expression Ep for the selected
cycle signal σp contains references to other cycle signals σj .
These are recursively replaced by their respective expressions

Ej into E∗p . This unfolding of expressions is performed until
only σp and noncycle signals are referenced in E∗p .

For Esterel programs containingmultiple overlapping cy-
cles that unfolding may not terminate. Figure 6 contains an
example for such problematic cycles. If C1 is selected as the
first cycle to resolve, then the iteration will not terminate by
oscillating between the replacement and reintroduction of B
and C. As a simple remedy it suffices to always select the cur-
rently smallest cycle in Step (3). The following argues the va-
lidity of generally solving the termination problem of the it-
eration by selecting a smallest cycle.

Preconditions 1. Given constructive Esterel program P, in-

cluding n cycles �C1, . . . , �Cn involving signals σi ∈ Σ, one

shortest cycle �Ck is selected such that for all i ∈ {1, . . . ,n} :

|�Ck| ≤ |�Ci|. The emission contexts of all cycle signals σi ∈ �Ck

are represented by expressions Ei (i ∈ {1, . . . , |�Ck|}). One
signal σp ∈ �Ck with associated expression Ep is arbitrarily
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selected as the pivot element to break the cycle and perform
the iteration.

Theorem 1. The iterative replacement of cycle signals σi ∈ �Ck

(i �= p) in expression Ep by expressions Ei terminates after a
finite number of steps.

Proof. The occurrences of signals in expressions relate to sig-
nal dependencies found in the cycle analysis step: if an ex-
pression Ei for a signal σi contains a signal σj , then a depen-
dency 〈σj , σi〉 exists. Dependencies on state signals are omit-
ted here because they are not part of any cycle by design. The
iterative replacement of all cycle signals by their respective
expressions stops at signal σp. This iteration is structurally
equivalent to a reverse traversal on the signal dependencies
starting from σp with the following restrictions: only those
signal dependencies are followed where both signals in the
dependency are part of the cycle, the traversal stops if σp is
reached.

The traversal does not terminate if a loop in signal depen-
dencies is encountered. Two cases exist for such loop struc-
tures.

A single signal dependency may directly connect an al-
ready visited cycle signal to the current cycle signal. Together
with the already traversed dependencies this constitutes a cy-

cle with fewer signals than �Ck. That is, a contradiction to the
precondition on selecting the shortest cycle to resolve first.

The other case is a chain of two or more dependencies
connecting back to the cycle. The signals connected by this

chain cannot be part of cycle �Ck (besides the first and last
signals in the chain) because otherwise they would be identi-

cal to dependencies already included in �Ck or are covered by
the previous case. Therefore in this case only signals outside
the cycle are covered. Since such signals are not traversed in
the iteration, no loop in the iteration is present here.

The complexity of the replacement expressions depends
on the length of the cycle, because the length of the cycle gov-
erns the number of replacement iterations needed to elimi-
nate all but the first cycle signals in the guard expression. The
length of the cycle and the size of each replacement are lim-
ited by the number of signals in the program. So there is a
quadratic relationship of the size of the replacement expres-
sion to the program size. The number of times the replace-
ment expression will be inserted in the program is likewise
dependent on the program size. Thus the potential growth
in program size for one cycle is of cubic complexity.

Step (5d): this is the central step of the transformation.
Since the program is known to be constructive, it follows that
σp in E∗p must not have any influence on the evaluation of E∗p .
Therefore we can replace σp in E∗p by any constant value (true
or false). The resulting expression E∗∗p contains only noncy-
cle signals. This replacement of a cycle signal by a constant is
described inMalik’s work [9] on resolving cycles in cyclic cir-
cuits. The following argues the validity of this replacement.

Preconditions 2. Given constructive Esterel program P, in-

cluding cycle involving signal σp, and other signals �S =

〈s0, . . . , sn〉, a replacement function E∗p (σp, �S) for signal σp is
derived as of Step (5c) according to the circuit semantics of
Esterel.

Theorem 2. P is constructive⇒ E∗p (true, �S) = E∗p (false, �S) for
all reachable �S.

Proof. P is constructive, that is, the state of all signals (includ-
ing σp) can be determined without speculative reasoning for
all reachable states of the program. Therefore the status of σp
can be derived without previous knowledge of the status of
σp; in other words, σp is not allowed to depend on itself. E∗p
computes the status of signal σp from signals in P including
σp itself.

Assuming that E∗p yields different results for true and
false in place of σp would make E∗p dependent on σp. This
contradicts the constructiveness of P. Therefore E∗p cannot
depend on the status of σp.

Remark 1. The use of constructiveness here implies strong
constructiveness as defined by Shiple et al. [10], that is, even
local nonconstructiveness with no influence on output sig-
nals is not allowed.

Step (5e): the last transformation step in the algorithm
replaces every occurrence of σp in present tests by its replace-
ment expression E∗∗p . Now we have replaced one signal of the
cycle by an expression which does not contain any references
to signals of the cycle. Therefore we have broken the current

cycle �C.
Step (6): the transformation algorithm must be repeated

until all cycles are resolved, and the upper limit of cycles to
resolve is the number of statements in the program (counting
signals, conditionals, emissions, etc.).

It is possible to create an Esterel program with an expo-
nential number of cycles on signals by connecting them in a
mesh-like structure. These kinds of cycles share signal depen-
dencies, therefore cutting one signal dependency will resolve
multiple cycles, reducing the maximum number of iterations
down to the number of signals.

On the other extreme lies a program with signal depen-
dencies connecting all signals to every other signal. In this
case each cycle must be resolved individually leading to a
quadratic effort with regard to the number of signals. But
to establish the net of signal dependencies the program itself
must represent each individual dependency at least as a sin-
gle statement. Therefore the number of cycles to resolve is of
linear effort relative to the program size.

Cost of the transformation algorithm

We now analyze the worst-case code size increase that our
transformation may induce. We do not consider the con-
structiveness analysis part of the transformation itself, and,
as it is a prerequisite for compilation of cyclic programs in
any case, do not consider it in our complexity analysis of the
algorithm. (Conversely, our transformation could potentially
be used to speed up constructiveness analysis [19].) Similarly,
the expansion of modules in Step (2a), which has potentially
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exponential cost, and possibly the resolving of reincarnation
in Step (2c) must be done by Esterel compilers anyway. Steps
(2b) and (2d) to (4c) all introduce a cost of a constant fac-
tor to different parts of the Esterel program. Therefore the
overall cost of these steps can be summarized to be a con-
stant factor to the size of the entire Esterel input program. In
Step (5c) the actual cycle cutting takes place with a cost of
cubic complexity.

Overall, a very conservative estimate results in a cost and
code size increase of O(n4), where n is the source program
size after module expansion and elimination of signal rein-
carnations. However, we expect the typical code size increase
to be much lower. In fact, we often experience an actual re-
duction in source size, as the transformation often offers op-
timization opportunities where statements are removed. As
for the size of the generated object code, here the experimen-
tal results (Section 5) also demonstrate that the transforma-
tion typically results in a code size reduction.

3.2. Computing the replacement expressions

One step towards breaking cyclic dependencies in Esterel
programs is to replace within the conditions of present tests
the name of a certain signal by an expression (Step (5a) of
the algorithm). That expression is derived from the control
flow contexts of the program where the signal is set by emit
statements. This section presents a set of rules to derive these
replacement expressions. These rules are based on the logical
behavioral semantics rules [4] with the aim of an easy imple-
mentation.

The objective of the rules is to obtain replacement ex-
pressions for all signals. A replacement expression describes
the signal context of each emission for that signal. Therefore
as a prerequisite the signal context of each emit statement
is needed. These signal contexts are used to derive the re-
placement expressions. A current signal context expression
Sis modified while traversing the Esterel program P. The con-
text expressions at the point of signal emissions are collected
and combined into replacement expressions for all cycle sig-
nals. The rules to traverse the Esterel program are imple-
mented in two functions (with Π as set of Esterel programs,
Σ as the set of signals, and Ψ as the set of signal expressions):

E : Π×Ψ −→ 2Σ×Ψ (P × S) 
−→ E(P, S),
S : Π×Ψ −→ Ψ (P × S) 
−→ S(P, S).

Function Esearches for signal emissions in program P and
returns a mapping of signal names to their signal contexts
at the point of their emission. The function Stakes the sig-
nal state context delivered by previous statements, computes
the signal state context from substatements, and returns the
signal context for evaluation on sequentially following state-
ments. It is used by Eas a helper function.

These functions are computed by structural induction
over their first argument (an Esterel program); the corre-
sponding definitions for each kernel statement are given in
Algorithm 2. To determine the replacement expressions for
all signals in a program P, we compute E := E(P, ST 0),
where ST 0 denotes the boot signal, present only at startup
in the very first instant. The result in E will be a set of pairs.

Each pair consists of a signal name and a signal expression
(condition). The expressions describe in which signal context
each signal is emitted. Multiple emissions of the same signal
result in multiple entries of that signal in E. The expressions
for the same signals can now be disjuncted to yield a single
replacement expression for the emission of each cycle signal:

Ei =
∨

〈σi,Sj〉∈E
Sj . (11)

As an example to illustrate how the definitions of
Eand Scorrespond to the behavioral semantics, consider the
present statement. The two structurally operational seman-
tics (SOS) rules from the logical behavioral semantics for the
present statement, given in Figure 7, select the rule to ap-
ply based on the status of the condition signal s and the re-
sulting control flow. The selected rule will add signal emis-
sions and so forth to the resulting context. The correspond-
ing equations for Eand S(13) consider both possible control
flow paths, and both paths may add signal emissions to E;
however, each signal emission is tied to the condition for that
part, thus reflecting the original semantics.

Rule (15) handles the pause statement with associated
emission of its state signal. Function Edoes not return a con-
text expression for the emission of a state signal, because
state signals are emitted behind pause statements and are
therefore not subject to any signal dependencies by construc-
tion. This is needed since state signals are used to repre-
sent the state of signal emissions. Additional dependencies
could lead to new cycles, spoiling the transformation. Func-
tion Sreplaces the previous state with the name of the current
state signal. The state signal is replaced by false, if the sequen-
tially previous command returned false too. The case switch
with condition “S = false” is a simple way to optimize for an
unreachable pause statement. In that case the program state
is kept false in that thread. If the condition is not success-
fully evaluated for an S with a value of, for example, “false or
false,” then only some efficiency is lost.

Trap signals are treated differently from regular signals:
function E in rule (16) (exit) adds the current signal context
as an emission context for the trap signal to E. The trap signal
name is marked with a prefix “exit” to be able to distinguish
it from regular signals. Function Sin that rule returns false as
a signal context state to indicate that sequentially following
code is not reachable.

Function E in rule (17) (trap) removes all references to its
own trap signal to not interfere with upper trap definitions.
Function S in rule (17) implements the task to compute
the termination context of the trap statement. It consists of
the normal termination part with no exception taking place,
given by S(p, S). The signal context states of control flows
triggered by exit statements are extracted from the emis-
sion context E(p, S). Those signal context states are limited
to exit statements referencing the locally defined trap signal
(σi = T). The signal contexts of other trap signals (σi �= T)
are negated, because they reference upper trap statements
with higher priorities. In Esterel it is possible to specify hier-
archic trap definitions sharing the same trap signal name. In
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P =
emit A

E(P, S) = {〈S,A〉}

S(P, S) = S
(12)

present A then

p

else

q

end

E(P, S) = E(p, S∧ A)∪ E(q, S∧ A)

S(P, S) = S(p, S∧ A)∨ S(q, S∧ A)
(13)

nothing
E(P, S) = ∅
S(P, S) = S

(14)

pause;

emit ST i

E(P, S) = ∅

S(P, S) =
⎧
⎨

⎩
false : S = false

ST i : otherwise

(15)

exit T
E(P, S) = {〈exit T , S〉}

S(P, S) = false
(16)

trap T in

p

end

E(P, S) = {〈σi, Sj

〉 ∈ E(p, S) | σi �= exit T
}

S(P, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(p, S)∨
(∨

〈exit σi ,Sj 〉∈E(p,S)|σi �=T Sj

∧∨〈exit σi ,Sj 〉∈E(p,S)|σi=T Sj

)

(17)

p; q
E(P, S) = E(p, S)∪ E

(
q,S(p, S)

)

S(P, S) = S
(
q,S(p, S)

) (18)

loop

p

end

E(P, S) = E
(
p, S∨ S(p, S)

)

S(P, S) = false
(19)

signal S in

p

end

E(P, S) = E(p, S)

S(P, S) = S(p, S)
(20)

p || q E(P, S) = E(p, S)∪ E(q, S)

S(P, S) = false
(21)

Algorithm 2: Equations to determine replacement expressions for signals: E collects the signal state context for signal emissions, S returns
the signal state context of terminating statements, P is the given program fragment shown on the left, and S is the state expression in the
current program context.

that case the innermost trapmasks the outer trap definition,
effectively reversing the priorities. This is similar to local sig-
nals masking global signals of the same name. Duplicate trap
identifiers are not checked explicitly in rule (17). That prob-
lem is deferred to the Esterel parser.

Rule (19) (loop) is interesting in that it is the only one
to evaluate its body p twice for different context states. This

is needed to cover instantaneous restarts of the loop body.
The first evaluation is performed by function S to derive
the context state of the terminating body. That expression is
added to the current context state to retrieve the signal emis-
sions of p in the second run with function E .

Rule (21) (parallel) returns false for the termination con-
text of all parallel statements, because the termination of
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s+ ∈ E p
E′ ,k−−→
E

p′

s?p, q
E′ ,k−−→
E

p′

(a) present+

s− ∈ E q
E′ ,k−−→
E

q′

s?p, q
E′ ,k−−→
E

q′

(b) present−

Figure 7: Logical behavioral semantics of the present state-
ment [4].

parallel statements is assumed to be replaced by the scheme
proposed in Figure 5. It replaces the implicit termination of
parallel statements by explicit trap exception handling.

Rules for suspend statements are not given in
Algorithm 2, because they are assumed to be substi-
tuted by means of other kernel statements in Step (2d) of the
transformation algorithm.

3.3. Example transformations

To illustrate the transformation algorithm we will now apply
it to some example Esterel programs.

3.4. Transforming PAUSE CYC

Applying the algorithm to the example PAUSE CYC in
Figure 2(a) yields the acyclic program PAUSE ACYC in
Figure 2(c).

Step (1): PAUSE CYC is cyclic but nevertheless construc-
tive, because a pause statement separates the execution of
both parts of the cycle.

Steps (2a) to (2d) do not apply to PAUSE CYC. Step (2e) is
skipped here for brevity. This is valid here, because the termi-
nation of the parallel statement does not influence the cycle.

Step (2f): to prepare the removal of the cycle,
we first transform PAUSE CYC into the equivalent pro-
gram PAUSE PREP, shown in Figure 2(b). It differs from
PAUSE CYC in the introduction of state signals ST 0 to ST 2.
Signals A and B are added in Step (4).

Step (3): PAUSE CYC contains one cycle: �C = 〈A,B〉.
Step (4): the signals carrying the cycle (A and B) have

been replaced by fresh signals A and B , which are only emit-
ted within the cycle. All tests for A and B in the original pro-
gram are replaced by tests for [A or A ] and [B or B ], respec-
tively.

Step (5a): the computation of replacement expressions
for A and B according to Section 3.2 results in

A = ST 1∧ (B∨ B
)
, (22)

B = ST 0∧ (A∨ A
)
. (23)

The equations for each signal now refer to other cycle signals;
note that we consider A and B not cycle signals anymore, as
they are not emitted within the cycle anymore. The similarity
to a system of linear equations is apparent, and we solve the
equations accordingly.

Step (5b): in PAUSE PREP, we arbitrarily select A as the
signal to break the cycle.

Step (5c): to replace B in (22), substituting (23) into (22)
results in

A = ST 1∧ (B∨ (ST 0∧ (A∨ A
)))

. (24)

This is now an equation which expresses the cycle signal A
as a function of itself and other signals that are not part of
the cycle; so we have unrolled the cycle.

Step (5d): replacing the self-reference of signal A on the
right-hand side of (24) by false (absent) yields:

A = ST 1∧ (B∨ (ST 0∧ A)
)
. (25)

Similarly, for A = true (present),

A = ST 1∧ (B∨ ST 0). (26)

We now have derived two equally valid replacement expres-
sions for A , which do not involve any cycle signal.

Step (5e): finally we are ready to break the cycle in
PAUSE PREP. For that, we have to replace the signal selected
in Step (5b)—in the cycle—by one of the expressions com-
puted in Step (5d), which does not use any of the cycle sig-
nals, without changing the meaning of the program. Sub-
stituting (26), the simpler of these expressions, for A in
PAUSE PREP yields the now acyclic program PAUSE ACYC
shown in Figure 2(c).

The program PAUSE OPT in Figure 2(d) is optimized on
the insight that ST 1 cannot be present at the point of its test.

3.4.1. Transforming the token ring arbiter

Searching for signal dependencies in the program TR3 CYC
from Figure 8(a) according to the algorithm presented in
Section 2 yields the following cycle:

C = 〈P1,P2,P3〉. (27)

The computation of replacement expressions yields the
following results for the cycle signals:

P1 = (ST 0∨ ST 7
)∧ (T3∨ P3

)∧ R3,

P2 = (ST 0∨ ST 1
)∧ (T1∨ P1

)∧ R1,

P3 = (ST 0∨ ST 4
)∧ (T2∨ P2

)∧ R2.

(28)

We may select signal P1 to break the cycle. Now the cycle
signals P2 and P3 are substituted in the equation for P1:

P1 = (ST 0∨ ST 7
)∧ (T3∨ P3

)∧ R3

= (ST 0∨ ST 7
)

∧ (T3∨ ((ST 0∨ ST 4
)∧ (T2∨ P2

)∧ R2
))∧ R3

= (ST 0∨ ST 7
)

∧ (T3∨ ((ST 0∨ ST 4
)

∧ (T2∨ ((ST 0∨ ST 1
)

∧ (T1∨ P1
)∧ R1

))∧ R2
))∧ R3.

(29)



J. Lukoschus and R. von Hanxleden 15

module TR3 CYC:
input R1, R2, R3;
output G1, G2, G3;
signal P1, P2, P3, T1, T2, T3
in

emit T1
|| || ||
loop %Station 1 loop %Station 2 loop %Station 3
present [T1 or P1] then present [T2 or P2] then present [T3 or P3] then

present R1 then present R2 then present R3 then
emit G1 emit G2 emit G3

else else else
emit P2 emit P3 emit P1

end end end
end; end; end;
pause pause pause

end loop end loop end loop
|| || ||
loop loop loop
present T1 then present T2 then present T3 then

pause; pause; pause;
emit T2 emit T3 emit T1

else else else
pause pause pause

end end end
end end end

endmodule

(a)

module TR3 ACYC:

input R1, R2, R3;
output G1, G2, G3;

signal ST 0, ST 1, ST 2, ST 3, ST 4,
ST 5, ST 6, ST 7, ST 8, ST 9 in

emit ST 0;
signal P1, P2, P3, T1, T2, T3 in
[
emit T1

||
loop %STATION1
present [T1 or (ST 0 or ST 7) and (T3 or

(ST 0 or ST 4) and (T2 or (ST 0 or ST 1) and
not R1) and not R2) and not R3] then

present R1 then
emit G1

else
emit P2

end
end;
pause; emit ST 1;

end loop

||
loop
present T1 then
pause; emit ST 2;
emit T2

else
pause; emit ST 3;

end
end

||
loop %STATION2
present [T2 or P2] then
present R2 then
emit G2

else
emit P3

end
end;
pause; emit ST 4

end loop
||
loop
present T2 then
pause; emit ST 5;
emit T3

else
pause; emit ST 6

end
end

||
loop %STATION3

present [T3 or P3] then
present R3 then
emit G3

else
emit P1

end
end;
pause; emit ST 7

end loop
||
loop

present T3 then
pause; emit ST 8;
emit T1

else
pause; emit ST 9

end
end

]
end signal

end signal
endmodule

(b)

Figure 8: Token ring arbiter with three stations: (a) Esterel implementation [5] with expanded run modules, (b) acyclic transformation by
replacing testing of signal P1.
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module TrapPause:
signal A, B in
loop
trap pausais in
loop

present A then
emit B

end present;
exit pausais
||
pause;
present B then
emit A

end present
end loop

end trap;
pause

end loop
end signal
endmodule

(a)

module TrapPause:

signal ST 0, ST 1, ST 2, ST 3,
ST 4, ST 5 in

emit ST 0;
signal P i, P j in
signal A, B in
loop
trap pausais in
loop
trap P in
[
present False then
emit B

end present;
exit pausais;
loop
emit P i;
pause; emit ST 1

end loop
||
pause; emit ST 2;
present False then
emit A

end present;

loop
emit P j;
pause; emit ST 3

end loop
||
loop
present

[P i and (ST 2 or ST 3)] then
exit P

end present;
pause; emit ST 4

end loop
]

end trap
end loop

end trap;
pause; emit ST 5

end loop
end signal

end signal
end signal

endmodule

(b)

Figure 9: TrapPause: resolving two cycles between A and B and B on itself: (a) original program, (b) cycles on A and B resolved.

Equation (29) now expresses a cycle carrying signal (P1)
as a function of itself and other signals that are outside of the
cycle. Again we can employ the constructiveness of TR3 CYC
to replace P1 in this replacement expression by either true or
false. Setting P1 to true yields

P1 = (ST 0∨ ST 7
)

∧ (T3∨ (ST 0∨ ST 4
)

∧ (T2∨ (ST 0∨ ST 1
)∧ R1

)∧ R2
)

∧ R3.

(30)

Equation (30) is applied when transforming TR3 CYC
into the acyclic program TR3 ACYC shown in Figure 8(b).

3.4.2. Other example transformations

Figures 9 to 13 list further example transformations that il-
lustrate interesting cases and some subtleties of the transfor-
mation problem. Figure 9 lists a program that contains one
cycle between signals A and B and another, more complex
one involving B across the termination of parallel threads and
an additional restart by a loop. Therefore the cycle includes
the helper signal P j which is introduced to handle the termi-
nation of parallel threads.

The program in Figure 10 consists of two parallel threads
with a dependency from A to B and vice versa. Several pause
statements ensure constructiveness of the program by exe-
cuting the two dependencies in different instants.

Figure 11 contains program where a cycle is present be-
tween signals S and T. Both are contained in a pair of
present/emit statements with reversed roles. Constructive-

ness is ensured by mutually exclusive execution of both
present statements.

Figure 12 contains a program that features the suspend
statement and an input signal A which is part of the cycle.
The suspend statement is replaced by a trap/loop construc-
tion and the cycle is moved from the input signal to a new
internal signal A 2. The parallel statement is not addressed
here because it is not part of the cycle.

In the program in Figure 13, a cycle on signal A is con-
trolled by the termination of two parallel threads. Construc-
tiveness is ensured by separation of emission and test of A
in separate instants. The entire parallel part is enclosed in an
additional loop structure. This results in an additional cyclic
dependency in the termination control of the parallel part.
Here constructiveness is ensured by executing a pause state-
ment in at least one parallel thread and therefore separating
start and termination of the parallel part into different in-
stants.

4. OPTIMIZATIONS

So far, we have presented the transformation algorithm and
equations for replacement expressions in its basic form with-
out any additional improvements. This section outlines some
possible optimizations. For space considerations, we here
limit the presentation to short descriptions of the most es-
sential optimizations. Further explanations, including exam-
ples, and additional optimizations are given elsewhere [19].

Expression for present

The most important optimization refines the treatment
of the present statement in (13). Consider the following
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module PausePause:

signal A, B in
pause;
pause;
present A then
emit B

end present
||
pause;
present B then
emit A

end present
end signal

endmodule

(a)

module PausePause:

signal ST 0, ST 1, ST 2, ST 3 in
emit ST 0;
signal A, B in
[
pause; emit ST 1;
pause; emit ST 2;
present False then
emit B

end present
||
pause; emit ST 3;
present B then
emit A

end present
]

end signal
end signal

endmodule

(b)

Figure 10: PausePause: resolving a cycle between A and B: (a) original program, (b) resolved cycle.

module TrapParallel:
input A, B;

signal S, T in
trap X in
[
present A then
exit X

end present
||
present B then
pause

end present
];
present S then
emit T

end present;
halt

end trap;
present T then
emit S

end present
end signal

endmodule

(a)

module TrapParallel:
input A, B;

signal ST 0, ST 1, ST 2,
ST 3, ST 4, ST 5 in

emit ST 0;
signal P i, P j in
signal S, T in
trap X in
trap P in
[
present A then
exit X

end present;
loop
emit P i;
pause; emit ST 1

end loop
||
present B then
pause; emit ST 2

end present;
loop
emit P j;
pause; emit ST 3

end loop

||
loop
present [P i and P j] then
exit P

end present;
pause; emit ST 4

end loop
]

end trap;
present False then
emit T

end present;
loop
pause; emit ST 5

end loop
end trap;
present False then
emit S

end present
end signal

end signal
end signal

endmodule

(b)

Figure 11: TrapParallel: resolving two cycles on S and T: (a) original program, (b) resolved cycles.

program fragment:

pause; emit ST 3;

present S then emit A else emit B end;

emit C

The application of the rules listed in Algorithm 2 would re-
sult in a replacement expression for signal C = (ST 3 ∧
S) ∨ (ST 3 ∧ S). It is obvious that this can be simplified to

C = ST 3, since neither present branch has an influence on
the emission of C. Or more generally, see Figure 9.

Equation (13)

S
(
(S?p,q),C

) = S(p,C ∧ S)∨ S(q,C ∧ S) (31)

can be simplified to

S
(
(S?p,q),C

) = C (32)



18 EURASIP Journal on Embedded Systems

module SuspendPause:
input A;
output B;

suspend
emit A;
pause

when A;
emit B

||
present B then
emit A

end present

endmodule

(a)

module SuspendPause:
input A;
output B;

emit A;
trap new trap 0 in
loop
pause;
present A else
exit new trap 0

end
end

end;
emit B

||
present B then
emit A

end present

endmodule

(b)

module SuspendPause:
input A;
output B;

signal ST 0, ST 1, A 2 in
emit ST 0;
[
emit A;
trap new trap 0 in
loop
pause; emit ST 1;
present [not (A or A 2)] then
exit new trap 0

end present
end loop

end trap;
emit B

||
present [ST 1 and not A] then
emit A 2

end present
]

end signal

endmodule

(c)

Figure 12: SuspendPause: resolving a cycle between A and B: (a) original program, (b) after substituting suspend, (c) resolved cycle.

if

(
S(p,C ∧ S) = C ∧ S

)∧ (S(q,C ∧ S) = C ∧ S
)

(33)

holds.

Termination of parallel statements

The general transformation algorithm for parallel statements
calls for instrumentation to detect the termination of parallel
statements at run time. It involves additional signals, sustain
statements, and a test for those signals (see Figure 5). These
additions are not needed if the parallel statement cannot ter-
minate at all at run time, for example, one thread contains a
loop statement on the top level. This is the case for the token
ring arbiter (Figure 8(a)).

Parallel termination and exceptions

The interaction of parallel threads with exception handling
leaves significant room for optimization. Currently each
pause statement contained in a trap block is considered as
a point where control is potentially handed over to the end
of the trap block. As an optimization this could be limited
to actually (statically) reachable exceptions at pause state-
ments.

Substitution of suspend

Step (2d) of the algorithm calls for a replacement of all sus-
pend statements, for the reasons outlined in Section 3.1.

However, the transformation algorithm does not necessarily
fail on all programs containing suspend statements. If the
suspend statements are not part of the cycle, then they pose
no problem. Furthermore, participation in the cycle can be
tolerated if the suspend guard predicates can be replaced by
noncyclic expressions. Figure 14 contains such a successful
example. Signal B’ in the suspend guard is replaced by a non-
cyclic expression not depending on signals emitted inside a
suspend environment.

Replacing state signal tests by constants

Another optimization is to determine which state signals are
always present or absent in a replacement expression. For
example, the program PAUSE ACYC can be optimized into
the program PAUSE OPT shown in Figure 2(d) by taking the
reachable presence status of the signals ST 0 and ST 1 into
account.

Eliminating emission of state signals

If all tests for a state signal are replaced by constants, the state
signal is no longer needed and therefore does not need to
be emitted any more. In the program PAUSE ACYC, this ap-
plies to both ST 0 and ST 1, we can therefore drop the corre-
sponding emit in the optimized PAUSE OPT.

Absence of external tests of cycle breaking signal

If the signal σp that is selected in Step (5b) to break the cy-
cle is not tested outside of the cycle, this means that after



J. Lukoschus and R. von Hanxleden 19

module ParallelPause:
inputoutput A;
loop
[

present [A] then
pause

end present
||
pause

];
emit A;
pause

end loop
endmodule

(a)

module ParallelPause:
input A in;
output A out;
loop
[
signal P i, P j in
trap P in

present [A in or A out] then
pause

end present;
loop emit P i; pause; end

||
pause;
loop emit P j; pause; end

||
loop
present [P i and P j] then
exit P

end present;
pause

end loop
end trap

end signal;
];
emit A out;
pause

end loop
endmodule

(b)

module ParallelPause:
input A in;
output A out;

signal ST 0, ST 1, ST 2, ST 3, ST 4, ST 5, ST 6 in
emit ST 0;
loop
signal P i, P j in
trap P in
[
present [A in or (ST 0 or ST 5) and (ST 1 or ST 0

and not A in or ST 2 or ST 1 or (ST 0 or ST 6) and not A in
or ST 2) and P j or (ST 0 or ST 6 or ST 5) and (ST 1 or ST 0
and not A in or ST 2 or ST 1 or (ST 0 or ST 6) and not A in
or ST 2) and P j] then

pause; emit ST 1
end present;
loop
emit P i;
pause; emit ST 2

end loop
||
pause;
emit ST 3;
loop
emit P j;
pause; emit ST 4

end loop
||
loop
present [(ST 1 or ST 0 and not A in or ST 2

or ST 1 or (ST 0 or ST 6) and not A in or ST 2) and P j] then
exit P

end present;
pause; emit ST 5

end loop
]

end trap
end signal;
emit A out;
pause; emit ST 6

end loop
end signal

endmodule

(c)

Figure 13: ParallelPause: resolving two cycles with A out on itself and P i on itself: (a) original program, (b) preprocessed program adding
parallel termination control and separating “inputoutput A” into “input A in” and “output A out,” (c) resolved cycles.

replacing the tests for σp within the cycle (Step 5e) by E∗∗p ,
the signal σp is not tested anywhere in the program. One can
therefore eliminate its emission. This is the case for signal P1
in the token ring arbiter (Figure 8(b)). P1 is emitted but not
tested anymore in the program. P1 and its emission can be
removed. Emissions of output signals must not be removed,
because emissions of them must reach the outside interface.

Lifting of locally defined signals

The transformation algorithm (Figure 4) states in Step (2c)
the relocation of local signal definitions up to the top level.
The reason for this step lies in the introduction of replace-

ment expressions. These expressions may transport refer-
ences to local signals out of their respective scope. Reloca-
tion of all local signals is certainly not strictly necessary. Only
those signals which are referenced in a replacement expres-
sions must be relocated. It would be more efficient to detect
possible conflicts with replacement expressions first and then
to relocate the problematic signals.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To validate the transformation and to measure its effective-
ness, we have implemented the transformation presented in
Section 3 as an extension to the Columbia Esterel compiler
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input A, B;

present A then
emit B

end;
pause;
suspend
pause;
emit A

when B

(a)

�

input A, B;

signal ST 0, ST 1,
ST 2, A’, B’ in
emit ST 0;
present [A or A’] then
emit B’

end;
pause; emit ST 1;
suspend
pause; emit ST 2;
emit A’

when [B or B’]
end

(b)

�

input A, B;

signal ST 0, ST 1,
ST 2, A’, B’ in
emit ST 0;
present [A or A’] then
emit B’

end present;
pause; emit ST 1;
suspend
pause; emit ST 2;
emit A’

when [B or ST 0 and A]
end

(c)

Figure 14: Successful resolving of a cyclic dependency involving present and suspend statements: (a) original program, (b) preprocessing
by introduction of state signals and signal renaming, (c) replacement of tests for B’ in the suspend guard by an expression.

(CEC). The CEC is used for file access, parsing, and par-
tial dismantling into kernel statements. The implementation
handles cycle detection and the transformation algorithm for
pure signals. Certain parts of the preprocessing stage like
handling of suspend, termination of parallel, and lifting of
local signals must still be performed manually. The first opti-
mization explained in Section 4 regarding present is imple-
mented, but not the other ones.

For an experimental evaluation, we have tested several
variants of the token ring arbiter. They are named TR3 to
TR1000 to indicate the number of network stations in each
example.

Program TR10p is a special case; while the former test
cases implemented only the arbiter part of the network with-
out any local activity on the network stations, this test pro-
gram adds some simple concurrent “payload” activity to each
network station to simulate a CPU performing some compu-
tations with occasional access to the network bus.

All programs are tested in the original cyclic and in the
transformed acyclic version with the following six different
compilation techniques.

v5-L: the publicly available Esterel compiler v5.92 [11,
25] is used with option -L to produce code based on the
circuit representation of Esterel. The code is organized as a
list of equations ordered by dependencies. This results in a
fairly compact code, but with a comparatively slow execution
speed.

The v5 compiler is able to handle constructive Es-
terel programs with cyclic dependencies. For such programs
the full causality analysis must be activated by the option
-causal. The cyclic parts of the program are resynthesized
resulting in a growth in program size compared to noncyclic
programs.

v5-A: The same compiler, but with the option -A, pro-
duces code based on a flat automaton. This code is very fast,
but prohibitively big for programs with many weakly syn-
chronized parallel activities. This option is available for cyclic
programs too.

v7: the Esterel v7 compiler (available from Esterel Tech-
nologies [27]) is used here in version v7 10i8 to compile
acyclic code based on sorted equations, as the v5 compiler.
v7 is not able to handle cyclic programs. Thus it can only be
applied to the transformed cyclic programs.

v7-O: the former compiler, but with option -O, applies
some circuit optimizations to reduce program size and run
time.

CEC: the Columbia Esterel compiler (release 0.3) [12]
produces event-driven C code, which is generally quite fast
and compact. The CEC is not able to handle cyclic programs
either.

CEC-g: the CEC with the option -g produces code using
computed goto targets (an extension to ANSI-C offered by
GCC-3.3 [28]) to reduce the run time even further.

A simple C back end is provided for each Esterel pro-
gram to produce input signals and accept output signals to
and from the Esterel part. The back end provides an iteration
over 10 000 000 times for the reaction function. These itera-
tion counts result in execution times in the range of about 0.8
to 18 seconds. These times where obtained on a desktop PC
(AMD Athlon XP 2400+, 2.0 GHz, 256KB cache, 1GB main
memory).

Table 1 compares the execution speed and binary sizes
of the example programs for the v5, v7, and CEC compilers
with their respective options. The v5 compiler is applied both
to the original cyclic programs and the transformed acyclic
programs. The CEC and v7 compiler can handle only acyclic
code. When comparing the run time results of the v5 com-
piler (with sorted equations) for the cyclic and acyclic ver-
sions of the token ring arbiter, there is a noticeable reduction
in run time for the transformed acyclic programs. This came
as a bit of a surprise. It seems that the v5 compiler is a lit-
tle bit less efficient in resolving cyclic dependencies in sorted
equations. For the automaton code there are only minor dif-
ferences in run time and binary sizes. And in fact the v5 com-
piler produces functionally identical code for the original and
transformed programs. Only the different file names result in
a small difference in binary sizes.
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Table 1: Run times (in seconds) and binary sizes (in bytes) of cyclic and acyclic Esterel programs compiled with the v5, v7, and CEC
compiler. The best values across the compilers are shown bold.

Variant Compiler TR3 TR10 TR10p

Cyclic (original)
v5-L 1.55/14273 5.39/21530 17.19/32244

v5-A 0.90/13041 2.58/16091 5.26/304095

Acyclic (transformed)

v5-L 1.40/14067 5.07/20188 12.16/29110

v5-A 0.89/13043 2.58/16093 5.26/304097

v7 1.69/14526 6.07/20255 12.34/27353

v7-O 0.53/13467 1.87/16315 5.83/21033

CEC 1.80/14244 6.42/22020 12.04/29579

CEC-g 1.09/13822 3.82/20430 5.89/25461

Table 1 includes the sizes of the compiled binaries too. All
compilers produce code of similar sizes, with one exception;
the v5 compiler produces a very big automaton code for the
third token ring example. That program contains several par-
allel threads which are only loosely related. If someone tries
to map such a program on a flat automaton, it is well known
that such a structure results in a “state explosion.” For the two
token ring arbiter variants without payload, the v7 compiler
produces the fastest code. The third token ring example with
payload is executed fastest with the v5 compiler in automata
mode, but only slightly better than the CEC compiler with
computed goto optimization. Nevertheless the huge binary
produced by the v5 compiler in automaton mode limits its
usefulness.

A condensed presentation of the measurements from
Table 1 is given in Table 2, which compares the fastest code
for the cyclic programs compiled by the v5 compiler to the
fastest code for the transformed acyclic programs. For each
test program the relative reduction in run time is listed. In
no case does the transformation slow down execution, and
in two of the three cases considered here, there is a consid-
erable gain in execution speed by enabling the use of the v7
and CEC compilers on cyclic programs.

As an indication of the cost of the transformation algo-
rithm in terms of source code increase, Table 3 lists program
sizes before and after the transformation of the token ring ar-
biter with 3, 10, 50, 100, 500, and 1000 nodes. The size of the
transformed code is nearly a constant factor with respect to
the arbiter network size. The current transformation times
show a sub-quadratic effort for the transformation.

6. CONCLUSIONS AND FUTUREWORK

This paper has presented an algorithm for transforming
cyclic Esterel programs into acyclic programs. This expands
the range of available compilation techniques, and, as to
be expected, some of the techniques that are restricted to
acyclic programs produce faster and/or smaller code than is
achieved by the compilers that can handle cyclic by them-
selves. Furthermore, the experiments have shown that the
code transformation proposed here can even improve code
quality produced by compilers that can already handle cyclic
programs. As noted in Section 2, it depends on the compiler

Table 2: Relative run time reduction from the fastest cyclic ver-
sion to the fastest version for the acyclic transformation, with
reduction = 100%∗ (1−min(Tacyclic)/min(Tcyclic)).

TR3 TR10 TR10p

min(Tcyclic) 0.90 2.58 5.26

min(Tacyclic) 0.53 1.87 5.26

reduction 41% 28% 0%

what cycles it actually does detect. It therefore may be pos-
sible that a compiler that does a very weak analysis detects
cycles that we do not detect; however, our approach is fairly
conservative already, and we do not expect to miss a signifi-
cant fraction of cycles for any compiler.

The concept of constructiveness is a fundamental build-
ing block for the transformation presented here. Construc-
tiveness allows us to ultimately break a cycle by replacing the
occurrence of a self-dependent signal in a replacement ex-
pression for that signal by an arbitrary value (true or false).
Nevertheless the transformation does not depend on a spe-
cific implementation of constructiveness. The assurance of
constructiveness itself is sufficient for the transformation to
work.

The transformation introduces new signals and expands
the original program. However, most of this disappears again
after optimizations. In fact, the net effect of the transfor-
mation is often a reduction of code size, as the static anal-
ysis may remove some unreachable code. In a certain way,
the transformation performs a partial evaluation of the given
program.

The synchronous data flow oriented programming lan-
guage Lustre is affected by cyclic dependencies too. In
Figure 15(a) a Lustre implementation of the token ring ar-
biter is shown as an example. This program is rejected by
Lustre compilers because of cyclic dependencies on streams
pass1, pass2, and pass3. The replacement expression (30)
(without state signals) is used in Figure 15(b) to manually
produce an acyclic derivation of the original program which
is accepted by Lustre compilers. This example indicates a
possible application of the cycle transformation algorithm
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Table 3: Transformation times (in seconds) and resulting program sizes (in bytes) for token ring arbiters with 3 to 1000 nodes.

TR3 TR10 TR50 TR100 TR500 TR1000 TR10p

Original program size 1565 3705 16348 32159 162959 326470 5765

After module expansion 1370 4391 22031 44092 224892 450903 6995

After cycle transformation 2108 6856 34804 69920 359788 723804 9736

Ratio after/before transformation 1.53 1.56 1.58 1.59 1.60 1.61 1.39

Transformation time (seconds) 0.05 0.07 0.27 0.57 5.18 17.5 0.11

node three stations( request1 : bool;

request2: bool; request3 : bool)

returns (grant1 : bool;

grant2 : bool; grant3 : bool);

var

pass1 : bool; pass2 : bool; pass3 : bool;

token1 : bool; token2 : bool; token3 : bool;

token1 or pass1 : bool;

token2 or pass2 : bool;

token3 or pass3 : bool;

let

/∗ Station 1∗/
token1 or pass1 = token1 or pass1;

grant1 = request1 and token1 or pass1;

pass2 = not(request1) and token1 or pass1;

token2 = pre ((true) –> (token1));

/∗ Station 2∗/
token2 or pass2 = token2 or pass2;

grant2 = request2 and token2 or pass2;

pass3 = not(request2) and token2 or pass2;

token3 = pre (( false ) –> (token2));

/∗ Station 3∗/
token3 or pass3 = token3 or pass3;

grant3 = request3 and token3 or pass3;

pass1 = not(request3) and token3 or pass3;

token1 = pre (( false ) –> (token3));

tel;

(a)

node three stations( request1 : bool;

request2 : bool; request3 : bool)

returns (grant1 : bool;

grant2 : bool; grant3 : bool);

var

pass1 : bool; pass2 : bool; pass3 : bool;

token1 : bool; token2 : bool; token3 : bool;

token1 or pass1 : bool;

token2 or pass2 : bool;

token3 or pass3 : bool;

let

/∗ Station 1∗/
token1 or pass1 = token1 or

(token3 or (token2 or not request1) and

not request2) and not request3;

grant1 = request1 and token1 or pass1;

pass2 = not(request1) and token1 or pass1;

token2 = pre ((true) –> (token1));

/∗ Station 2∗/
token2 or pass2 = token2 or pass2;

grant2 = request2 and token2 or pass2;

pass3 = not(request2) and token2 or pass2;

token3 = pre (( false ) –> (token2));

/∗ Station 3∗/
token3 or pass3 = token3 or pass3;

grant3 = request3 and token3 or pass3;

pass1 = not(request3) and token3 or pass3;

token1 = pre (( false ) –> (token3));

tel;

(b)

Figure 15: Lustre implementation of the token ring arbiter with three stations: (a) cyclic implementation, (b) acyclic transformation by
replacing testing of signal pass1.

to Lustre programs. Unfortunately a notion of constructive
Lustre programs has not been established yet. The transfor-
mation needs the assurance of constructiveness to be able
to produce programs with the same behavior as the original
programs.

Regarding future work, there are numerous optimiza-
tions possible, some of which were presented in Section 4.
Some of these might be helpful for Esterel programs in gen-
eral, not just as a post-processing step to the transformation
proposed here.
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The transformation algorithm as described here needs
the constructiveness of input programs as a precondition.
The algorithm exploits the constructiveness while replac-
ing self-referencing signal names in replacement expressions.
However, it appears that the computation of replacement
expressions presented here may also be used to facilitate con-
structiveness analysis in the first place [19].
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