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Abstract

Background: The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is
critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those
that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally
formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope
labeling experiments using this set of variables results in a non-convex optimization problem that suffers from
both implementation complexity and convergence problems.

Results: This article addresses the mathematical and computational formulation of 13C MFA models using a new
set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer
abundances, which results in a simply-posed formulation and an improved error model that is insensitive to
isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to
solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the
commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that
relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and
output variability.

Conclusions: Substantial improvements in convergence time and statistical quality of results can be achieved by
applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that
the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale
networks and design optimal isotope labeling experiments.

Background
Metabolic Pathway Analysis
Metabolism is the complete set of chemical reactions tak-
ing place in living cells. These chemical processes form
the basis of all life, allowing cells to grow, reproduce,
maintain their structure and respond to environmental
changes. Metabolic reactions are divided into groups
called metabolic pathways, which are typically con-
structed heuristically according to their connectivity and
presumed function [1]. Each metabolic pathway is char-
acterized by a set of chemical reactions that transform
substrates into end products while generating intermedi-
ate byproducts. Due to its importance in medicine and

biotechnology, metabolic pathway research has become a
highly active field of investigation [2].
Initially, the structure of metabolic pathways was

examined by identifying their intermediate compounds.
Subsequently, the various biochemical reactions con-
necting these compounds were mapped. Due to the suc-
cess of this research, the topological structure of many
metabolic pathways is nowadays fully documented [3].
The next step in the progression of metabolic pathway
research involves quantification of the rates of these var-
ious chemical reactions, also known as “fluxes”. The
values of these rates are affected by various environmen-
tal conditions and can change rapidly in response to
perturbations. Nevertheless, if the environmental para-
meters are held fixed and stable, the network can attain
a steady state in which the concentrations of all network
metabolites are assumed constant over time. This, of
course, implies that the rates of their input and output
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reactions must balance. The latter imposes a set of lin-
ear constraints on the metabolic fluxes, known as “stoi-
chiometric balance equations” [4]. Unfortunately, since
the number of unknown fluxes typically exceeds the
number of independent stoichiometric balances, these
constraints are insufficient to completely identify the
metabolic network. In order to overcome this lack of
information, additional constraints must be provided to
the stoichiometric mathematical model to estimate the
values of the network fluxes [5].

13C Isotope Labeling Experiments
Various experimental techniques have been developed to
enable measurement of intracellular metabolic fluxes,
either directly or indirectly. One of these approaches
makes use of isotope labeling experiments. In this
method, the metabolic system is administered a known
amount of an isotopically labeled substrate (such as glu-
cose labeled with 13C at specific atom positions). By
measuring the resulting labeling patterns of intracellular
metabolites after steady state has been achieved, addi-
tional flux information is obtained.
One major drawback of this experimental approach is

the high complexity and computational intensity of the
metabolic flux analysis (MFA) required to interpret
these labeling measurements. In their series of articles,
Wiechert et al. [6-9] constructed a systematic approach
for performing this analysis. They show that measure-
ments of the relative abundance of various isotope iso-
mers, also known as “isotopomers”, contain enough
information to fully identify the metabolic fluxes of the
network. Formulating the problem using isotopomer
variables (or a transformed set of isotopomer variables
referred to as “cumomers”), Wiechert et al. posed the
flux estimation problem as a non-convex least-squares
minimization, assuming random error is added to their
isotopomer measurements. The resulting high-dimen-
sional non-convex problem suffers from various draw-
backs, such as slow convergence and notable probability
of attaining local minima. Several optimization algo-
rithms have been developed in order to address these
drawbacks. Early approaches used iterative parameter-
fitting algorithms [8], evolutionary algorithms [10] and
simulated annealing [11]. Furthermore, several investiga-
tions have been conducted in order to assess the accu-
racy of these results [9,12,13]. Recently, a novel method
to decompose the metabolic network into Elementary
Metabolite Units (EMUs) was introduced [14] and
implemented into the OpenFLUX software package [15].
This decomposition effectively reduces the size of the
optimization problem by efficiently simulating only
those isotopomers that contribute to the measurement
residuals. Nevertheless, all of these algorithms suffer
from several major drawbacks due to the standard

isotopomer-flux variables used in formulating the opti-
mization problem:

• Presence of unstable local minima: due to the non-
convex nature of the objective function.
• Complex mathematical representation and compu-
tational implementation. This results in the need for
ad-hoc algorithms and mathematical analysis, and
long running times are required for reliable
convergence.

The OpenFLUX implementation, for example, may
require several dozens of convergence iterations with
various initial values in order to achieve acceptable
probability of obtaining the optimal set of fluxes in any
one of its attempts. In addition, due to the chosen
objective function, it is also commonly required to esti-
mate scaling factors for each isotopomer measurement,
because of the fact that the available experimental tech-
niques are only capable of measuring isotopomer frac-
tions up to a proportional scaling factor (see Mollney et
al. [9] for further details).

Our Contribution
This article introduces a new set of variables for simu-
lating 13C isotope labeling experiments. The main idea
underlying this reformulation is that, instead of treating
fluxes and isotopomer variables separately, we identify a
set of “isotopically labeled fluxes” as our state variables
of interest. We refer to these variables as fluxomers.
Fluxomers combine flux variables with isotopomer vari-
ables and consequently reduce the complexity and non-
linearity of the original isotopomer balance equations. In
this article, we show that by reformulating the flux esti-
mation problem in terms of fluxomer variables, it is pos-
sible to construct an algorithm that has the following
key benefits:

• Provides efficient computation of all isotopomers
in a metabolic pathway
• Is robust to measurement noise (i.e., suppresses
the effects of measurement errors) and initial
conditions
• Eliminates the need for measurement scaling factor
estimation
• Poses the problem using simple mathematical
expressions, allowing the use of generic optimization
algorithms

The rest of the article is constructed as follows. The
Results and Discussion section illustrates the advantage
of our approach via simulation results comparing fluxo-
mer variables to the commonly used cumomer approach
and the more recently introduced EMU approach. The
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Methods section presents the detailed formulation of the
fluxomers optimization problem and the fluxomers
iterative algorithm (FIA) that provides a reliable and
efficient method for solving it. All source code and
executables for our algorithms are freely available at the
author’s website [16].

Results and Discussion
We compared our FIA algorithm to the widely used
MFA software 13CFLUX [17], which relies on the
cumomer approach, and to the more recent Open-
FLUX [15] software, which is based on the EMU [14]
approach. In order to compare the methods, we con-
ducted flux estimations for various well-studied meta-
bolic pathways. Our first example is based upon the
tutorial which Wiechert et al. provide with their
13CFLUX software: the Embden-Meyerhof and Pentose
Phosphate metabolic pathways of Escherichia coli [17].
This example compares the running time and robust-
ness of both algorithms in response to input noise. Our
second example compares the results and performance
of FIA to both an adhoc method and the OpenFLUX
algorithm for the analysis of lysine production by C. glu-
tamicum, as described by Becker et al. [18] and Quek et
al. [15].

FIA vs. 13CFLUX Comparison: Embden-Meyerhof and
Pentose Phosphate Pathways
In this section we examine a network representing the
Embden-Meyerhof and Pentose Phosphate pathways of E.
coli, which is based upon the tutorial supplied by Wie-
chert et al. as part of their 13CFLUX software package.
Since our FIA implementation natively supports
13CFLUX input files (i.e. “FTBL” files), the same input
files can be used for both algorithms. (Note, however,
that FIA does not require definition of free fluxes nor
initial values, and thus these are simply ignored when
imported). Figure 1 shows the simple network used
along with the nomenclature used in previous publica-
tions. In addition to the network structure, the models
are provided with flux and isotopic measurements as
shown in Table 1.
First, we examined the output of the two algorithms

for the traditional “noiseless” input file. In order to run
the analysis, 13CFLUX requires the user to define a set
of “free fluxes” along with their associated initial values
[7]. Note that a bad choice of free fluxes or their asso-
ciated values can result in poor algorithmic performance
(both in computation time and accuracy). In fact, under
various initial guesses the algorithm did not converge at
all. As for FIA, none of the above is required. Since the
network along with the given measurements are well
defined, in the noiseless case the two algorithms
returned similar values for unidirectional fluxes, as can

be seen in Table 2. Some slight disagreements were
observed for the bi-directional fluxes, which are more
poorly identified.
We next compared the algorithms’ sensitivities to

noise. In a series of 10 experiments, white Gaussian

Figure 1 E.Coli EMP and PPP Metabolic Pathways. The Embden-
Meyerhof and Pentose Phosphate metabolic pathways of Escherichia
coli.

Table 1 EMP & PPP simulation data

Label input data

Flux name Cumomer Index Value STD

GLC #000000 0.445 -

#100000 0.500 -

#000001 0.011 -

#000010 0.011 -

#000100 0.011 -

#001000 0.011 -

#010000 0.011 -

Rul5P #1xxxx 0.1979 0.002

#x1xxx 0.0153 0.002

#xx1xx 0.0284 0.002

#xxx1x 0.0122 0.002

#xxxx1 0.0976 0.002

Ery4P #1xxx 0.0568 0.002

#x1xx 0.0229 0.002

#xx1x 0.0118 0.002

#xxx1 0.0704 0.002

GA3P #1xx 0.0330 0.002

#x1x 0.0126 0.002

#xx1 0.1207 0.002

PEP #1xx 0.0330 0.002

#x1x 0.0126 0.002

#xx1 0.1207 0.002

Values are taken from the example input file included in the 13CFLUX demo.
Substrate enrichment values are considered as constants.
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noise was added to all of the measured isotopomer
values, and the outputs and computation times for both
algorithms were recorded. As can be seen in Figure 2,
unidirectional fluxes remain quite constant and hardly
suffer from the added experimental error (for both algo-
rithms). However, the bi-directional fluxes are affected
by the added noise. 13CFLUX suffers from a higher var-
iance spread of the estimated values than FIA (thus is
more sensitive to the added measurement noise). Note

that the difference arises not only due to the mathemati-
cal model used, but also due to the stability properties
of the optimization method chosen.
We next examined the computational performance of

the two methods. Table 3 shows the algorithm running
time for convergence (in seconds). The average running
time for 13CFLUX was 133 seconds, while for FIA this
time was 7 seconds. The running time ratio (13CFLUX/
FIA) for individual experiments varied between ×9 to ×75.

FIA vs. OpenFLUX Comparison: Lysine Production by C.
glutamicum
In this section we examine the analysis of the central
metabolism of two lysine-overproducing strains of Cory-
nebacterium glutamicum: ATCC 13032 (lysCfbr) and its
PEFTUfbp mutant. Both express feedback-resistant iso-
forms of the aspartokinase enzyme lysC, while the latter
is additionally engineered to overexpress the glycolytic
enzyme fructose-1,6-bisphosphatase. The example is
based upon the measurements provided by Becker et al.
[18], who implemented an ad-hoc program to estimate
the values of various metabolic fluxes. In their more
recent article introducing the OpenFLUX software pack-
age [15], Quek et al. chose to compare their results to
those of Becker et al. Therefore, we will expand upon
their comparison using our FIA implementation. The
input file for FIA was constructed using the measure-
ments and pathway structure given in [18] and [15]. As

Table 2 Comparison of FIA with 13CFLUX for the simple
E.coli metabolic network

Flux name FIA 13CFLUX

Est. flux MSE Est. flux MSE

emp1 0.5100 0.0020 0.5099 0.0023

emp2 0.8500 0.0008 0.8500 0.0007

emp3 0.8500 0.0008 0.8500 0.0007

emp4 1.8700 0.0011 1.8700 0.0006

emp5 1.8700 0.0011 1.8700 0.0006

emp6 1.8700 0.0011 1.8700 0.0006

ppp1 0.5100 0.0019 0.5101 0.0023

ppp2 4.4234 0.5483 4.3281 0.9652

ppp2r 4.0834 0.5485 3.9880 0.9657

ppp3 4.4689 1.0365 2.7370 1.1057

ppp3r 4.2989 1.0368 2.5670 1.1057

ppp4r 4.0768 0.3643 4.1740 1.1608

ppp4 4.2468 0.3640 4.3440 1.1604

ppp5r 0.2538 0.1535 0.2680 0.0654

ppp5 0.4238 0.1531 0.4381 0.0655

ppp6r 0.2550 0.0175 0.2560 0.0194

ppp6 0.4250 0.0171 0.4260 0.0188

upt 1.0200 0.0004 1.0200 0.0001

coOut 0.5100 0.0019 0.5101 0.0023

Comparison of estimated fluxes and mean-square estimation error using
“noiseless” data.

Figure 2 Measured fluxes values. Bidirectional fluxes calculated using FIA and 13CFLUX for noisy measurement set.

Table 3 Algorithm running time comparison for FIA vs.
13CFLUX

FIA 6.63 7.56 5.17 6.85 8.83 5.92 9.53 6.47 6.97 6.77

13CFLUX 59.14 56.93 76 121 65.7 451 81.7 173 177 69.65

Running time is shown in seconds.
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described in [15], the published mass isotopomer frac-
tions were modified for mass interference from non-car-
bon backbone isotopes using the molecular formula of
the amino acid fragments. FIA supports automatic gen-
eration of the naturally occurring isotopes correction
matrix when the measured molecular formulas are sup-
plied. This adjusts the measured fluxomers vector
appearing in the objective function during the process
of optimization. If necessary, it is possible not to use
this feature but instead to directly supply the algorithm
with the corrected measurement values.
When comparing the running times of FIA with

OpenFLUX, the different algorithmic approaches of the
two must be kept in mind. While OpenFLUX requires
the user to supply it with sets of free fluxes, FIA
requires no free fluxes nor initial values. Open-FLUX
rapidly evaluates dozens of different optimization cycles
with random initial values and seeks the best fitting
result among them, while FIA uses only one single
(longer) run. As such, the convergence probability of
OpenFLUX depends on the number of attempts and
random values generated during its operation, while the
FIA results do not depend on any random value.
Furthermore, in its analysis, EMU based algorithms eval-
uate only the fluxes necessary for measurement compar-
ison, and thus their running time depends both on the
metabolic network structure and the amount and loca-
tion of the given measurements. FIA, on the other hand,
can supply the entire set of metabolic fluxes at any
given time, with no additional computation requirement
(which depends mainly on the network structure).
Measured fluxes as constants
First, we ran the exact same simulation as Quek et al.
performed in their article. They supply very accurate
(mean error in the order of 0.15 mol%) values for the
label measurements, and used the given measured fluxes
as if they were noiseless measurements (thus as con-
stants). We start by comparing the simulation time for
this simple case. According to [15] and as validated by
us using our computer, OpenFLUX required 50 itera-
tions of about 16 seconds each in order to find a decent
minimal point, hence about 800 seconds in total. While
so, the FIA analysis took 60 seconds for initial analysis
and matrices creation, and 300 further seconds for con-
vergence, thus 360 seconds as a whole. Regarding the
simulation results, as one can see in Table 4 and Table
5 the fluxes are very close to those calculated before,
and the estimated fluxes FIA returned had the lowest
residual value compared to the other methods.
Measured fluxes as measurements
We can also run the same optimization, but weight the
given flux measurements by their variances. When run-
ning this optimization using OpenFLUX (again using 50
iterations), the amount of time was greatly increased,

and ended in around 48 minutes. For FIA, on the other
hand, the running time was the same as before, thus
about 6 minutes. Comparing the results of the algo-
rithms, OpenFLUX suffered from severe convergence
problems. Most of its iterations ended without conver-
ging at all, while those that did converge yielded useless
results, far from the measurements. FIA, on the other
hand, succeeded in converging for all scenarios. For the
wildtype lysine producing pathway, the results were very
close to the ones before (since the fluxes and measure-
ments were quite accurate). For the mutant example,
which was less accurate, a reduction of the residual
value was achieved by small changes to the measured
fluxes. fluxes and residual values can be examined in
Table 4 and Table 5.
Using non-normalized MS measurements
We now show that FIA can easily use incomplete or
non-normalzied measurements by examining its perfor-
mance in the example above. The supplied MS measure-
ments were normalized to the n +1 backbone carbon
atoms of the measured metabolites. Instead of using the
supplied normalized data, we multiply each set of meta-
bolite measurements by a random constant number. By
doing so, we simulate the case in which only the first 3
(2 for GLY) MS peaks were measured, and had not
been normalized. The original and supplied non-nor-
malized measurement values can be found in Table 4.
Note that the values were corrected by the molecular
formulas of the measured fragments (again, can be auto-
matically performed by FIA). In the absence of normal-
ized data, FIA gave estimated fluxes very close to the
previous cases, with very low residual values, as can be
seen in Table 5. The running time of the algorithm was
not affected by the change.

Conclusions
The main contribution of this article is the introduction
of fluxomers–a new set of state variables used to simu-
late 13C metabolic tracer experiments. The fluxomers
approach allows the central optimization problem of
MFA to be reformulated as a sequence of quadratic pro-
grams, which form the basis of the fluxomers iterative
algorithm (FIA). Both fluxomers and FIA result in sev-
eral important benefits compared to flux-isotopomer
variables. Among these advantages are (i) a reduction in
algorithm running time required for simulation of isoto-
pomer distributions and metabolic flux estimation, (ii)
reduced sensitivity to measurement noise and initial flux
values and (iii) availability of complete isotopomer infor-
mation for a given network (as opposed to the EMU
approach, which only supplies partial information) with-
out the need for user specification of free fluxes or
initial flux values. Additionally, the error model used by
the FIA algorithm has the advantage that it depends
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solely upon isotopomer ratios rather than complete iso-
topomer fractions, and therefore it eliminates the need
to estimate a normalization factor for each measured
isotopomer distribution. Our current results show signif-
icant improvements even with regards to simplistic tra-
cer experiments (the running times have been improved
by an order of ×3 to ×20 compared to the 13CFLUX
algorithm, and about ×2 to ×8 compared to the Open-
FLUX implementation). It is important to note that the
total time required to obtain an MFA solution is con-
trolled both by (i) the time of each iteration and (ii) the
number of optimization iterations that are required to
achieve a reliable solution. While a single OpenFLUX

iteration is certainly faster than a single iteration of FIA,
the FIA algorithm was expressly constructed to provide
high reliability in achieving the optimal solution. There-
fore, FIA was able to consistently find a better optimal
solution in less total time in comparison to the other
algorithms examined. Furthermore, extending the fluxo-
mers formulation to other global optimization techni-
ques is straightforward. We expect that reformulating
more sophisticated MFA problems–for example, invol-
ving optimal experimental design or large-scale meta-
bolic networks–in terms of fluxomer variables will lead
to dramatic enhancements of algorithmic efficiency and
robustness.

Table 4 Relative mass isotopomer fractions comparison for wild-type and mutant C. glutamicum

Wildtype Mutant

Fragment Non-normalized Exp. Ad-hoc OpenFLUX FIA Exp. Ad-hoc OpenFLUX FIA

const. meas. ratios const. meas.

ALA 260 M0 206.3562 0.5085 0.509 0.509 0.5099 0.5099 0.5097 0.5230 0.525 0.525 0.5247 0.5247

M1 102.8634 0.3529 0.354 0.354 0.3534 0.3534 0.3537 0.3410 0.342 0.342 0.3425 0.3425

M2 4.8452 0.1058 0.106 0.106 0.1063 0.1063 0.1062 0.1030 0.104 0.104 0.1037 0.1037

VAL 288 M0 41.4005 0.3455 0.348 0.348 0.3459 0.3458 0.3457 0.3640 0.366 0.366 0.3661 0.3663

M1 39.6134 0.3983 0.398 0.398 0.3986 0.3986 0.3987 0.3920 0.392 0.392 0.3921 0.3922

M2 10.7340 0.1845 0.184 0.184 0.1846 0.1846 0.1847 0.1750 0.175 0.175 0.1750 0.1749

THR 404 M0 194.9082 0.3330 0.334 0.334 0.3343 0.3343 0.3340 0.3440 0.344 0.344 0.3439 0.3439

M1 159.2226 0.3764 0.376 0.376 0.3757 0.3757 0.3759 0.3730 0.371 0.371 0.3715 0.3721

M2 35.2094 0.1957 0.196 0.196 0.1956 0.1956 0.1957 0.1910 0.192 0.192 0.1920 0.1918

ASP 418 M0 159.9111 0.3343 0.333 0.333 0.3337 0.3337 0.3334 0.3450 0.343 0.343 0.3432 0.3433

M1 128.3755 0.3732 0.375 0.375 0.3750 0.3750 0.3752 0.3700 0.370 0.371 0.3708 0.3714

M2 28.7782 0.1955 0.196 0.196 0.1960 0.1959 0.1960 0.1920 0.193 0.192 0.1924 0.1922

GLU 432 M0 3.8009 0.2469 0.25 0.249 0.2474 0.2473 0.2469 0.2570 0.264 0.264 0.2634 0.2624

M1 4.4232 0.3648 0.366 0.366 0.3661 0.3661 0.3660 0.3650 0.365 0.365 0.3656 0.3658

M2 1.7429 0.2412 0.239 0.240 0.2406 0.2406 0.2409 0.2360 0.232 0.232 0.2322 0.2327

SER 390 M0 224.9043 0.4497 0.449 0.448 0.4487 0.4488 0.4490 0.4620 0.463 0.463 0.4635 0.4628

M1 108.4056 0.3576 0.358 0.358 0.3578 0.3578 0.3580 0.3490 0.349 0.349 0.3491 0.3492

M2 3.5199 0.1428 0.143 0.144 0.1437 0.1437 0.1434 0.1400 0.140 0.140 0.1399 0.1403

PHE 336 M0 250.7079 0.2712 0.274 0.274 0.2764 0.2764 0.2769 0.2870 0.289 0.289 0.2881 0.2874

M1 303.6304 0.3816 0.381 0.381 0.3817 0.3817 0.3822 0.3800 0.381 0.381 0.3809 0.3806

M2 129.5861 0.2282 0.228 0.228 0.2263 0.2264 0.2261 0.2200 0.220 0.220 0.2206 0.2210

GLY 246 M0 738.7580 0.7407 0.742 0.742 0.7417 0.7417 0.7421 0.7410 0.743 0.743 0.7426 0.7426

M1 39.7395 0.1845 0.185 0.185 0.1852 0.1852 0.1849 0.1830 0.184 0.184 0.1844 0.1844

TYR 466 M0 36.7321 0.2344 0.236 0.236 0.2380 0.2380 0.2384 0.2460 0.249 0.249 0.2481 0.2475

M1 43.7966 0.3530 0.356 0.356 0.3567 0.3567 0.3572 0.3510 0.358 0.357 0.3572 0.3569

M2 18.6839 0.2423 0.245 0.245 0.2433 0.2433 0.2431 0.2340 0.238 0.238 0.2387 0.2390

TRE 361 M0 34.1048 0.0613 0.062 0.062 0.0612 0.0612 0.0608 0.0880 0.088 0.088 0.0884 0.0884

M1 327.3441 0.6040 0.607 0.606 0.6051 0.6051 0.6057 0.5730 0.577 0.574 0.5743 0.5742

M2 27.0318 0.2070 0.207 0.207 0.2084 0.2084 0.2084 0.2130 0.213 0.213 0.2128 0.2126

Sum of weighted residuals 761 684 654 650 718 1735 1461 1451 1308

Experimental and calculated isotopomer MS fractions. The experimental data and ad-hoc simulation results are taken from Becker et al. [18]. The OpenFLUX
results are taken from [15]. The simulated “non-normalized” data is generated by multiplying the given values after natural isotope correction by random factors.
Several FIA estimations are provided: using the given fluxes as constants (under “const.”), as measurements (under “meas.”), and when using the simulated non-
normalized data (under “ratios”). As can be seen, FIA agrees with previous results (even when the data is used without normalization). For the mutant case,
better fits are achieved when allowing the supplied fluxes to change as well.
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Methods
In the following, we show how to construct and solve
MFA problems using fluxomer variables. First we
define and explain the basic properties of fluxomers.
Then we show how to express MFA balance equations
and measurements in terms of fluxomers. Finally, we
formulate the MFA optimization problem and present
the FIA algorithm for solving it. Throughout this sec-
tion we use boldface uppercase letters A to denote
matrices, lowercase boldface letters x to denote vec-
tors, and lowercase letters u for scalars. We use the <○
>product z = x○y to represent the element-wise pro-
duct vector, i.e. zi = xiyi. The model formulation will
be illustrated using the simple metabolic network
shown in Figure 3.

Fluxomers overview
Traditional MFA approaches construct distinct variables
for each flux and for each possible labeling state (isoto-
pomer) associated with all metabolites in the network.
Fluxomers, on the other hand, are a composite of these
two and therefore allow the network state to be
described using only one variable type.
Definition 1 (Fluxomer) A fluxomer is the rate that a

metabolic reaction transfers labeling from one or more
specific substrate isotopomers into product isotopomers.
Taking each fluxomer to be a transformation from

one set of labeled atoms into others, we can write its
labeling state as an array of binary elements represent-
ing the state of each atom it consumes (0 representing
an unlabeled atom and 1 representing a labeled atom).
Thus, fi(1001) is a fluxomer of reaction i consuming 4

atoms, with its first and last atoms labeled and two mid-
dle atoms unlabeled. When using x as an index for one
(or more) of the atoms, we denote a sum of fluxomers
where the indicated atom can be either labeled or unla-
beled (e.g., fi(1x01) is the sum of fi(1001) and fi(1101)).
See Figure 3b for a detailed example.
Traditional metabolic fluxes and isotopomer variables

can be easily expressed using fluxomers. We start with
metabolic fluxes, which are just a sum of their

Table 5 Metabolic fluxes comparison for wild-type and mutant C. glutamicum

Wildtype Mutant

Becker OpenFLUX FIA Becker OpenFLUX FIA

const. meas. ratios const. meas.

Glucose 6-phosphate isomerase 49.8 51.2 51.9 52.0 51.5 41.6 40.4 42.1 42.5

Glucose 6-phosphate dehydrogenase 46.8 45.0 44.7 44.7 45.1 56.2 57.5 55.7 55.1

Transaldolase 14 13.4 13.3 13.3 13.4 17.5 17.7 17.3 17.0

Transketolase 1 14 13.4 13.3 13.3 13.4 17.5 17.7 17.3 17.0

Transketolase 2 11.9 11.3 11.2 11.2 11.3 15.8 16.4 15.6 15.4

Glyceraldehyde 3-phosphate dehydrogenase 157.5 158.0 158.2 158.6 158.0 160.8 161.0 161.0 160.5

Pyruvate kinase 147.3 148.0 147.8 148.2 147.6 152.6 152.0 152.5 152.0

Pyruvate dehydrogenase 77.5 75.8 74.8 74.9 74.9 87.5 85.2 85.1 79.7

Pyruvate carboxylase - carboxykinase 34.4 35.8 35.9 36.1 35.8 31.5 32.4 32.5 34.9

Citrate synthase 52.5 50.8 49.6 49.7 49.9 67.7 65.4 65.3 58.9

Isocitrate dehydrogenase 52.5 50.8 49.6 49.7 49.9 67.7 65.4 65.3 58.9

Oxoglutarate dehydrogenase 41.2 39.4 38.2 38.3 38.5 59.9 57.6 57.5 50.7

Aspartokinase 11.2 11.2 11.2 11.4 11.2 14.2 14.2 14.2 15.9

Estimated metabolic fluxes values for the different approaches - the ad-hoc simulation results from Becker et al. [18], the OpenFLUX results [15], and the FIA
results for its various simulated scenarios (measured fluxes used as constants, as measurements, and when using ratios of non-normalized data.)

Figure 3 Simple metabolic network. (a) Standard network
representation. Carbon atoms are drawn explicitly with arrows to
indicate atom transitions. Unidirectional arrows represent
unidirectional fluxes while bidirectional fluxes (such as flux 5) are
represented by bidirectional arrows. (b) Fluxomers representation.
Each arrow is a group of fluxomers. X’s appear on the appropriate
atom positions to indicate summation of divergent fluxomers.
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associated fluxomers. For the simple network in Figure
3b we have:

fupt = f1 =
∑

f1(ijkl) = f1(xxxx)

f2 =
∑

f2(ij) = f2(xx)

f3 =
∑

f3(ij) = f3(xx)

fout = f4 =
∑

f4(ijkl) = f4(xxxx)

f5 =
∑

f5(ijkl) = f5(xxxx)

f5r =
∑

f5r(ijkl) = f5r(xxxx).

(1)

We can also express isotopomer abundances in terms
of fluxomer variables for the same example. Because of
the assumption that enzymes do not differentiate
between the various isotopomers of a given metabolite,
the isotopomers within each metabolite pool are distrib-
uted uniformly across the outgoing fluxes emanating
from that pool. Therefore, the fractional abundance of a
given isotopomer within a metabolite pool will deter-
mine the fractional contribution of its corresponding
fluxomers to the fluxes leaving that pool:

Aijkl

Bij

Cij

Dij

Eijkl

=
=
=
=
=

f1(ijkl)/f1
f2(ij)/f2 = f5(ij)/f5
f4(xxij)/f4 = f5r(ij)/f5r
f4(ijxx)/f4 = f3(ij)/f3
fout(ijkl)/fout.

(2)

Fluxomer balance equations
We now examine the fluxomer balance equations that
describe how fluxomers are propagated through the
metabolic network. These balance equations represent
the main mathematical device for calculating steady-
state fluxomer values for a given network. For ease of
notation, let us define the vector of metabolic fluxes in
our system by u ∈ Rn and the vector of fluxomers as
x ∈ Rm. As shown above, the metabolic fluxes are calcu-
lated from a linear transformation of the fluxomers.
Denoting this linear transformation matrix as U, we can
write u = Ux. We now assume that we are given a cer-
tain u vector and wish to calculate the fluxomers in our
system. We start by considering balances on “simple
fluxomers”, i.e. those that originate exclusively from a
single metabolite pool. (An example of a simple fluxo-
mer is f5(01) in Figure 3, which derives solely from pool
B.) Under conditions of metabolic and isotopic steady
state, the rate of 01-labeled molecules entering pool B
must balance the rate that 01-labeled molecules leave
that pool. Therefore, we can construct a balance on
fluxomers around pool B as

f5(01) + f2(01) = f1(01xx) + f3(01) + f5r(01). (3)

However, according to eq. 2 the left-hand side of this
equation can be re-expressed as

B01(f5 + f2) =
f5(01)
f5

(f5 + f2). Substituting this latter

result into the flux balance equation and solving for the
fluxomer f5(01) yields

f5(01) =
f5

f5 + f2

(
f1(01xx) + f3(01) + f5r(01)

)
= g(u)(hTx),

(4)

where g(u) is a function of u alone, and h is a con-
stant vector. Thus, for this simple case we can solve for
the outgoing fluxomer f5(01) directly in terms of the
fluxomers entering pool B and the total fluxes f2 and f5
leaving pool B.
We now turn to the more complex situation in which

the output fluxomer originates from more than one
metabolic pool. For example, consider fluxomer f4(0001)
coming from pools C and D. Here, the fraction of 0001-
labeling carried by flux f4 is proportional to the abun-
dance of 01-labeling in C and 00-labeling in D:

f4(0001) = f4C01D00

= f4

(
f1(xx01) + f5(01)

f4

)(
f2(00)
f3 + f4

)
= g(u)(hT

1x)(h
T
2x).

(5)

As before, the outgoing fluxomer f4(0001) can be
expressed solely in terms of g–a pure function of u
(always a rational function of outgoing fluxes)–and a
product of linear projections of x.
Without loss of generality, we restrict ourselves to

fluxes coming from at most 2 metabolic pools (referred
to subsequently as the “left” and “right” pools). When
the system reaches steady state, we have

x = g(u) ◦ (H1x) ◦ (H2x), (6)

where g is a function Rn → Rm, and (H1, H2) are two
m × m matrices. This equation allows for the output
fluxomers emanating from a specific metabolite pool to
be expressed in terms of the total flux vector u and the
fluxomers entering the pool. This enables each outgoing
fluxomer to be solved “locally” for the incoming fluxo-
mers. Note that this local calculation does not involve
any matrix inversions or other expensive computational
procedures. If there are no recycle loops in the network
so that all possible paths through the network are non-
selfintersecting, this equation can be used to solve
sequentially for all “downstream” fluxomers in terms of
previously calculated “upstream” fluxomers. In the pre-
sence of recycle loops an iterative approach can be con-
structed to solve for the fluxomers while still avoiding
repeated matrix inversions.
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Constructing the system matrices
The matrices H1, H2 ∈ Rmxm are defined by

(H1)ij = 1, if xj enters the left (for H2, right)

source metabolic pool in a reaction for which xi is a product

(H1)ij = 0, otherwise.
(7)

The function g : Rm → Rn is defined as

gi(u) =
gT1iu

(gT2iu)(g
T
3iu)

, (8)

with g1i, g2i, g3i ∈ Rn given by

(g1i)j = 1, if the fluxomer xi is part of the flux fj,

(g1i)j = 0, otherwise

(g2i)j = 1, if flux fj exits the left source pool

in a reaction for which xi is a product,

(g2i)j = 0, otherwise

(g3i)j = 1, if flux fj exits the right source pool

in a reaction for which xi is a product,

(g3i)j = 0, otherwise.

(9)

In matrix form,

g(u) =
G1u

(G2u) ◦ (G3u)
. (10)

Isotopomer measurement formulation
In the following, we develop a systematic method for
expressing measured isotopomer variables using fluxo-
mer notation. The final result of the analysis shows that
isotopomer measurements can be written simply as the
norm of a linear transformation of fluxomers, thus Err
~ ||Ax||2. First, we briefly summarize the available iso-
topomer measurements provided by Nuclear Magnetic
Resonance (NMR) and Mass Spectrometry (MS) meth-
ods. We then discuss the mathematical modeling of
these measurements using fluxomer variables.
Available isotopomer measurements
MFA experiments are typically carried out by (i) intro-
ducing a labeled substrate into a cell culture at meta-
bolic steady state, (ii) allowing the system to reach an
isotopic steady state, and (iii) measuring isotopomer
abundances of metabolic intermediates and byproducts
using either MS or NMR analysis. These two measure-
ment techniques provide qualitatively different informa-
tion about isotopic labeling.

• 1H NMR: Measures the fractional 13C enrichment
of each proton-bound carbon atom, irrespective of
the labeling of its neighboring carbon atoms. Both

12C and 13C atoms are distinguishable in the same
spectrum, and therefore the peak areas corresponding
to different carbon isotopes can be normalized directly.
• 13C NMR: Quantifies isotopomers based on the
presence of multiplet peaks (e.g., doublets, triplets,
doublet doublets, etc.) in the spectrum caused by
two or more neighboring 13C atoms. Because 12C
atoms are undetectable by 13C NMR, it is impossible
to quantify the overall fraction of each isotopomer
unless 1H NMR spectra are simultaneously obtained.
Instead, only the relative ratio of different isotopo-
mers can be assessed by 13C NMR.
• MS: This technique is usually preceded by some
form of chromatographic separation (GC or LC) to
resolve mixtures into their individual components.
These components are then ionized and fragmented
in the MS ion source. The ionized particles are sepa-
rated according to their masses by an electromag-
netic filter, and a detector measures the relative
abundance of each mass isotopomer. These abun-
dances can be normalized to a fractional scale if all
MS peaks corresponding to a particular ion are
simultaneously measured.

Previous studies based on flux-isotopomer variables
have modeled the measurement error as Gaussian noise
added to the fractional isotopomer enrichments. There-
fore, if ŷ is the vector of measured isotopomer fractions,
this model states that ŷ = y + e, where e is the Gaussian
error term. However, a more accurate error model
would add the measurement noise directly to the physi-
cally measured values. The motivation for the tradition-
ally chosen error model is its relative simplicity when
expressed using flux-isotopomer variables. Furthermore,
since some isotopomers of a specific metabolite may be
unmeasurable, the isotopomer fractions cannot be
experimentally determined in many cases. This implies
the need for an alternative error model that avoids these
shortcomings.
Measurement Error Model
We denote the measured isotopomer abundances by a
vector m̂. For NMR analysis, the elements of m̂ are pro-
portional to the areas under the different spectral peaks.
For MS, they are proportional to the integrated ion
counts associated with each mass isotopomer. Since m̂
is the measured quantity, the correct error model is an
addition of Gaussian noise so that m̂ = m + e, where m
is the “true” measurement value. The measured isotopo-
mer fractions ŷ are then expressed as

ŷj =
m̂j∑
i m̂i

=
mj + ej∑
i (mi + ei)

. (11)
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Let εj represent the residual between the modelpre-
dicted and experimentally measured abundance of a sin-
gle isotopomer. After multiplying eq. 11 by

∑
i (mi + ei)

and rearranging, the residual expression becomes

εj = mj − ŷj(
∑
i

mi) = ej − ŷj
∑
i

ei, (12)

where εj is a sum of Gaussian variables. Noting that
each measurement mj is simply proportional to a linear
combination of fluxomers, the residual expression eq. 12
takes the form

ε = [diag(ŷ)T − V]x, (13)

where T and V are transformation matrices needed to
convert fluxomers to isotopomer measurements and the
diag operator converts its vector argument into a diago-
nal matrix. The resulting expression is both a simple
sum of Gaussian vectors and affine in x.
The advantage of this objective function is that it only

depends upon the relative isotopomer intensities in the
vector ŷ but does not depend upon how these intensi-
ties have been normalized (as long as the transformation
matrix T is constructed accordingly). This eliminates the
need to estimate optimal normalization factors that are
required by previous algorithms in order to convert
experimental measurements into isotopomer fractions.
This is true for both MS and NMR measurements,
either when conducted alone or used together in the
same experiment.

The MFA optimization problem using fluxomers
Now that we have defined both the isotopomer mea-
surements and the feasible solution set, we can formu-
late the least-squares MFA optimization problem in
terms of fluxomer variables. Our objective is to find the
flux vector u that minimizes the measurement error. In
addition to the fluxomer balances, usually upper bounds
uub are provided for all fluxes. As has been proven by
Wiechert et al. [6-9], once the inputs to the system and
u are set, the solution (x, u) is unique. In other words,
the steady-state fluxomer balance equation, eq. 6, is
actually an implicit definition of x(u). With this in
mind, the MFA optimization problem can be simply
defined as

min
u∈Q

||Ax(u) − b||2 (14)

with

Q =
{
u :

Su = 0
0 ≤ u ≤ uub

}
,

where A selects the measured elements of the fluxo-
mers vector x(u), b contains their associated values, and

S is the stoichiometric matrix of the reaction network.
Note that b may contain non-zero elements only when
associated with measurements of absolute flux values.
For isotopomer measurements, the associated elements
of b are zero.
Eq. 14 can be solved using various non-convex global

optimizing techniques. These optimizers typically
require the user to provide subroutines for computing
the value of the objective function and its first deriva-
tives at various points along their convergence path.
Furthermore, evaluation of the function x(u) and its
derivatives are the main (practically only) time-consum-
ing procedures when solving the optimization problem
in eq. 14. The mathematical formulation of eq. 14 is
similar to the optimization problem resulting when
using the labels and fluxes variables, with one exception
- the implicit formula for x(u). As shown above, using
fluxomers we are able to formulate the propagation
equation (and thus solving x(u)) as a multiplication of
homogeneous functions of fluxes, and second order
functions of fluxomers. Using labels and fluxes, formu-
lating the same equation results in a sum of functions of
the same structure, and the homogeneous separation
property vanishes. The following sections exploit this
unique property of the fluxomers propagation equation
in order to achieve great reduction in the system com-
putational complexity, leading to the FIA algorithm.

Fluxomers Iterative Algorithm (FIA)
This section deals with the evaluation of x(u) along with
its gradient using the fluxomer formulation. First, we
show that x(u) can be calculated iteratively while avoid-
ing repeated matrix inversions. Then, we demonstrate
how the number of iterations can be reduced using a
Newton-type gradient-based algorithm. Finally, we
explain how it is possible to greatly increase the sparsity
of the system using a simple linear transformation of
variables, which further reduces the number of iterations
needed for convergence.
Solving the fluxomer balance equations
A simple approach for computing x given u is to imi-
tate nature. Once a metabolic network reaches steady
state (namely, when u is constant), changing its input
labeling does not affect its flux values u, but only influ-
ences the labeling of its intermediate metabolite pools.
The metabolite labeling patterns become gradually
mixed and propagated throughout the network until
isotopic equilibrium is reached. Accordingly, a simple
approach for solving eq. 6 is by using its iterative repre-
sentation (which is similar to the process taking place
in nature):

xt+1 = g(u) ◦ (H1xt) ◦ (H2xt),
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where xt is the fluxomer vector at iteration t and xt
+1 is the fluxomer vector at iteration t + 1. In order to
simulate the steady-state labeling, we initialize the sys-
tem with the vector x0 in which only the input fluxo-
mers are labeled and all others are unlabeled. By
recursively substituting x back into the equation,
steady state is eventually reached and the final value of
x is obtained. (This equation represents a non-linear
time-invariant Markov chain.) For the Embden-Meyer-
hof and Pentose Phosphate Pathway example in the
Results and Discussion section, it takes a few hundred
iterations to achieve complete stability of the solution
(maximal fluxomer value change on the order of 1e-
17). Algorithm convergence for a given input vector is
retrieved exactly as in the real biological system, and
thus a unique solution always exists (for realistic meta-
bolic networks).
We now show it is possible to reach pathway conver-

gence in much fewer iterations. First, we write eq. 6 as

F(x,u) = g(u) ◦ (H1x) ◦ (H2x) − x. (15)

Now, in order to find the values of (x, u) one needs to
solve F(x, u) = 0 while holding u constant. We choose
to use one of the classic and powerful algorithms for
finding roots of an equation, the well known Newton-
Raphson [19-21] method. Roughly speaking, the change
of the x vector at each iteration is calculated by

xt+1 = xt − (F′
x(x,u))

−1F(x,u),

with F′
x(x,u) =

∂F(x,u)
∂x

. The main concern now is the

evaluation of the expression (F′
x(x,u))

−1F(x,u). Here, it
turns out that due to the decomposable nature of F(x,
u), the derivative F′

x at a point (x, u) is the simple matrix

F′
x(x,u) =

(
g(u) ◦ (H1x)

)
H2

+
(
g(u) ◦ (H2x)

)
H1 − I.

(16)

Therefore, finding r = (F′
x(x,u))

−1F(x,u) is equivalent
to solving the linear system of equations

(F′
x(x,u))r = F(x,u). (17)

In order to determine the root of the propagation
equation, FIA starts with an iteration or two using New-
ton’s correction and then continues with the simple
“natural” approach. Applying this method to the Emb-
den-Meyerhof and Pentose Phosphate Pathway example
in the Results and Discussion section, only a few dozen
iterations are now needed. In the next section we show
how to reduce both the number of variables and the
number of iterations required for convergence by
another order of magnitude, without affecting system
convergence stability.

Reducing system complexity
The following section introduces a mathematical
approach for reducing the number of nonzero elements
in our system. Variable reduction techniques such as the
recently developed Elementary Metabolite Unit (EMU)
network decomposition [14] were developed for applica-
tion to systems that are modeled using flux-isotopomer
variables. Fluxomers and the FIA algorithm, as opposed
to prior approaches, allow us to effectively reduce the
number of system variables using a simple linear trans-
formation on x. Our main goal here is to find a trans-
formation for the fluxomer vector x, y = Kx that:

• Reduces the number of its nonzero elements.
• Reduces the computational complexity of solving
eq. 16.
• Eases the evaluation of eq. 15.

From eq. 16 we see that the greatest expense is due to
inversion of a sum of two linear transformations (H1

and H2) of x. From the iterative propagation equation,
eq. 15, we see that x is iteratively calculated by comput-
ing the product of the same two matrices. Had it been
possible to find a sparse, close-to-diagonal representa-
tion for both H1 and H2 by simply multiplying them by
the matrix from the right, both problems would be
solved.
In order to acomplish the above, we examine the

properties of the concatenation of these two matrices
which we denote by H. Next we find the LU factoriza-
tion of H,(

H1

H2

)
= H = LHUH =

(
LH1

LH2

)
UH, (18)

with LH lower triangular and UH upper triangular
matrices. The matrix LH1 contains the first m rows of
LH and LH2 contains the last m rows of LH. Our new
set of variables now becomes y = UHx, and the new
propagation equation is

UH
[
g(u) ◦ (LH1y) ◦ (LH2y)

] − y = 0. (19)

When expressed in terms of the variable y, our system
becomes much more sparse. This is illustrated in Figure 4
which shows H1, H2, LH1, LH2 and UH for the Embden-
Meyerhof and Pentose Phosphate Pathway example. The
transformation has two essential benefits:

1. Reduced computational complexity – note that
the derivative (F′

x(x,u))
−1F(x,u) depends upon the

matrices H1 and H2 which have already been fac-
tored, and thus solving Newton’s step is
straightforward.
2. Fewer iterations needed for convergence.
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As a matter of fact, this transformation reduced the
number of iterations needed for convergence of the sim-
ple E. coli example to a total of 5.
Finding ∂x

∂u
As discussed above, our optimization problem seeks

the minimum of ||Ax(u) - b||2. In order to converge
rapidly, the gradient of the objective function must be
computed at each iteration of the algorithm. The key
step for computing it is the evaluation of ∂x

∂u (the deriva-
tive of the fluxomers as a function of the metabolic
fluxes). Since we have an implicit function F(x, u) along
with a valid solution for F(x, u) = 0, the implicit func-
tion theorem [22,23] can be used to compute ∂x

∂u.
Because F(x, u) is continuously differentiable around its
root, we can write

∂x
∂u

= −
(

∂F(x,u)
∂x

)−1
∂F(x,u)

∂u
. (20)

In the previous section we showed that
∂F(x,u)

∂x
can be

directly expressed in terms of the system matrices and
the vectors x and u. The same procedure can be carried

out in order to determine
∂F(x,u)

∂u

∂F(x,u)
∂u

= diag((H1x) ◦ (H2x))
[

G1

(G2u) ◦ (G3u)

+
((G1u) ◦ (G2u))G3 + ((G1u) ◦ (G3u))G2(

(G2u) ◦ (G3u)
)2

]
.

(21)

Keeping in mind that Fx(x, u) is in its reduced form
due to our variable transformation, solving the equation(
∂F(x,u)

∂x

)(
∂x
∂u

)
= −∂F(x,u)

∂u
can be accomplished

efficiently.
The initial point
The generation of the initial point for the FIA algorithm
is very similar to the standard method used by many
iterior point algorithms for finding a valid initial point
over a convex linear set. We added a fluxes-measure-
ment regularization factor l in order to generate an
initial point closer to the final estimation (and thus
speed up the convergence process). The initial point is
generated by solving the following simple convex opti-
mization problem:

min
u,s∈E

(−s + λ ‖ Au − û‖2),

Figure 4 System matrices complexity reduction. H1, H2, LH1, LH2 and UH for the simple E. coli example. A substantial reduction in nonzero
elements between the H and L matrices can clearly be seen.
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with

E =
{
u :

Su = 0
[I,−I]u + [I, I] [0,ub]T ≥ s

}

with A a matrix that selects the measurable elements
of u, û the meaured elements of u (if they exist), 0 a
vector of zeros, and ub a vector of the flux upper
bounds. The regularization factor l starts with some
large value, and if necessary is reduced until the optimal
value of s is greater than 0. Note that when l ® 0 the
problem reduces to finding a feasibile solution of u, and
thus always has a solution (for well-structured
networks).
The algorithm
Summarizing the above discussion leads to the following
algorithm for efficient solution of the MFA optimization
problem using fluxomers:

i. Matrix preparation (run once per network):

0. Calculate
(
H1

H2

)
=

(
LH1

LH2

)
UH using LU (PQ)

factorization.

ii. Call the optimizer in order to solve

min
u∈Q

‖ Ax(u) − b‖2, Q =
{
u :

Su = 0
0 ≤ u ≤ uub

}

When requested by the optimizer, return x(u) and
its first derivative:

1. Set y0 = yinit.
2. Set i = 1.
3. Calculate

yi = UH [g(u) ○ (LH1yi - 1) ○ (LH2yi - 1)].
4. If ||yi - yi - 1||

2 >εN
(a) Solve (F′

x(x,u))r = F(x,u)
(b) Set yi = yi - r according to Newton’s method.

5. If ||yi - yi - 1||
2 > εe go to 3.

6. Calculate x = [g(u) ○ (LH1yi) ○ (LH2yi)].

7. Solve

(
∂F(x,u)

∂x

)(
∂x
∂u

)
= −∂F(x,u)

∂u
.

The supplied software uses a variant of the “sequen-
tial least-squares” algorithm [24,25] for solving the
non-convex optimization problem in eq. 14. This
essentially breaks the problem into a sequence of con-
vex optimization problems for which the solution can
be readily computed. Note that other algorithms can
be easily used with the same procedures described
above.
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