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Abstract

Background: Sepsis coincides with altered gene expression in different tissues. Accumulating evidence has
suggested that microRNAs, long non-coding RNAs, and circular RNAs are important molecules involved in
the crosstalk with various pathways pertinent to innate immunity, mitochondrial functions, and apoptosis.

Methods: We searched articles indexed in PubMed (MEDLINE), EMBASE and Europe PubMed Central
databases using the Medical Subject Heading (MeSH) or Title/Abstract words (“microRNA”, “long non-coding
RNA”, “circular RNA”, “sepsis” and/or “septic shock”) from inception to Sep 2016. Studies investigating the role
of host-derived microRNA, long non-coding RNA, and circular RNA in the pathogenesis of and as biomarkers
or therapeutics in sepsis were included. Data were extracted in terms of the role of non-coding RNAs in
pathogenesis, and their applicability for use as biomarkers or therapeutics in sepsis. Two independent
researchers assessed the quality of studies using a modified guideline from the Systematic Review Center for
Laboratory animal Experimentation (SYRCLE), a tool based on the Cochrane Collaboration Risk of Bias tool.

Results: Observational studies revealed dysregulation of non-coding RNAs in septic patients. Experimental
studies confirmed their crosstalk with JNK/NF-κB and other cellular pathways pertinent to innate immunity,
mitochondrial function, and apoptosis. Of the included studies, the SYRCLE scores ranged from 3 to 7
(average score of 4.55). This suggests a moderate risk of bias. Of the 10 articles investigating non-coding
RNAs as biomarkers, none of them included a validation cohort. Selective reporting of sensitivity, specificity,
and receiver operating curve was common.

Conclusions: Although non-coding RNAs appear to be good candidates as biomarkers and therapeutics for
sepsis, their differential expression across tissues complicated the process. Further investigation on organ-specific
delivery of these regulatory molecules may be useful.
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Background
Sepsis is defined as the presence of a life-threatening
organ dysfunction as a result of altered systemic host
response to an infection [1, 2]. This leads to multiple
organ failure and superimposed secondary infections. The
in-hospital mortality may reach 40% in the presence of

septic shock [2, 3]. Recently, genome-wide expression ana-
lysis of the critically ill revealed more than 80% of the es-
sential genetic elements were altered [4].
A class of non-coding RNAs, comprising microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and circu-
lar RNAs (circRNAs), are increasingly being recognized
as regulators of various signaling pathways and are thus
known as regulatory RNAs. These molecules play im-
portant roles in biological processes, including innate
immunity, mitochondrial functions, and apoptosis [5–9].
miRNAs are RNA molecules of 21 to 25 nucleotides in

length synthesized in all healthy and diseased cells. By bind-
ing to complementary sequences in the 3’ untranslated
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regions of target mRNAs, miRNAs regulate a range of
genes post-transcriptionally [10]. These regulatory polynu-
cleotides play dual roles, either protective or detrimental, in
cancers, neurodegenerative diseases, and immune-related
diseases [11]. Notably, miRNAs are essential for the pro-
duction of proinflammatory tumor necrosis factor (TNF)-α
and interleukin (IL)-1β via p38 mitogen-activated protein
kinase (MAPK) and MAPK phosphatase 1 (MKP-1) path-
ways [6–9, 12–14]. In case-control studies, differential
expression of miRNAs was detected in patients with sepsis
compared to controls, suggesting that miRNAs may be
used as biomarkers for diagnosis and prognostic stratifica-
tion or as therapeutic targets [8, 12, 15–21].
lncRNAs comprise more than 200 nucleotides, repre-

senting another group of transcripts. The mechanisms of
lncRNAs in health and disease have been comprehen-
sively reviewed [22, 23]. Recently, several in-vitro studies
have documented the differential expression of lncRNAs
in human tubular epithelial cells, monocytes, and cardio-
myocytes after exposure to the plasma of septic patients
or lipopolysaccharide (LPS) [24–26]. The role of lncRNAs
in sepsis remains largely unknown. Massive screening
of lncRNAs in human umbilical vein endothelial cells
revealed that LPS treatment altered the expression of
these non-coding RNAs by 28- to 70-fold [27]. Sporadic
studies indicate that these changes might modulate in-
flammatory response. For instance, a lncRNA designated
lnc-IL7R interacts with the human IL-7 receptor α subunit
gene and hence alleviates the LPS-induced proinflamma-
tory response [28]. In a murine sepsis model, lncRNA-
HOTAIR appeared to modulate TNF-α production in
cardiomyocytes via the nuclear factor (NF)-κB path-
way [25].
circRNAs have been recognized as a distinct entity of

non-coding regulatory RNAs fairly recently [29]. The cir-
cular structure stabilizes these molecules, favoring their
use as biomarkers. Although our understanding of this
new molecular member in sepsis remains sparse, experi-
mental knockdown of a circRNA, RasGEF1B, deciphers
the complex interaction of multiple cellular pathways in
sepsis [30].
In this systematic review, we discuss the new paradigms

of regulatory non-coding RNAs in the pathogenesis of
sepsis and their potential as biomarkers and therapeutic
targets.

Methods
Searching strategy and selection of studies
We searched articles indexed in PubMed (MEDLINE),
EMBASE and Europe PubMed Central databases using
Medical Subject Heading (MeSH) or Title/Abstract words
(“microRNA or miRNA or lncRNA or circRNA” and
“sepsis or septic shock”) from inception up to 30 Sep
2016. There were no limitations imposed on language

or type of study. We included original research articles in
which the role of host-derived regulatory RNAs (miRNA,
lncRNA, or circRNA) in sepsis was examined in relation
to disease pathogenesis, diagnosis, prognosis, and treat-
ment. Investigation on exogenous regulatory RNAs or
non-original research articles such as review articles,
conference proceedings, editorials, and book chapters
were excluded. Titles and abstracts were independently
screened for relevancy by two authors. Disagreement
was resolved by consensus or consultation with senior
authors.

Data extraction and study quality assessment
Data were extracted in terms of the role of non-coding
RNAs (i.e., non-coding RNA species investigated, labora-
tory detection methods, and cellular pathways) and their
use as biomarkers or therapeutic agents. The following
data were abstracted: (1) first author and year of publica-
tion; (2) type of study; (3) non-coding RNA species in-
vestigated; (4) methods used to detect the corresponding
non-coding RNA; (5) number of replicates/specimens
(in vitro and in vivo studies) or patients (clinical studies);
(6) cellular pathways involved; and (7) major conclusions.
Two researchers independently performed the data ex-
traction and evaluated the quality of the included studies
using a modified guideline from the Systematic Review
Center for Laboratory Animal Experimentation (SYRCLE),
a tool based on the Cochrane Collaboration Risk of Bias
tool [31]. One item concerning random housing of animals
was removed in the modified version. This tool contains
nine items assessing selection bias, performance bias,
detection bias, attrition bias, and reporting bias. These
factors are common amongst in vitro, in vivo, and human
studies. The higher the SYRCLE score was, the better the
quality of the study would be. The maximum achievable
score is 9.

Results
A total of 239 papers were found based on the search
criteria, in which 128 original studies investigating miR-
NAs, lncRNAs, or circRNAs in sepsis were included. Of
these, eight articles examined the role of lncRNAs or
circRNAs, whereas the remaining investigated miRNAs.
The papers excluded were either not original articles, or
not directly related to sepsis, or had lack of evidence of
deregulation of the studied miRNA/lncRNAs/circRNAs
in sepsis (Fig. 1). Two authors independently searched
the literature database and agreed with the data abstracted
as summarized in Additional file 1 (Table S1). Of the 128
included studies, 24, 28, and 20 were purely in vitro, in
vivo, or human studies, respectively. The remaining
employed multiple models (i.e., a combination of in vitro,
in vivo, or human studies). The SYRCLE scores ranged
from 3 to 7, with an average score of 4.55.

Ho et al. Critical Care  (2016) 20:383 Page 2 of 12



In general, studies of non-coding RNAs in sepsis focus
on immunological dysregulation and evaluation of these
as biomarkers. Other active research areas include the
impact of their alteration on endothelial dysfunction,
organ failure, and evaluation as therapeutic agents. These
are summarized in Table 1. An altered expression of
non-coding RNAs involves multiple cellular populations
and signaling pathways leading to changes in immune
response, hormonal imbalance, metabolic and mitochon-
drial dysfunction, epithelial integrity, and coagulation-
defects [1, 3, 31–36].
Changes in miRNA expression are detectable after

exposure of cells, animals, or healthy human volunteers
to sublethal concentration of LPS. Some of the miRNAs
(e.g., miR-155, miR-143) are upregulated while many
others (e.g. miR-125b, miR-146b, miR-150, miR-340, let7g)
are downregulated [12, 37–48]. The intricate crosstalk
between miRNAs and various cellular pathways is depicted
in Fig. 2.

Expression of non-coding RNAs differs in response to
the specific microbial moiety encountered. For instance,
the expression level of let-7a in leukocytes was reduced
in healthy humans after exposure to LPS but not after
exposure to lipoteichoic acid or double-stranded RNA
[38]. Similarly, the expression of miR-150 was reduced
significantly after exposure to LPS but was elevated
when challenged by lipoteichoic acid and polyinosinic-
polycytidylic acid double-stranded RNA [13].
Of the 22 subpopulations included in the 10 articles

evaluating non-coding RNAs as biomarkers, none of them
included an external validation cohort. Selective reporting
of sensitivity, specificity, and receiver operating curve was
common. Reporting of sensitivity and specificity was absent
in 13 subpopulations. Two authors reported only an area
under the curve (AUC) value without a confidence interval.
The study population and the non-coding RNAs investi-
gated were heterogeneous, precluding the performance of
meta-analysis. The sensitivity of miRNA biomarkers ranges

Fig. 1 Selection of studies. PMC PubMed Central

Table 1 Summary of search results

Themes No. of studiesa Key cellular pathways involved

Altered miRNA expression 28 Integrin signaling, leukocyte extravasation, apoptosis

Immune dysfunction 31 TNF-α/TLR/NF-κB

Endothelial dysfunction 7 MAPK/EGR, AP1/ NF-κB

Cardiopulmonary impairment 20 JNK PPARγ

Defects in other major organs 12 cAMP, Hxm1

Biomarkers (in vitro, in vivo, and clinical evidence) 28 Various

Therapeutic agents 17 Various
aThe total number of studies is not equal to 128 due to multiple themes addressed by the same article
AP1 activator protein 1, cAMP cyclic adenosine monophosphate, EGR early growth response, JNK cJun NH2-terminal kinase, MAPK mitogen-activated protein kinase,
miRNA microRNA, NF nuclear factor, PPAR peroxisome proliferator-activated receptor, TLR Toll-like receptor, TNF tumor necrosis factor
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from 38 to 80%, whereas specificity ranged from 71.4 to
100%. The predictability of miRNA markers is summarized
in Table 2.

Discussion
Pathogenesis
This literature review indicates that the pattern of non-
coding RNA expression differs substantially upon encoun-
tering various microbial moieties [38, 41]. Analysis of
peripheral blood by quantitative RT-PCR and miRNA
microarrays has been widely used for expression profiling
of miRNA in septic patients [15, 16, 49, 50]. Notably,
several miRNA species, including miR-126, miR-21,
miR-16, and miR-27a, increased more than 30-fold in
sepsis [15]. Single-candidate miRNA studies have esta-
blished the association of miR-146a, miR-25, and miR-
15a/16 with sepsis [17, 51–54]. Further stratification of
the systemic inflammatory response syndrome (SIRS) from
sepsis revealed differential miRNA deregulation [16]. These

results suggest that miRNA expression may be pathogen-
specific and that its pattern could be used as biomarkers
or therapeutic targets.

Immunological changes
miRNAs and lncRNAs are involved in both proinflamma-
tory and anti-inflammatory responses in sepsis [55–58].
Notably, the majority of lncRNAs responsive to LPS stimu-
lus contain one or more binding sites for known inflamma-
tory mediators such as p65, IRF3, JunB, and cJun [58].
Exposure of cell lines and animal models to LPS is a popular
method for investigating their roles in inflammation. In an
LPS model of murine sepsis, an increased expression of
miR-15a/16 reduced the phagocytic activity of macrophages
and increased mitochondrial oxidative stress, resulting in a
proinflammatory phenotype [59, 60]. Overexpression of
miR-15a/16 in the LPS-treated murine macrophage
RAW264.7 downregulated the expression of Toll-like recep-
tor (TLR)4 and IL-1 receptor-associated kinase 1 (IRAK1),

Fig. 2 Role of microRNA (miRNA) and long non-coding RNA (lncRNA) in sepsis. HuR, Human antigen R; eNOS, Endothelial nitric oxide synthase; MDSC,
Myeloid derived suppressor cell; CISH, Cytokine-inducible SH2-containing protein; JNK, c-Jun N-terminal kinases (JNK); IRAK, Interleukin-1 receptor-associated
kinase; MyD88, Myeloid differentiation primary response gene 88; TRAF6, TNF receptor-associated factor 6; BMPR2, Bone morphogenetic protein receptor type
II; IkB, Inhibitor of Kappa B; NFkB, Nuclear factor kappa B; Sirt1, Sirtulin 1; Pim1, Proto-oncogene serine/threonine-protein kinase; SOX6, Sex-determining region
Y box 6; PDCD4, Programmed cell death 4; BMAL1, Brain and muscle ARNT-like 1; PRKC, Primary rat kidney cell; PGC1a, PPAR gamma co-activator 1A
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contributing to immunosuppressive phenotypes [53,
61]. Similarly, expression of miR-205-5b alleviates the ex-
pression of high mobility group box 1 (HMGB1) [62].
The production of proinflammatory TNF-α is finely con-

trolled at both the transcriptional and translational levels by
miRNAs. Upregulation of miR-181 enhances TNF-α mRNA
degradation [60]. In a THP-1 human promonocytic cell
model, miR-146a increased in a time-dependent manner on
LPS/TLR4 stimulation, suppressing the production of proin-
flammatory cytokines in a feed-forward loop [63, 64].

Cytokine homeostasis can also be achieved in a nega-
tive feedback manner. Upregulation of miR-146a inhibits
IRAK-1 and p-IKBa in THP-1 cells exposed to S. typhi-
murium [65]. Binding of NF-κB to DICER increased the
levels of mature miR-125b in hepatocytes, suppressing
TNF-α expression [66]. In CD14+ neonatal monocytes,
enforced expression of miR-125b suppresses transla-
tion of TNF-α [67]. Silencing of CD14 by small inter-
fering (si)RNA abolishes the production of TNF-α and
IL-6 [68].

Table 2 Use of microRNAs as diagnostic or prognostic markers

95% CI

No. of subjects (n) Specimen Sensitivity (%) Specificity (%) AUC Lower bound Upper bound Reference

Diagnostic markers

miR-146a SIRS (14) vs sepsis (14) Plasma 60 87.5 0.813 0.608 1.017 [51]

miR-15a Healthy people (32) vs severe
sepsis (62)

Plasma n/a n/a 0.7 0.57 0.84 [15]

miR-27a Healthy people (32) vs severe
sepsis (62)

Plasma n/a n/a 0.66 0.52 0.8 [15]

miR-34a Healthy people (32) vs severe
sepsis (62)

Plasma n/a n/a 0.67 0.53 0.8 [15]

miR-15a + 27a + 34a Healthy people (32) vs severe
sepsis (62)

Plasma n/a n/a 0.78 0.66 0.9 [15]

miR-150 Healthy (21) vs SIRS (22) vs
sepsis (23)

Whole blood 72.7 85.7 0.83 n/a n/a [16]

miR4772-5p-iso Healthy (21) vs SIRS (22) vs
sepsis (23)

Whole blood 68.2 71.4 0.76 n/a n/a [16]

miR-25 SIRS (30) vs sepsis (70) Whole blood n/a n/a 0.806 0.701 0.912 [17]

miR-15a SIRS (32) vs sepsis (166) Serum 68.3 94.4 0.858 0.8 0.916 [18]

miR-16 SIRS (32) vs sepsis (166) Serum n/a n/a 0.55 0.455 0.644 [18]

miR-223 Normal control (24) vs
sepsis (166)

Whole blood 38.21 83.72 0.608 0.519 0.697 [19]

miR-499-5p Normal control (24) vs
sepsis (166)

Whole blood 68.29 65.12 0.686 0.592 0.779 [19]

miR-126 SIRS (30) vs sepsis (50) Serum n/a n/a 0.607 0.448 0.766 [21]

miR-146a SIRS (30) vs sepsis (50) Serum 63.3 100 0.804 0.679 0.928 [21]

miR-223 SIRS (30) vs sepsis (50) Serum 80 100 0.858 0.748 0.968 [21]

miR-15a Neonates with RTI (41) vs
septic neonates (46)

Serum n/a n/a 0.854 n/a n/a [53]

miR-15b Neonates with RTI (41) vs
septic neonates (46)

Serum n/a n/a 0.629 n/a n/a [53]

miR-16 Neonates with RTI (41) vs
septic neonates (46)

Serum n/a n/a 0.869 n/a n/a [53]

miR-223 Neonates with RTI (41) vs
septic neonates (46)

Serum n/a n/a 0.632 n/a n/a [53]

Change of miRNA associated with poor prognosis

↓miR-25 SIRS (30) vs sepsis (70) Whole blood n/a n/a 0.756 0.569 0.833 [17]

↑miR-155 Healthy people (30) vs
septic patients (60)

Whole blood n/a n/a 0.763 0.626 0.901 [71]

↓miR-574-5p Sepsis survivors (12) vs
sepsis nonsurvivors (12)

Serum 54.55 96.15 0.736 0.646 0.827 [127]

CI confidence interval, miRNA microRNA, n/a not available, RTI respiratory tract infection, SIRS systemic inflammatory response syndrome

Ho et al. Critical Care  (2016) 20:383 Page 5 of 12



As sepsis progresses, the immune system is repro-
grammed into a stage characterized by persistent inflam-
mation and immunosuppression [69, 70]. These are
mediated in part by miRNAs, which promote immune cell
polarization, suppress proinflammatory cytokines, and
control leukocyte apoptosis [71–74]. For instance, the ex-
pression of miR21 and miR-181b in myeloid -derived sup-
pressor cells in septic mice precludes the differentiation of
macrophages and dendritic cells [72, 75–77]. Given the
extensive crosstalk between miRNAs and other cellular
pathways, inflammatory responses can be modulated by
interfering upstream or downstream mediators. By target-
ing Bmal1, NF-κB-p65/RelA phosphorylation was inhib-
ited by miR-155 [78, 79]. Interestingly, transcription of
primary miR-155 and other three miRNAs (miR-455,
miR-125a, and miR-146) is dependent on NF-κB [80]. The
expression of NF-κB and its interaction with miRNAs has
been demonstrated in trauma patients with sepsis [81].
Upregulation of miR-19a in patients with sepsis or SIRS
correlates with the extent of systemic inflammation [82].
Experimental silencing of miRNAs has further confirmed
the importance of these regulatory nucleotides in limiting
inflammation in sepsis. Transfection of anti-miR-210 into
the murine macrophage RAW264.7 and human HEK293
cells enhanced LPS-induced production of IL-6, TNF-α,
and inducible nitric oxide synthase (iNOS) [83, 84].
Observational studies have demonstrated an association be-

tween sepsis-induced coagulopathy and miRNA expression
[85, 86]. Compared with severe sepsis patients with normal
platelet counts, the expression of miR-130a in peripheral
blood monocytic cells was significantly lower in septic pa-
tients with thrombocytopenia [86]. Longitudinal samples of
sepsis patients revealed a sustainable increase of miR-122 up
to 14 days after admission to the intensive care unit and
showed a strong correlation with antithrombin III (R= 0.913,
p < 0.001) [87]. To determine direct or indirect effects of miR-
NAs on coagulation, further mechanistic studies are required
to identify crosstalk, if any, between cytokines, thrombocyte
synthesis/apoptosis, and deregulation of miRNAs.

Endothelial dysfunction
Sepsis-induced endothelial activation and injury is mediated
in part by the Slit2-Robo4 pathway [88]. Downregulation of
Slit2 reduced the expression of miR-218, modulating endo-
thelial inflammation [88]. A disintegrin and metalloprotein-
ase (ADAM)15 is another mediator responsible for
increased endothelial permeability. An in-silico analysis of
human vascular endothelial cells revealed that miR-147b de-
grades ADAM15 mRNA. The endothelial protective func-
tion of miR-147b was further confirmed by in vitro
experiments of overexpression and co-incubation with miR-
147b antagomir (a miRNA inhibitor) [89]. In response to
proinflammatory cytokines, miR-146a/b expression in endo-
thelial cells is also increased [90]. These miRNAs target NF-

κB, activator protein-1 (AP-1), and MAPK/Egr-1 pathways
and, in turn, abolish the production of proinflammatory cy-
tokines in a negative-feedback loop. Knocking out miR-146a
in mice aggravates the expression of VCAM-1 in the endo-
thelium. These collectively suggest that miRNAs prevent
endothelial activation, which may otherwise be aggravated
by proinflammatory cytokines in sepsis [91–93].

Cardiopulmonary impairment
The lung accounts for more than 45% of the primary
sites of infection in sepsis patients [79]. Development of
acute respiratory distress syndrome is one of the serious
complications seen in sepsis patients; the prevalence
ranges from 6 to 16% [94–96]. Amongst those who de-
veloped severe sepsis, the prevalence of cardiovascular
and respiratory failure increased up to 90% [97].
In the context of sepsis-associated pulmonary injury, miR-

NAs interfere with JNK/PPARγ and cholinergic pathways
which, in turn, contribute to pulmonary inflammation or in-
flammatory resolution [98–103]. Exposure of rats to LPS in-
creased the production of TNF-α and IL-1β in the
myocardium accompanied by upregulation of miR-194-3p,
miR-344a-3p, miR-465-3p, miR-501-5p, miR-3596c, miR-
185-3p, and miR-877 [104]. In vitro studies showed that the
increased expression of miR-127 de-represses Bcl6/Dusp1,
which in turn activates JNK and promotes macrophage
polarization toward the M1 phenotype [100, 105]. Intratra-
cheal administration of miR-127 in mice has confirmed M1
skewing and exaggerated pulmonary edema and infiltration
[100]. Peculiarly, the level of miR-127 decreased transiently
during the very early stages of sepsis in an attempt to
minimize pulmonary inflammation. The mechanisms leading
to subsequent sustainable de-repression remain unknown.
Sepsis-induced cardiac dysfunction is characterized by im-

paired myocardial contractility and reduced ejection fraction
[106]. Increasing evidence has suggested the role of lncRNAs
and miRNAs in these processes [24, 25, 107–110]. In myo-
cardial cells, a lncRNA, HOTAIR, was induced after expos-
ure to LPS. This correlates with increased TNF-α production
and NF-κB p65 phosphorylation [25]. Investigation of neo-
natal rat cardiomyocytes demonstrated that LPS inhibited
the expression of miR-499, which in turn de-repressed SOX6
and PCDC4 leading to cardiomyocyte apoptosis through ac-
tivation of the Bcl-2 family apoptotic pathway [111].

Implications on other major organs
A global observational study involving 14,573 severe
sepsis patients from 37 countries revealed that a consi-
derable proportion of them developed hepatic (20%) and
renal impairment (40%) [97].
Ample evidence has indicated a change in miRNAs/

lncRNAs in the liver [112, 113], kidneys [114, 115], and
skeletal muscles [116, 117] in sepsis, associated with
organ failure. In a rat model of sepsis, the upregulation of
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miR-142-3 was detected by 18 h after cecal ligation and
puncture (CLP). This change in expression level reduced
adenylyl cyclase 9 expression in liver macrophages, which
may prevent macrophages from resolving the proinflam-
matory response in a cyclic adenosine monophosphate
(cAMP)-dependent manner [112]. Experimental knock-
down of miR-21 in LPS-septic mice resulted in upreg-
ulation of programmed cell death protein 4, increased
apoptosis, and exacerbated LPS-induced kidney injury
[114]. Sequencing of RNA extracted from human prox-
imal tubular epithelial cells after exposure to plasma from
septic humans with acute kidney injury revealed signifi-
cantly increased expression of linc-ATP13A4-8 as com-
pared with exposure to those from septic patients without
kidney involvement [26]. Urosepsis caused by Candida
spp., although infrequent, is responsible for high mortality
and severe kidney injury. Intraperitoneal injection of
Candida albicans into C57BL/6 mice revealed an im-
paired renal glomerular filtration rate accompanied by a
significant reduction in miR-204/211, leading to upregula-
tion of a heme oxygenase, Hmx1 [115]. Administration of
miR-204/211 mimics reduced the expression of Hmx1
and alleviated kidney injury. These results confirmed the
protective role of miR-204/211 in maintaining kidney
functions via Hmx1 in sepsis.
Limited studies have investigated the role of miRNAs

in sepsis-induced myopathy [117, 118]. Clinical studies
revealed that muscle-associated miRNAs are dysregu-
lated in sepsis [118]. In a porcine sepsis model, signifi-
cant upregulation of two miRNA species (miR-146-5p
and miR-221-5p) was detected, suggesting the possible
involvement of these miRNAs in muscle catabolism in
sepsis [117].

Biomarkers
While regulatory RNAs have been recognized for
more than a decade, their use as biomarkers for sep-
sis diagnosis and prognostication has not been thoroughly
investigated until recently (Table 1). Microarray analyses,
next-generation sequencing, and quantitative RT-PCR are
important tools in developing biomarkers [15–21, 50, 51,
53, 57, 71, 97, 107, 119–131]. To date, candidate regula-
tory RNAs are limited to miRNAs. No study has eva-
luated the feasibility of using lncRNAs or circRNAs as
biomarkers in sepsis.
Investigations revealed that the expression level of

miR-25, miR-143, miR-146a, miR-15a, miR-16, miR-126,
miR-150, miR-223, and 472-5p-iso could differentiate
SIRS from sepsis [16–21, 48–51, 107, 132]. However,
an independent research group could not detect any
difference in miR-223 expression between septic patients
and healthy controls [110]. Recently, massive screening
using Solexa sequencing has identified nine novel miR-
NAs which are correlated with sepsis mortality (AUC =

0.681–0.863) [50]. Of note, selective reporting of sensitivity,
specificity, and the associated AUC value was common
in several included studies. In addition, none of these
studies used an external cohort to validate the biomarkers
investigated. This reporting bias complicates the analysis
of results between studies.
Other miRNAs have been investigated to predict com-

plications associated with sepsis. For instance, miR-122
predicts the development of liver injury in septic patients
[70, 126]. miR-574-5p and miR-155 may predict the
development of septic shock, immunosuppression and
respiratory failure [71, 127, 133, 134].
Clearly, genome-wide profiling of miRNA expression

distinguished septic from nonseptic patients. However,
prediction of the likelihood of a nonseptic patient deve-
loping sepsis may be more clinically relevant to reduce
mortality and morbidity in critical care settings.

Therapeutic targets
Although cell and animal models have demonstrated
the use of miRNA modulators in combating sepsis,
considerable challenges have to be overcome in order to
successfully translate these into clinical use. Apparently,
the expression of miRNAs is tissue-dependent, question-
ing the appropriateness of systemic delivery of antagomir
or miRNA mimics, as has been commonly performed
in animal models. Although targeted drug delivery may be
an alternative, this is further complicated by the techno-
logy of the delivery and the heterogeneity of clinical
manifestations among septic patients.
Recent animal studies have recognized that miRNAs are

associated with medical interventions and septic compli-
cations [125–138]. In SPRET/Ei mice, glucocorticoid in-
duced miR-511 upregulation, inhibiting the TNF receptor
TNFR1 and, hence, reducing their sensitivity to TNF-α
[135]. Similarly, administration of dexamethasone in a
LPS-induced murine sepsis model downregulated the
expression of miR-155 in the liver and alleviated proin-
flammatory cytokine production [116, 138]. Interestingly,
miRNAs are also involved in cortisol nonresponsiveness,
which may occur during the therapy. This resistance
phenotype is partly related to altered expression of one of
the cortisol receptor isoforms, glucocorticoid receptor α.
In sepsis patients, this isoform is significantly downregu-
lated by miR-124, which is increased three-fold upon
exposure to glucocorticoid [137].
After exposure to LPS for a while, our body switches

to tolerance mode, which avoids prolonged proinflam-
matory response. Silencing transcription and translation
of acute inflammatory genes in vitro during LPS toler-
ance is mediated by various miRNAs [139]. Regulation
of this tolerance status can be significantly disrupted by
overexpression of miR-146a in cellular models of sepsis
[140]. While sepsis-induced differential miRNA expression
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involves a diversity of miRNA species in multiple organs,
modulation of miRNAs in endotoxin tolerance is seen
predominantly in macrophages mediated by miR-146a
and miR-155 [141, 142]. As in sepsis, in vitro studies
suggested that the regulation of miRNA during tolerance
involves the TLR-NFkB-cytokine pathways [143–145].
Experimental evidence suggests that alternative thera-

pies in treating sepsis involve modulation of miRNAs.
Predominantly, these miRNA species are linked to some, if
not all, pathways in innate immunity in cellular [146, 147]
and in animal models [148, 149]. One of the well-known
anti-inflammatory dietary components is flavonoids. In
vitro investigation of a flavonoid, apigenin, revealed that it
suppresses LPS-induced miR-155 expression in macro-
phages, leading to upregulation of the anti-inflammatory
regulators forkhead box O3a and MAD-related protein
2 [146]. The protective effect was further elaborated
by a murine sepsis model in which an apigenin-rich diet
considerably reduced the expression of miR-155 and
TNF-α in the lungs [146]. Recent innovations in septic
treatment include stem cell therapy. In this regard, in vivo
mechanistic studies revealed that mesenchymal stem
cells improved survival of CLP-induced septic mice by
downregulating miR-143 [147, 150]. Microarray analyses
revealed more than 1.5-fold differential expression of
77 miRNAs in septic mice treated with noncultured-
derived mesenchymal cells [149]. This was accompan-
ied by a reduced inflammatory response and apoptosis
[149]. Elucidating the mechanisms using animal models
of sepsis in relation to a 20-HETE analog, N-(20-hydro-
xyeicosa-5Z,14Z-dienoyl glycine, revealed the involvement
of miR-150, miR-223, and miR-297 [148]. Further in vitro
studies revealed that these miRNAs were downregulated
leading to suppression of the MyB88/NF-κB pathway [151].
Evaluation of the feasibility of miRNA as septic therapy

predominantly employs two approaches: use of antagomir
or miRNA mimics. Among all miRNAs, miR-146a is the
most comprehensively studied candidate. By targeting
IRAK1 and TRAF6, miR-146a attenuates cardiac dysfunc-
tion in septic mice [152]. Delivering miR-146a agomir by
in vivo jetPEITM instillation into airways of septic mice
inhibited proinflammatory cytokine production and allevi-
ated lung tissue injury [153]. An independent group of
researchers revealed that this miRNA additionally inter-
feres in vitro with Th1 cell differentiation of human CD4+

T lymphocytes via PRKC [154]. Other miRNAs, including
miR-124, miR-142-3p, and miR-195, have also been
demonstrated to be useful in preventing hyperinflam-
mation, apoptosis, and multiple organ injury in murine
sepsis models [8, 140, 155, 156]. Similarly, indirect induc-
tion of miR-126 expression in vitro by CTEC-0214, a
stromal cell-derived factor 1 alpha analog, preserved
endothelial cell barrier integrity and attenuated pulmonary
vascular leak [157].

Conclusion
In conclusion, regulatory non-coding RNAs are potential
candidates as biomarkers and therapeutics for sepsis.
Given organ-specific differentiation of these regulatory
non-coding RNAs in addition to the pathological hetero-
geneity of patients with sepsis, future research is war-
ranted to elucidate the temporal dynamics and cellular
origins of regulatory RNAs. Development of organ-specific
delivery of non-coding RNA mediators may be a promising
approach.
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