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Abstract Mathematical theory of selection is developed within the frameworks of
general models of inhomogeneous populations with continuous time. Methods that
allow us to study the distribution dynamics under natural selection and to construct
explicit solutions of the models are developed. All statistical characteristics of interest,
such as the mean values of the fitness or any trait can be computed effectively, and
the results depend in a crucial way on the initial distribution. The developed theory
provides an effective method for solving selection systems; it reduces the initial com-
plex model to a special system of ordinary differential equations (the escort system).
Applications of the method to the Price equations are given; the solutions of some
particular inhomogeneous Malthusian, Ricker and logistic-like models used but not
solved in the literature are derived in explicit form.

Keywords Selection system · Dynamics of distribution · The Price equation ·
Inhomogeneous logistic model · Replicator equation
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1 Background

The problem of construction of a formal general theory of selection was clearly for-
mulated in (Price 1970, 1995). The Haldane principle Haldane (1990), the Fisher Fun-
damental theorem of natural selection (FTNS) Fisher (1999), the covariance equation
(Li 1967; Robertson 1968) and the Price equation Price (1970, 1972) were the first
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108 G. P. Karev

outstanding contributions to the future theory. The covariance equation and the FTNS
are particular cases of the Price equation (see Page and Nowak 2002).

Another general approach to the formal theory of selection, models with inheritance,
was developed in the 1970s to the 1980s in the works of S. Semenov, V. Okhonin,
A. Gorban, et al. (see Gorban 2007 for references). The approach was based on an
abstract version of the so-called replicator equation Hofbauer and Sigmund (1998),
Schuster and Sigmund (1983). The Haldane principle and the Gause competition prin-
ciple Gause (1934) were proven and explored as mathematical assertions within the
frameworks of the developed formalism. Recently Grafen (2006) also derived the
Price equations and the FTNS in a very general form. Both theories are interesting
and promising but, perhaps, too abstract for most biological applications.

In this paper we develop an approach to general selection systems that can be
applied directly to many mathematical models. We study the evolution of system dis-
tributions and obtain the main results in the explicit form. We show that knowing
the initial distribution allows us to predict the system dynamics indefinitely and, in
particular, to resolve the problem of “dynamical insufficiency” of the Price equations.
The developed methods are applicable to a wide class of inhomogeneous population
models. We show that the initial complex model can be reduced to the “escort system”
of ODEs for auxiliary variables and then solved effectively.

The paper is organized as follows. The master model for selection systems is intro-
duced in Sect. 2. Selection models with self-regulated fitness are explored in Sect. 3,
which also contains the main mathematical results, Theorem 1 and its Corollary.
Section 4.1 contains applications of the theory to the Price equation; the algorithm for
solving the selection systems and corresponding replicator equations is described in
Sect. 4.2; evolution of particular distributions of biological interest governed by selec-
tion over a single or several traits is studied in Sect. 4.3. Explicit solutions of some inho-
mogeneous Malthusian and logistic-like models used in literature are derived in Sect. 5

2 Master model for selection systems

Let us consider a general model of inhomogeneous population, in which every individ-
ual is characterized by a vector-parameter (a1, . . . , an) = a that takes values from set
A. The parameter a specifies an individual’s inherited invariant properties and may
vary from one individual to another, such that the population is non-uniform. Any
changes of the parameter distribution with time are caused only by variation of the
population structure.

The set of all individuals with a given value of the vector-parameter a in the pop-
ulation is called a-clone. Let l(t, a) be the density of the population at the moment t ;
informally, l(t, a) is the number of individuals in the a-clone. Let us denote F(t, a) the
per capita reproduction rate (Malthusian fitness) of the a-clone at the moment t. We
suppose that the reproduction rate of every a-clone does not depend on other clones,
but can depend on a and on the “environment” at t moment, which, in turn, may
depend on the total population size N (t) and other population characteristics. These
quantities evolve with time, however, for a given set of initial conditions have specific
values at each point in time for each value of a. The exact form of the reproduction
rate will be specified in Sect. 3.
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On mathematical theory of selection 109

If we assume the overlapping generations and smoothness of l(t, a) in t for each
a ∈ A, then the population dynamics can be described by the following master model:

dl(t, a)/dt = l(t, a)F(t, a),

N (t) =
∫

A

l(t, a)da,

P(t, a) = l(t, a)/N (t)

(2.1)

where P(t, a) is the probability density function (pdf) at t instant. The initial pdf
P(0, a) and the initial population size N (0) are assumed to be given. Equations (2.1)
comprise the formal (after G. Price) selection system with continuous time.

In what follows any characteristic that is inherent to the individual, is fixed at the
very beginning of the individual life and does not change with time we refer to as a
trait. The selection system describes a closed population of individuals each of which
is characterized by a set of qualitative traits; the values of these traits determine the
reproduction rate of the individual. It is supposed that the mean values of the traits are
the only information that is known about the entire population. The dynamics of the
joint distribution of these traits depending on the initial distribution and on correlations
between the traits is the main problem of interest.

Hereinafter we use the notation Et [ f ] = ∫
A f (a)Pt (a)da. It is known (and can be

easily proven) that the population size N (t) satisfies the equation

d N/dt = N Et [F] (2.2)

and the pdf P(t, a) solves the replicator equation

d P(t, a)/dt = P(t, a)(F(t, a)− Et [F]). (2.3)

The problems (2.1) and (2.2), (2.3) are equivalent.
Taking into account that any smooth function F(t, a) can be well approximated by

a finite sum of the form
∑

i fi (t)ϕi (a), we will suppose that the reproduction rate is
of the form

F(t, a) =
n∑

i=1

fi (t)ϕi (a). (2.4)

Biologically it means that we consider the individual fitness that depends on a given
finite set of traits, or “predictors” (see Frank 1997; Goodnight 1992; Lande and Arnold
1983, etc.). The function ϕi (a) in (2.4) may describe quantitative contribution of a
particular i th trait to the total fitness and then fi (t) are corresponding coefficients of
multiple regression. In more sophisticated models, the functions fi (t) describe relative
importance of the trait contributions depending on the environment, population size,
etc.
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110 G. P. Karev

The functions fi (t) can be known explicitly at any time moment but it is not
the case for most realistic models, which accounts for self-limitations of the pop-
ulation growth. For example, even the simple inhomogeneous logistic model with
F(t, a) = ϕ(a)(1 − N (t)/B) where constant B is the carrying capacity, does not
satisfy this condition because the current population size Nt is unknown a priori.
Therefore we should investigate a class of models (2.1), (2.4) where fi are the func-
tions of the total population size and other population characteristics (see Sect. 3),
which are not given and should be computed at every time moment. We show in this
paper that this non-trivial problem can be solved effectively.

3 Self- regulated selection system

Suppose that the individual reproduction rate can depend on some integral character-
istics of the system; we account for extensive characteristics, which depend on the
total size of the system (as in most population models) and intensive characteristics,
which do not depend on the total size but only on the population frequencies (as in
most genetic models). We consider the intensive characteristics in the form

H(t) =
∫

A

h(a)P(t, a)da = Et [h] (3.1)

and the extensive characteristics in the form

G(t) =
∫

A

g(a)l(t, a)da = N (t)Et [g], (3.2)

where g, h are appropriate weight functions. Both expressions (3.1) and (3.2) are
known also as “generalized variables” or “regulating functionals”; we will refer to
them as “regulators” for brevity. The total system size N (t) is also a regulator (3.2) at
g(a) ≡ 1 and is of a special importance.

Suppose that the fitness of every individual is determined by a given set of traits;
suppose also that the reproduction rate of every a-clone may depend on the size and
frequency of other clones only through the regulators. Then we obtain the following
general version of the master model:

dl(t, a)/dt = l(t, a)F(t, a),

F(t, a) =
n∑

i=1

ui (t,Gi )ϕi (a)+
m∑

k=1

vk(t, Hk)ψk(a),

P(t, a) = l(t, a)/N (t)

(3.3)

where Gi , Hk are the regulators, ui , vk are given functions. The initial pdf P(0, a)
and the initial population size N (0) are supposed to be given. In model (3.3) with
self-regulated fitness the regulators and hence the reproduction rate F(t, a) are not
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On mathematical theory of selection 111

given as explicit functions of time but should be computed employing the current pdf
P(t, a) at each time moment.

Let us now formulate the basic theorem for model (3.1)–(3.3). Let �(r;λ, δ) be
the generating functional

�(r;λ, δ) =
∫

A

r(a) exp

(
n∑

i=1

λiϕi (a)+
m∑

k=1

δkψk(a)

)
P(0, a)da (3.4)

where λ = (λ1, . . . λn), δ = (δ1, . . . δm) and r(a) is a measurable function on A.
Define auxiliary variables as a solution of the escort system of differential equa-

tions:

dqi/dt = ui (t,G∗
i (t)), qi (0) = 0, i = 1, . . . n,

dsk/dt = vk(t, H∗
k (t)), sk(0) = 0, k = 1, . . .m

(3.5)

where

N∗(t) = N (0)�(1; q(t), s(t)),

G∗
i (t) = N (0)�(gi ; q(t), s(t)),

H∗
i (t) = �(hi ; q(t), s(t))/�(1; q(t), s(t)).

(3.6)

Let us denote

Kt (a) = exp

(
n∑

i=1

qi (t)ϕi (a)+
m∑

k=1

sk(t)ψk(a)

)
. (3.7)

The function Kt (a) is the reproduction coefficient for the time interval [0,t), or t-
fitness for short (see formula (3.8) below). Notice that E0[Kt ] = �(1; q(t), s(t)).

The following main theorem reduces model (3.3) to a Cauchy problem for the escort
system.

Theorem 1 Let 0 < T ≤ ∞ be the maximal value of t such that Cauchy problem(3.5),
(3.6) has a unique global solution {q(t), s(t)} at t ∈ [0, T ). Then the functions

l(t, a) = l(0, a)Kt (a), (3.8)

N (t) = N (0)�(1; q(t), s(t)), (3.9)

Gi (t) = N (0)�(gi ; q(t), s(t)), (3.10)

Hi (t) = �(hi ; q(t), s(t))/�(1; q(t), s(t)) (3.11)

satisfy system (3.1)–(3.3) at t ∈ [0, T ).
Conversely, if l(t, a) solves system (3.3) at t ∈ [0, T ) so that N (t) = ∫

A l(t, a)da,
Hk(t) = ∫

A hk(a)l(t, a)da/N (t),Gi (t) = ∫
A gi (a)l(t, a)da , then Cauchy prob-

lem (3.5), (3.6) has a global solution {q(t), s(t)} at t ∈ [0, T ) and the functions
l(t, a), N (t),Gi (t), Hk(t) can be written in the form (3.8)–(3.11).

The proof of Theorem 1 is given in Appendix.
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112 G. P. Karev

Corollary 1 The current system distribution

P(t, a) = P(0, a)Kt (a)/E0[Kt ]. (3.12)

The last formula is the central result of the theory, which gives the solution of repli-
cator equation (2.3). Theorem 1 gives an effective algorithm for investigation of the
selection systems (see Sect. 6). It allows us to define and compute the total population
size and the values of all regulators at any time moment. After that, the reproduction
rate F(t, a) in model (3.3) can be considered as a known function of time. In this par-
ticular case the theory of selection systems is rather simple (see, e.g., Karev 2005b)
and all its results can now be applied to self-regulated model (3.3).

4 Dynamics of the system distribution

4.1 The Haldane’ principle and the Price equation

It is known that any stationary distribution of a system with inheritance, and of sys-
tem (2.1) in particular should be concentrated in the set of points of global maximum
of the average reproduction rate on the support of initial distribution; this maximal
value must be equal to 0, otherwise the limit distributions cannot exist. This version
of the Haldane extreme principle was established in Gorban (1984, 2007), Semevsky
and Semenov (1982). Similar “selection principle” was proven in Perthame (2007),
Sect. 2.1, 2.2 for logistic-like models. The Haldane principle predicts the behavior
of selection systems “at infinity” if the limit distribution exists and is stable. Note
that the last condition is not necessarily fulfilled even for the commonly used models;
the simplest examples are inhomogeneous Malthusian and some logistic models, see
Sect. 5.

On the other end of the time scale, the Price equation describes the instant change
of the mean value of individual characters for any selection system. Within the frame-
work of model (2.1) a character, which may depend on time, can be considered a
random variable z(t, a) (formally defined on the probabilistic space {A,A, P(t, a)}
where A is a σ -algebra of Borel subsets of A). Then the Price equation (Page and
Nowak 2002; Price 1970, 1972, 1995; Rice 2006) states that

d Et [zt ]/dt = Covt [F, zt ] + Et [dzt/dt]. (4.1)

It is well known (Barton and Turelli 1987; Frank 1997; Lewontin 1974, etc.) that the
Price equation is dynamically insufficient, i.e., it cannot be used alone as a propagator
of the dynamics of the model forward in time. We can write the Price equation in,
perhaps, intuitively more clear integral form that shows the connection between the
reproduction coefficient and the selection differential �t z = Et [zt ] − E0[z0], which
is an important characteristic of selection.

Let us define the reproduction coefficient for the time interval [s, s+t) as ks+t
s (a) =

exp(
∫ s+t

s F(u, a)du). Denote kt (a) = kt
0(a) for brevity; remark that kt (a) = Kt (a)
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for model (3.3). Then

Et+s[zt+s] − Et [zt ] = Covt [zt+s, kt+s
t ]/Et [kt+s

t ] + Et [zt+s − zt ]. (4.2)

In particular,

Es[zs] = Cov0[zs, ks]/E0[ks] + E0[zs]. (4.3)

Notice that this version of the Price equation is quite similar to the one for discrete-
time models Karev (2008), as opposed to the differential version (4.1). Taking into
consideration that K t+s

t (a) ≈ 1 + s F(a) we can see that the integral relation (4.2)
turns to differential Price’ equation (4.1) as s → 0.

It is worth emphasizing that there exists only one reason for “dynamical insuf-
ficiency” of the Price equation: this equation is a mathematical identity. Within the
frameworks of master model (2.1) the theory developed above helps resolve the prob-
lem of dynamical insufficiency of the Price equation and its particular cases, the
covariance equation and the equation of the FTNS. Formula (3.12) allows us to com-
pute the mean value of any character in any time moment if the initial pdf is known;
in this sense, the following proposition gives the “solution” of the Price equation.

Proposition 1 Given the initial distribution, the solution of the Price equation is given
by the formulas

i) Et [zt ] = E0[zt kt ]/E0[kt ] for model (2.1);
ii) Et [zt ] = �(zt ; q(t), s(t))/�(1; q(t), s(t)) for self-regulated model (3.3) where

the auxiliary variables q(t), s(t) solve the escort ODE system (3.5).

4.2 How to study selection systems and the dynamics of their distribution?

Not only asymptotic behavior, but also the current dynamics of the population distribu-
tion during protracted but finite time intervals are of interest and, perhaps, of primary
importance for applications.

The developed theory yields an effective algorithm to analyze selection systems,
which reduces complex self-regulated selection system to the escort system of non-
autonomic ODEs. Let us summarize the main steps of the algorithm.

We study a model of selection system in the form (3.3). In applications, the functions
ϕi (a),ψk(a) can be interpreted as traits that characterize an individual; ui (t,Gi )and
vk(t, Hk) describe the contribution of the corresponding traits to the individual fit-
ness at moment t. The following steps should be performed for solving a particular
selection system:

1) composing generating functional (3.4);
2) solving escort system of ODE (3.5).
3) After that, the solution to the selection system l(t, a), the population size N (t),

and the values of regulators at t moment are given by formulas (3.7)–(3.11);
4) the current system distribution is given by formula (3.12), which allows us to com-

pute all statistical characteristics of interest for a self-regulated selection system.
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114 G. P. Karev

Generating functional (3.4) is the main tool of the suggested approach; it may be diffi-
cult to compute it in general case. Remark, that we in fact do not need to know this func-
tional for arbitrary function r but only for the functions gk, k = 1, . . . ,m, and hi , i =
1, . . . , n, see (4.1) and (4.2). So, instead of generating functional (3.4) we can use the
moment generating function of the initial joint distribution of the set of random vari-
ables {ϕi , gi , ψk, hk},

M0(λ, δ, γ , η) =
∫

A

exp

(
n∑

i=1

(λiϕi (a)+ γi gi (a))

+
m∑

k=1

(δkψk(a) + ηkhk(a))

)
P(0, a)da. (4.4)

Indeed,

�(gi ; q(t), s(t)) =
∫

A

gi (a) exp

(
n∑

i=1

qi (t)ϕi (a)+
m∑

k=1

sk(t)ψk(a)

)
P(0, a)da

= ∂

∂γi
M0(q(t), s(t), γ , η)

∣∣
γ=η=0,

�(hk; q(t), s(t)) = ∂

∂νk
M0(q(t), s(t), γ , η)

∣∣
γ=η=0,

The general method is simplified in an important case of the reproduction rate F(t, a) =∑n
i=1 fi (t, Si )φi (a) with regulators S of the forms N (t), Et [φi ], N (t)Et [φi ] only. In

this case we can use the moment generating function of the joint initial distribution of
the variables {φi } only, M0(λ) = E0[exp(

∑n
i=1 λiφi )], instead of general mgf (4.4).

The escort system reads

dqi/dt = fi (t, Si (t)), qi (0) = 0, i = 1, . . . n (4.5)

where Si (t) (having the form N (t), Et [φi ], N (t)Et [φi ]) are defined by the formulas

N (t) = N (0)M0(q(t)),

Et [φk] = ∂k ln M0(q(t)).
(4.6)

Here we denoted ∂k M0(λ) = ∂M0(λ)/∂λk for brevity. This simplified version of the
algorithm works for many models, see Sect. 5. It is important that the moment gen-
erating functions are known for most discrete and continuous distributions used in
biological applications.

4.3 Dynamics of particular distributions

Let us formulate the following assertions that capture the dynamics of the system dis-
tribution for some probability distributions of biological interest. A selection system,
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On mathematical theory of selection 115

whose evolution is governed by selection over a single trait, ϕ(a), is the simplest but
widely spread and important case. The reproduction rate may depend on regulators
(3.1), (3.2); for simplicity, suppose that it depends only on extensive regulators like
the total population size. Then the system is of the form

dl(t, a)/dt = l(t, a)F(t, a),

F(t, a) = u0(t,G0)+ u1(t,G1)ϕ(a),

Gi (t) =
∫

A

gi (a)l(t, a)da.
(4.7)

The regulating functional for this system

�(r; λ0, λ1) = exp(λ0)

∫

A

r(a) exp(λ1ϕ(a))P(0, a)da. (4.8)

Define the auxiliary variables q0(t), q1(t) by the escort system:

dq0/dt = u0(t, N (0)�(g0; q0, q1)),

dq1/dt = u1(t, N (0)�(g1; q0, q1)) (4.9)

qi (0) = 0, i = 1, 2.

Proposition 2 Consider model (4.7) and assume that the initial distribution of the
trait ϕ(a) is

(i) normal with mean m0 and variance σ 2
0 . Then the trait distribution will also be

normal at any t with mean mt = m0 + σ 2
0 q1(t) and with the same varianceσ 2

0 ;
(ii) Poisson with mean m0 . Then the trait distribution will also be Poisson at any t

with the mean mt = m0 exp(q1(t));
(iii) -distribution with the coefficients k, a, η , i.e. P0(ϕ = x) = ak(x − η)k−1

exp(−(x − η)a)/(k), where k, a > 0,−∞ < η < ∞, x ≥ η; (k) is the
-function.

Define T ∗ = inf(t : q1(t) = a) , if such t exists, otherwise T ∗ = T . Then the trait ϕ
will be  - distributed at any time moment t < T ∗ with coefficients a − q1(t), k, η k,
such that Et [ϕ] = η + k/(a − q1(t)), σ 2

t = k/(a − q1(t))2.

The list of practically implemented distributions can be extended.
Now let us consider model (4.7) with many traits when

F(t, a) =
n∑

i=1

ui (t,Gi )ϕi (a). (4.10)
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116 G. P. Karev

The regulating functional for system (4.7), (4.10)

�(r;λ) =
∫

A

r(a) exp

(
n∑

i=1

λiϕi (a)

)
P(0, a)da

and the auxiliary variables qi (t) solve the escort system:

dqi/dt = ui (t, N (0)�(gi ; q)),

qi (0) = 0, i = 1, . . . , n.
(4.11)

If initially the traits ϕi (a) are independent (as random variables on probabilistic space
{A,A, P(0, a)}) then they remain independent indefinitely (as random variables on
probabilistic space {A,A, P(t, a)} for any t) and given the initial mgf their joint mgf
can be easily computed at any time moment (see Karev 2005b). In reality, the evo-
lution of a system is governed by simultaneous selection over many traits, whose
contributions to fitness depend on each other. The evolution of the pdf of the vector
ϕ = (ϕ1, . . . , ϕn) in the general case of correlated traits {ϕi , i = 1, . . . , n} is of great
practical interest. Let us recall some definitions (see Kotz et al. 2000).

A random vector X = (X1, . . . , Xn) has a multivariate normal distribution with the
mean EX = m = (m1, . . . ,mn) and covariance matrix C = {ci j }, ci j = cov(Xi , X j )

if its mgf is M(λ) = E[exp(λT X)] = exp(λT m + 1/2λT Cλ).
A random vector X = (X1, . . . , Xn) has a multivariate polynomial distribution with

parameters (k; p1, . . . , pn), if P(X1 = m1, . . . , Xn = mn)= k!
m1!...,mn ! pm1

1 . . . pmn
n for∑n

i = 1 mi = k. The mgf of the polynomial distribution is M(λ)= (∑n
i=1 pi exp(λi ))

k .

A general class of multivariate natural exponential distributions is especially impor-
tant for selection systems and their applications. It includes multivariate
polynomial, normal, and other distributions as special cases. A random n-dimension
vector X = (X1, . . . , Xn) has multivariate natural exponential distribution (NED)
with parameters θ = (θ1, . . . , θn) with respect to the positive measure ν on Rn if its
joint density function is of the form f (X) = h(X) exp(XT θ − s(θ)) where s(θ) is the
normalization function. The mgf of NED is

M(λ) = Eν[exp(λT X)] = exp(s(θ + λ)− s(θ)).

Proposition 3 Let us assume that at the initial time moment the vector ϕ=(ϕ1, . . . ϕn)

has

i) multivariate normal distribution with the mean vector m(0) and covariance
matrix C = (ci j ). Then the vector ϕ also has the multivariate normal distribu-
tion at any moment t < T with the same covariance matrix C and the mean
vector m(t),mi (t) = mi (0)+ 1/2

∑n
k=1 (cik + cki )qk(t);

ii) multivariate polynomial distribution. Then the vector ϕ also has the multivariate
polynomial distribution at any moment t < T with parameters (k; p1(t), . . . ,
pn(t)) where pi (t) = pi exp(qi (t))/

∑n
j=1 p j exp(q j (t));
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On mathematical theory of selection 117

iii) multivariate natural exponential distribution on Rn with respect to the Lesbegue
measure, with the density function f0(X) = h(X) exp(XT θ − s(θ)) and the mgf
M(λ) = exp(s(θ + λ) − s(θ)). Then the vector ϕ also has the multivariate
NED at any moment t < T with the parameters θ + q(t), the density function
ft (X) = h(X) exp(XT (θ + q(t)) − s(θ + q(t))) and the moment generating
function Mt (λ) = exp(s(θ + λ + q(t))− s(θ + q(t))).

Proofs of Propositions 2, 3 are similar to that given in Karev (2005b) for a less general
model. Both assertions up to the definition of the auxiliary variables are valid for
selection systems whose fitness may depend on some intensive regulators.

5 Applications

The simplest selection system is the inhomogeneous Malthusian-like model dl(t, a)/
dt = l(t, a)ϕ(a). The function ϕ(a) itself can be often considered as a distributed
parameter, and then the model reads dl(t, x)/dt = xl(t, x).

Let M(λ) = ∫
A exp(λx)P0(x)dx be the mgf of the initial distribution of the param-

eter x . Then the solution of the model l(t, x) = exp(xt)l(0, x) and N (t) = N0 M(t).
The model distribution solves the replicator equation d Pt (x)/dt = Pt (x)(x − Et [x]);
its solution is Pt (x) = P0(x) exp(xt)/M(t).

Inhomogeneous Malthusian models and their applications to some problems of
forest ecology and global demography were studied in Karev (2000, 2003, 2005a).
It was shown that even this simplest inhomogeneous model possess a variety of solu-
tions depending on the initial distribution, which may have many interesting and even
counterintuitive peculiarities. Let us demonstrate some of them on the example of
inhomogeneous Malthusian-like model with limiting factors.

Example 1 Principle of limiting factors, according to Liebig (1876), states that at any
given moment the rate of a process is determined by the factor whose sufficiently small
modification produces a change of the rate; it is assumed that similar changes in other
factors do not affect the rate (see Poletaev 1966 for mathematical formulation). The
principle of limiting factors was actually used in a model of early biological evolution
suggested in Zeldovich et al. (2007). Each organism was characterized by the vector a
where the component ai is the thermodynamic probability that protein i is in its native
conformation. In order to study the connection between molecular evolution and pop-
ulation, the authors suppose that the organism death rate ddepends on the stability of
its proteins as d = d0(1 − min ai ), d0 = b/(1 −a0), b is the birth rate, a0 is the native
state probability of a protein. Hence, neglecting possible mutations (accounted for by
the authors in their simulations), the model can be formalized as the system

dl(t, a)/dt = l(t, a)d0(m(a)− a0)) (5.1)

where m(a) = min[a1, . . . , an]. In what follows we let d0 = 1 for simplicity. It was
supposed in Zeldovich et al. (2007) that the values ai are independent from each other
and have the Boltzmann distribution. We can consider ai as the i-th realization of
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a random variable with a common pdf f (a). Let G(a) = ∫ a
0 f (x)dx be the cumu-

lative distribution function. Then, it is well known that the pdf of min[a1, . . . an] is
equal to g(a) = n(1 − G(a))n−1 f (a). Equation (5.1) is a version of the inhomoge-
neous Malthusian equation, which can now be solved explicitly at any given pdf f (a).
In particular, if

f (a) = exp(−a/T )/Z , Z =
∑

a

exp(−a/T ) (5.2)

is the Boltzmann distribution with a > 0, then

g(a) = n(1−G(a))n−1 f (a)

= n

(∑
x>a

exp(−x/T )

)n−1

exp(−a/T )/
∑

x

exp(−x/T )).

For distribution (5.2) with continuous range of values of a, a ∈ (0,∞), Z = T,
1 − G(x) = exp(−x/T ) and

g(a) = n(exp(−a(n − 1)/T ) exp(−a/T )/T = n/T exp(−an/T ). (5.3)

If a ∈ (0, E), then Z = T (1 − exp(−E/T )), 1 − G(a) = exp((E−a)/T )−1
exp(E/T )−1 , and

g(a) = n exp(−a/T )

T (1 − exp(−E/T ))

[
1 − exp((E − a)/T )

1 − exp(E/T )

]n−1

. (5.4)

Let M0(λ) = E0[exp(λm)]. For initial distribution (5.3), M0(λ) = 1
1−λT/n . Hence,

l(t, a) = l(0, a) exp((m(a)− a0)t),

N (t) = N (0) exp(−a0t)
1

1 − tT/n
,

P(t, a) = P(0, a) exp(m(a)t)(1 − tT/n).

At the moment tmax = n/T the population “blows up”: N (t) tends to infinity as
t → tmax. Let us denote p(t, a) = P(t, {a : m(a) = a}). Then at t < tmax

p(t, a) = n/T exp(−an/T + at)(1 − tT/n) = (n/T − t) exp(a(t − n/T )).

The probability P(t, {a : m(a) < a}) tends to 0 for any finite a as t → tmax. Loosely
speaking, the total “probability mass” goes to infinity after a finite time interval. So,
we should conclude that model (5.1), (5.2) which allow arbitrary large values of the
parameter a with nonzero probability have no “physical” sense.

This problem can be eliminated by taking the initial distribution (5.4), which allows
only bounded values of the parameter a. For pdf (5.4), the integral M0(λ) =
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∫ E
0 exp(λx)g(x)dx is finite for any λ; although it cannot be expressed in quadra-

tures we can obtain much information about the system distribution and its dynamics.
The current pdf

p(t, a) = n

T (exp(E/T )− 1)n
exp((E − a)/T )(exp((E − a)/T )− 1)n−1 exp(at)

M0(t)

where M0(t) is finite for all t. So, the pdf is well defined at any time moment, in
contrast to the previous case. The total distribution concentrates with time at the point
a = E, which provides the maximal reproduction rate. Let us emphasize that the pdf
p(t, a) does not depend on the native state probability a0.

Example 1 demonstrates a possibility of the “blowing up” phenomenon, when the
total population size goes to infinity after a finite time interval. Similar phenomenon
was discovered earlier in models of global demography Karev (2005a). One may sup-
pose that the choice of the Malthusian model for population dynamics is to blame for
this phenomenon and the problem should disappear if the Malthusian model is replaced
by the logistic model. Surprisingly, it is not the case for inhomogeneous logistic mod-
els. Let us apply our approach to a wide class of generalized inhomogeneous logistic-
type models:

dl(t, a)/dt = l(t, a)F(t, a),

F(t, a) = f1(t)b(a)− f2(t)d(a)
(5.5)

where f1(t)b(a) is the birth rate, f2(t)d(a) is the death rate, and fi are functions
of the regulators H(t) = Et [h] or G(t) = N (t)Et [g]. Different versions of equa-
tion (5.5) were discussed in numerous works. Theorems of existence and uniqueness
and asymptotic behavior of some equations of the form (5.5) were studied in Ackleh
et al. (1999, 2005), Gorban (1984, 2007), Perthame (2007).

The method described in Sect. 4.2 allows us to obtain the solution of equation (5.5)
at any instant within the time interval where the global solution of the escort system
exists. We will not rewrite the general formulas in terms of equation (5.5); instead, we
give the solutions of some particular inhomogeneous logistic equations used (but not
solved explicitly) in the literature.

Example 2 The following example of the system with inheritance was considered in
Gorban (2007):

dl(t, a)/dt = l(t, a)F(t, a),

F(t, a) = b(a)−
∫

A

m(a)l(t, a)da = b(a)− N (t)Et [m].

It can be interpreted as follows. Let b(a) be the specific birth rate of inherited varieties
a. The death rate is determined by the common factor

∫
A m(a)l(t, a)da where m(a)

is the individual contribution of variety a to this death rate. Using the method sum-
marized above, we are now able to give an explicit solution of this model. Compose
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the generating functional �(r; λ1, λ2) = exp(−λ2)E0[r exp(λ1b)]. Then the escort
system reads

dq1/dt = 1, q1(0) = 0, hence q1(t) = t;
dq2/dt = N (0)�(m; q1, q2) = N (0) exp(−q2)E

0 [
m exp(tb)

]
, q2(0) = 0.

This equation can be easily integrated since E0[m exp(tb)] = f (t) is a known function
of t at given P(0, a): exp(q2(t))=1+N (0)

∫ t
0 f (s)ds = 1+N (0)E0[m

b (exp(tb)−1)].
The solution to the model

l(t, a) = l(0, a) exp(tb(a)− q2(t))

= l(0, a) exp(tb(a))
/ {

1 + N (0)E0
[m

b
(exp(tb)− 1)

]}
. (5.6)

Also, N (t) = N (0)E0[exp(tb)]/{1 + N (0)E0[m
b (exp(tb)− 1)]}, and

P(t, a) = l(t, a)/N (t) = P(0, a) exp(tb(a))/E0[exp(tb)].

Remark, that the current pdf P(t, a) does not depend on the death rate. We can observe
now an interesting phenomenon, which is impossible for “homogeneous” logistic mod-
els. Let us suppose that the birth rate b(a) is -distributed at the initial moment, i.e.
P0(b = x) = T k xk−1 exp(−xT )/(k), where k, T > 0 are constants, x ≥ 0.

Then E0[exp(tb)] = (1 − t/T )−k for t < T . So, P(t, {b < x}) < exp(t x)(1 −
t/T )k → 0 as t → T for any x ; by words, the frequency of individuals with a finite
birth rate vanishes as t → T .

Example 3 There exist a large number of papers devoted to the problem of evolution
of altruism. We do not discuss here an interesting and important problem how an
altruistic trait can be selected. Instead, using the developed tools, we give an exact
solution of a model used in Wilson and Dugatkin (1997). Consider a population in
which each individual possesses a trait x that increases the fitness of everyone in the
population (including itself) by an amount mx at a personal cost −cx . Then the fitness
of the individual is

F(t, x) = −cx + m N (t)Et [x], x > 0, (5.7)

which coincides with the fitness of Example 2 up to notation but has the opposite sign.
It is interesting that model (5.7) exhibits essentially different dynamical behavior.
Using formula (5.6) we can write the model solution as

l(t, x) = l(0, x) exp(−tcx)/{1 + N (0)m/c(E0[exp(−tcx)] − 1},
N (t) = N (0)E0[exp(−tcx)]/{1 + N (0)m/cE0[exp(−tcx)] − 1}, and

P(t, x) = P(0, x) exp(−tcx)/E0[exp(−tcx)]. (5.8)

As c > 0, the model solution exists and is finite indefinitely for any initial distribution
of the trait.
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Example 4 A microbial population in an environment of an antimicrobial agent was
studies in Nikolaou and Tam (2005); the suggested model has (up to notation) the form
of inhomogeneous Malthusian equation

d N/dt = (K − m(C))N (5.9)

where K is the physiological growth rate, m(C) is the kill rate induced by the anti-
microbial agent, which has concentration C. A more accurate version with logistic
growth rate was also discussed:

d N/dt = K N (1 − N/B)− m(C)N . (5.10)

The value of m(C), in comparison to K, represents the resistance of microbes to a
specific antimicrobial agent with concentration C. Population resistance is distributed
over a multitude of values. For the Malthusian version of the model, (5.9), the authors
derive the equation for the size of an entire population over time and then approximate
it using the variance and higher-order cumulants of distribution of the kill rate over a
heterogeneous population.

The theory of inhomogeneous Malthusian and logistic equations developed ear-
lier Fisher (1999), Karev (2005a) allows one to obtain complete solutions of equa-
tions (5.9), (5.10). Letting R = K − m(C) to be the resistance of microbes to the
antimicrobial agent at concentration C,we can consider R as the parameter distrib-
uted over the population. The distribution of R can be easily computed if the dis-
tribution of concentration C is known. The inhomogeneous model is of the form
dl(t, R)/dt = Rl(t, R) where l(t, R) is the population density over the resistance R.
Let M0(λ) = ∫

A exp(λR)P(0, R)d R be the mgf of the initial distribution of resis-
tance. Then the population size at moment t N (t) = N (0)M0(t), and the current pdf
of resistance P(t, R) = P(0, R) exp(t R)/M0(t).

For example, if we suppose (as in Nikolaou and Tam 2005) that the initial distri-
bution of the resistance is normal with a mean m0,variance σ 2

0 , and mgf M0(λ) =
exp(λ2σ 2

0 /2 + λm0), then the resistance distribution is also normal at any t
with the mean Et [R] = m0 + σ 2

0 t and with the same variance σ 2
0 , and N (t) =

N (0) exp(t2σ 2
0 /2 + tm0). Remark, that this supposition is not realistic as the resis-

tance should be positive. If the initial distribution of the resistance is −distribution,
P(0, R) = sk(R − η)k−1 exp(−(R − η)s)/(k), with mean E0[R] = η+k/s, var-
iance σ 2

0 = k/s2, and the mgf M0(λ) = exp(λη)/(1 − λ/s)k for λ < s,then R is
also −distributed at any moment t < s with mean Et [R] = η + k/(s − t) and
variance σ 2

t = k/(s − t)2, and N (t) = N (0) exp(tη)/(1 − t/s)k . The model “blows
up” when t = s, i.e. the population size tends to infinity as t → s and hence the model
is unrealistic.

The normal and −distributions are completely characterized by their mean and
variance; it follows from the examples given above that the fate of the population can
be dramatically different at the same initial mean and variance of the resistance.

More realistically, the actual initial distribution of the resistance should be con-
centrated in a finite interval; we can suppose that the initial distribution is uniform,
Beta-distribution, or truncated exponential in that interval. In all these cases the model
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can be solved explicitly. For example, in the last case P(0, R) = V exp(−s R) where
0 ≤ R ≤ c = const, s is the distribution parameter, and V = s/(1 − exp(−sc)) is
the normalization constant. Then the current population size N (t) is defined by the
formula N (t) = N (0)(1 − t/s)−1(1 − exp(c(t − s)))/(1 − exp(−sc)) and the current
distribution of R is the truncated exponential distribution with the parameter s − t (see
Karev 2005a for details).

Next, let us consider a more realistic logistic version (5.10) of the model. Corre-
sponding inhomogeneous model reads

dl(t,C)/dt = l(t,C)(K (1 − N (t)/B)− m(C)) (5.11)

where l(t,C) is the microbial subpopulation under the pressure of antimicrobial agent
with concentration C. The reproduction rate depends only on the total population
size, so in order to solve this equation we only need to know the mgf of the initial
distribution P(0,C) (see Sects. 4.2, 4.3)). Let

M0(λ, δ) = ∫
A exp(λ + δm(C))P(0,C)dC = exp(λ)E0[exp(δm)]. Then the

escort system for auxiliary variables read (see (4.5)):

ds/dt = −1, s(0) = 0, hence s(t) = −t;
dq/dt = K (1 − N (0) exp(q)E0[exp(−tm)]/B) = K (1 − A(t) exp(q)), q(0) = 0.

(5.12)

Here we denote A(t) = N (0)E0[exp(−tm)]/B. The function A(t) is known at a
given initial distribution and hence equation (5.12) can be solved (at least, numeri-
cally).

The solution to model (5.11) is l(t,C) = l(0,C) exp(q(t) − tm(C)); the total
population size N (t) = N (0) exp(q(t))E0[exp(−tm)]; the distribution of the agent
concentration at moment t is P(t,C) = P(0,C) exp(−tm(C))/E0[exp(−tm)].

The model and its solution are simplified if we consider the kill rate m rather then
the concentration C as a distributed parameter. In this case the model reads

dl(t,m)/dt = l(t,m)(K (1 − N (t)/B)− m). (5.13)

Let M0(λ) = E0[exp(λm)] be the mgf of initial distribution of the kill rate m.
Changing the variable, z = exp(q), we obtain the equation dz/dt = zK (1 −
zN (0)M0(−t)/B), z(0) = 1. This equation can be solved at the given mgf M0 of
the initial distribution.

The solution to model (5.13) is now l(t,m) = l(0,m)z(t) exp(−tm); the total pop-
ulation size N (t) = N (0)z(t)M0(−t), and the distribution of the kill rate P(t,m) =
P(0,m) exp(−tm)/M0(−t).

Example 5 Many particular models have the form of the inhomogeneous logistic equa-
tion

dl(t;β,µ)/dt = l(t;β,µ)[(β f1(N (t))− µ f2(N (t))]. (5.14)
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(see, e.g., Ackleh et al. 2005 and references therein). Let us give explicit formulas for
the solution of this equation. Let M0(λ1, λ2) = E0[exp(λ1β + λ2µ)] be the mgf of
the joint initial distribution of β and µ. The escort system for auxiliary variables reads

dq1/dt = f1(N (0)M0(q1, q2)), q1(0) = 0;
dq2/dt = − f2(N (0)M0(q1, q2)), q2(0) = 0.

(5.15)

The solution to equation (5.14) is

l(t;β,µ) = l(0;β,µ) exp(q1(t)β + q2(t)µ), (5.16)

the total population size is given by

N (t) = N (0)M0(q1(t), q2(t))

and the current distribution is given by the formula

P(t;β,µ) = P(0;β,µ) exp(q1(t)β + q2(t)µ)/M0(q1(t), q2(t)). (5.17)

A particular case of equation (5.14)

dl(t;β,µ)/dt = l(t;β,µ)(β − µN (t)) (5.18)

was studied in Ackleh et al. (1999) for independent growth and mortality parame-
ters, β and µ, uniformly distributed in the intervals [a1, b1] and [a2, b2] accordingly.
The theorem of existence and uniqueness was established; it was also proven that
the population concentrates asymptotically in the parametric point [b1, a2] with the
highest growth to mortality ratio. Remark that both conditions, the independence of
the parameters and boundedness of their domains of values are essential for the last
statement to be valid. For example, if β = cµ then the population does not concentrate
in a parametric point but stays inhomogeneous indefinitely Karev (2005a). The second
condition is discussed below.

Let us solve equation (5.18). The first equation of the escort system (5.15) reads
dq1/dt = 1, q1(0) = 0, hence q1(t) = t. So, the second equation is dq2/dt =
−N (0)M0(t, q2), q2(0) = 0.

Let the parameters β ∈ [a1, b1] and µ ∈ [a2, b2] be independent and uniformly
distributed at the initial moment, i.e. P(0;β,µ) = 1/((b1 − a1)(b2 − a2)). The mgf
of the uniform distribution in [a, b] is M0(λ) = (exp(λb) − exp(λa))/(λ(b − a)),
hence

M0(λ1, λ2) = E0[exp(λ1β + λ2µ)]
= (exp(λ1b1)− exp(λ1a1))/(λ1(b1 − a1))(exp(λ2b2)

− exp(λ2a2))/(λ2(b2 − a2)).
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Then the auxiliary variable solves the equation

dq2/dt = −N (0)M0(t, q2)

= −N (0)
exp(tb1)− exp(ta1)

t (b1 − a1)

exp(q2(t)b2)− exp(q2(t)a2)

q2(t)(b2 − a2)
.

The solution of equation (5.18) is then

l(t;β,µ) = 1/((b1 − a1)(b2 − a2)) exp(tβ + q2(t)µ).

Next, P(t;β,µ) = P1(t;β)P2(t;µ) where

P1(t;β) = exp(tβ)

(b1 − a1)E0[exp(tβ)] , P2(t;µ) = exp(q2(t)µ)

(b2 − a2)E0[exp(q2(t)µ)] .

It is now easy to see (taking into account that q2(t) → −∞ as t → ∞) that
P1(t;β) and P2(t;µ) in course of time concentrate at points b1 and a2 correspond-
ingly, in accordance with Ackleh et al. (1999).

The following example shows that qualitatively different asymptotical behavior of
the same equation is possible with another initial distribution. Let the positive parame-
ters β,µ be independent again, and the initial distribution of both parameters be expo-
nential, Pi (x) = si exp(−xsi ), with the mgf Mi (λ) = 1/(1 − λ/si ), i = 1, 2. Let us
put s1 = T, s2 = 1, and N (0) = 1 for simplicity. Then M0(λ1, λ2) = 1

(1−λ1/T )(1−λ2)
,

and the auxiliary variable solves the equation

dq2/dt = −N (0)M0(t, q2) = − 1

(1 − t/T )(1 − q2)
, q2(0) = 0, (5.19)

which can be easily integrated: q2(t) = 1 − √
1 − 2T ln(1 − t/T ) .

Now we can see that the global solution of equation (5.19) exists only at t < T and
q2(t) → −∞ as t → T . It means that the solution of the inhomogeneous logistic
equation (5.18) with exponentially distributed parameters exists only up to the moment
t = T . The model solution l(t;β,µ), the total population size and the parameter dis-
tributions for t < T can be written down with the help of formulas (5.16)–(5.17).
In particular, N (t) = N (0)/{(1 − t/T )

√
1 − 2T ln(1 − t/T )}. As t → T, the total

population size tends to infinity and the population vanishes in any finite interval of
values for both parameters, β and µ. Remark, that a similar phenomenon of “pop-
ulation explosion” at a certain time moment T < ∞ is realized for a wide class of
−distributed parameters.

Example 6 To conclude this section, let us demonstrate how to solve the inhomoge-
neous version of the well-known Ricker equation (see, e.g., Thieme 2003, Sect. 5.3)):

dl(t;β,µ)/dt = l(t;β,µ)[(β exp(−cN (t))− µ)]. (5.20)
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Let M0(λ1, λ2) be the mgf of the joint initial distribution of β and µ. Then the escort
system reads

dq2/dt = −1, q2(0) = 0, hence q2(t) = −t; (5.21)

dq1/dt = exp(−cN (0)M0(q1,−t)), q1(0) = 0. (5.22)

Equation (5.21) can be solved at known M0 and then the solution to (5.20) is equal to
l(t;β,µ) = l(0;β,µ) exp (q1(t)β − tµ); the total population size N (t) = N (0)M0
(q1(t),−t) and the system distribution P(t;β,µ) = P(0;β,µ) exp(q1(t)β − tµ)/
M0(q1(t),−t).

For example, let the parameters β and µ be independent and exponentially dis-
tributed in [0,∞) with the means s1 and s2 at the initial instant. Then M0(q,−t) =
s1s2/((s1 −q)(s2 + t)), and equation (5.21) for the auxiliary variable reads dq1/dt =
exp(−cN (0)s1s2/((s1 − q1)(s2 + t)), q1(0) = 0.

This equation has a stable state q1 = s1. As t → ∞, q1(t) → s1, the total popula-
tion size tends to infinity and the population density concentrates at the value µ = 0
of the parameter µ and vanishes in any finite interval of values of the parameter β.

6 Discussion

Mathematical theory of selection has a long history; R. Fisher, S. Wright, J. Haldane
were its father-founders. G. Price was the first who tried to find a general formulation
of selection that could be applied to any (not only biological) problem and to develop
a formal general theory. He hoped that the concept of selection proposed in his paper
Price (1995), which was published only in 1995, “will contribute to the future develop-
ment of ‘selection theory’ as helpfully as Hartley’s concept of information contributed
to Shannon’s communication theory. … Many scientists must have felt surprise to find
that at so late date there had still remained an opportunity to develop so fundamental
a scientific area. Perhaps a similar opportunity exists today in respect to selection
theory”.

The Price equation was an outstanding contribution to the future theory; its par-
ticular cases are the Fisher fundamental theorem and the covariance equation. The
Price equation is universally applicable to any selection systems at any instant inde-
pendently from the underlying mathematical model and its specific dynamics (see,
e.g., Rice 2006, ch.6 for details) because this equation is a mathematical identity.
It is a reason for the theoretical universality and practical unavailing (“dynamical
insufficiency”) of the Price equation.

The Haldane optimal principle can be considered as one of the first general asser-
tions about selection systems; it describes the asymptotical behavior of a population
composition. This principle was generalized in Semevsky and Semenov (1982), ch.3
for models with discrete time and in Gorban (1984) (Appendix) for models with con-
tinuous time. The authors developed an abstract theory of systems with inheritance
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and applied it to some problems of mathematical biology (see, e.g., monograph
Gorban 1988 and the survey Gorban 2007). The “resampling down” of the initial
variety demonstrates the qualitative effects of “natural selection” as t → ∞. The
theory gives a complete description of the support of the limit distributions but the
dynamics of systems on a finite time interval is out of the scope of this theory.

Thus, at the present time the mathematical theory of selection has general frame-
works for mathematical modeling (the systems with inheritance, replication equations,
selection systems), some fundamental assertions (like the Haldane principle, the Fisher
fundamental theorem of selection and the Price equations) and many particular models
of inhomogeneous populations and communities. Most of these models have a form
of many- or infinite dimensional differential or difference systems of equations. Some
theorems of existence and uniqueness and asymptotic behavior of solutions to partic-
ular classes of such equations were established (see, e.g., Ackleh et al. 1999; Gorban
2007; Perthame 2007), but no general methods for solving the models analytically are
known, except for numerical investigation.

In this paper we suggest a general approach to a wide class of self-regulated selection
systems. The main evolutionary forces in an evolving system are selection, mutation
and random drift; it should be noticed that our approach explicitly examines only selec-
tion. The developed theory allows one to reduce the complex inhomogeneous models
to the “escort systems” of ODEs that, in many cases, can be investigated analytically.
Notice that even if the analytical solution of the escort system is not available, numer-
ical solving the Cauchy problem for a system of ODE is much simpler than studying
the initial problem numerically. It allows us to compute (in many cases, explicitly)
the evolution of distributions and all statistical characteristics of interest of the initial
selection system. Similar approach to discrete-time models was developed in Karev
(2008). The considered examples show how different the global dynamics of a selec-
tion system can be depending on the initial distribution even for the same dynamical
model.

We have systematically applied our approach to inhomogeneous Malthusian and
logistic equations; explicit solutions to different models of these types used in the
literature were derived. Analytical solutions of the considered models can provide
new biological insights beyond the computer simulations performed in the original
papers. We believe that derived explicit solutions may be helpful and necessary in
order to be able to completely study corresponding models, which belong to different
areas of mathematical biology; however, that is out of the scope of this paper. Appli-
cations to forest ecology modeling Karev (2003), global demography Karev (2005a),
cancer modeling Karev et al. (2006), and epidemics in heterogeneous populations
Novozhilov (2009) were published recently. It is our hope that the developed approach
has potential for different applications these and others areas of science.
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Appendix

Proof of Theorem 1 Let {q(t), s(t)} be a solution of Cauchy problem (3.5)–(3.6);
denote for instant

K ∗
t (a) = exp

(
n∑

i=1

qi (t)ϕi (a)+
m∑

k=1

sk(t)ψk(a)

)
,

l∗(t, a)/dt = l(0, a)K ∗
t (a),

N∗(t) = N (0)�(1; q(t), s(t)),

G∗
i (t) = N (0)�(gi ; q(t), s(t)),

H∗
i (t) = �(hi ; q(t), s(t))/�(1; q(t), s(t)),

F∗(t, a) =
n∑

i=1

ui (t,G∗
i )ϕi (a)+

m∑
k=1

vk(t, H∗
k )ψk(a),

P∗(t, a) = P∗(0, a)K ∗
t (a)/�(1; q(t), s(t)).

Then dl∗(t, a)/dt = l(0, a)K ∗
t (a)F

∗
t (a) = l∗(t, a)F∗

t (a). Next,

∫

A

l∗(t, a)da =
∫

A

l(0, a)K ∗
t (a)da = N (0)�(1; q(t), s(t)) = N∗(t);

∫

A

g(a)l∗(t, a)da =
∫

A

g(a)K ∗
t (a)l(0, a)da = N (0)�(g; q(t), s(t)) = G∗(t);

∫

A

h(a)P∗(t, a)da =
∫

A

h(a)K ∗
t (a)P(0, a)/�(1; q(t), s(t))da

= �(h; q(t), s(t))/�(1; q(t), s(t)) = H∗(t).

It means that functions l∗(t, a), N∗(t),G∗
i (t), H∗

k (t) satisfy system (3.5)–(3.6).
Conversely, let l(t, a), N (t),Gi (t), Hk(t) solve system (3.3) for t ∈ [0, T ). For

now, define the functions q∗
i (t), s∗

k (t), i = 1, . . . , n, k = 1, . . . ,m by relations:

q∗
i (t) =

t∫

0

ui (x,Gi (x))dx, and s∗
k (t) =

t∫

0

vk(x, Hk(x))dx; then

dl(t, a)/ l(t, a) =
n∑

i=1

ϕi (a)dq∗
i (t)+

m∑
k=1

ψk(a)ds∗
k (t), and

l(t, a) = l(0, a) exp

(
n∑

i=1

ϕi (a)dq∗
i (t)+

m∑
k=1

ψk(a)ds∗
k (t)

)
for all t ∈ [0, T ).
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Hence, N (t) = ∫
A l(t, a)da = ∫

A l(0, a) exp
(∑n

i=1ϕi (a)q∗
i (t)+

∑m
k=1ψk(a)s∗

k (t)
)

da = N (0)�(1; q∗(t), s∗(t));

G(t)=
∫

A

g(a)l(t, a)da

=
∫

A

g(a) exp

(
n∑

i=1

ϕi (a)q∗
i (t)+

m∑
k=1

ψk(a)s∗
k (t)

)
l(0, a)da

= N (0)�(g; q∗(t), s∗(t));
H(t) =

∫

A

h(a)l(t, a)da/N (t) = N (0)M(h; q∗(t), s∗(t))/N (t)

= �(h; q∗(t), s∗(t))/�(1; q∗(t), s∗(t)).

From the definition, {q∗(t), s∗(t)} is the solution of Cauchy problem (3.5)–(3.6) for
t ∈ [0, T ). Theorem is proven. 
�
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