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1 Introduction

1.1 Current status and motivation

The measurement of the anomalous magnetic moment of the muon, aµ = (g − 2)µ/2, by

the Brookhaven National Laboratory has reached an accuracy of better than one part

per million, corresponding to an experimental uncertainty of 6.3 × 10−10 [1]. With this

accuracy, aµ is sensitive to quantum effects from all Standard Model (SM) interactions —

electromagnetic, strong, and weak.

The theory evaluation of the SM prediction has improved very recently on all fronts.

In ref. [2], the full calculation of the QED contributions up to the 5-loop level has been

reported, completing the effort of several decades. The hadronic vacuum polarization

contributions evaluated in refs. [3–5] make use of a large set of recent, complementary

experimental data on the e+e− → hadrons cross section. An earlier discrepancy to analy-

ses based on τ -decays has been resolved [5, 6]. The latest results of hadronic light-by-

light calculations using established methods [7, 8] agree within the quoted errors. New

approaches [9–12] provide important cross-checks and promise further progress. The elec-

troweak contributions benefit from the Higgs-mass determination at the LHC [13, 14].

Ref. [15] gives an update of previous calculations of refs. [16–20], where the exact two-loop

result for the Higgs-dependent contributions is obtained and all known electroweak contri-

butions up to the leading three-loop level are consistently combined. For more details on

the SM prediction and expected further progress see the recent reviews [7, 21].

With this progress the theory prediction has reached an even higher accuracy than the

experiment. The current deviation between the Brookhaven measurement and the most

recent SM theory evaluations, see ref. [15], is as follows (the hadronic evaluation is taken

either from ref. [3] or [4] as indicated and does not include the evaluations of refs. [5, 6]):

∆aµ(E821− SM) =

{
(28.7± 8.0)× 10−10[3],

(26.1± 8.0)× 10−10[4].
(1.1)

The importance of this result, which corresponds to a 3–4σ deviation, has motivated

two new experiments. First, the successor of the BNL experiment is already under con-

struction at Fermilab [22, 23]. It uses the same technique as at Brookhaven: high-energy

muons are inserted into a storage ring at the “magic relativistic γ”, for which electric

focusing fields do not perturb the muon precession. A second experiment is planned at

J-PARC [24], which uses ultra-cold muons with smaller γ, but no electric focusing field.

Both of these complementary experiments aim to reduce the uncertainty by more than a

factor four.

The exciting prospect of such improved measurements motivates all efforts to further

improve the theory prediction for aµ, both within the SM and beyond. The present paper

focusses on supersymmetry (SUSY) and the prediction for aµ in the Minimal Supersym-

metric Standard Model (MSSM). Two-loop diagrams with a closed fermion/sfermion loop

inserted into a SUSY one-loop diagram (see figure 1) are computed, together with the asso-

ciated counterterm diagrams. First results of the calculation have been presented already

in ref. [25].
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Figure 1. Prototype Feynman diagram with fermion/sfermion-loop insertion. The outer loop is

a generalized SUSY one-loop aµ diagram and contains either neutralinos χ̃0
i,j and a smuon µ̃ or

charginos χ̃−

i,j and a sneutrino ν̃µ. The generic fermion/sfermion pair in the inner loop is denoted

by (f, f̃) and (f ′, f̃) for neutralinos and charginos, respectively. The photon can couple to each

charged particle.

It is well-known that the MSSM could easily account for the deviation (1.1), see e. g. [26]

and [27] for reviews. Even the recent LHC results, including the Higgs-mass determination

and negative results from SUSY particle searches, can be simultaneously accommodated

in the MSSM [28, 29]. In fact, combining LHC data with aµ motivates MSSM scenarios

which are quite distinct from the more traditionally favoured ones [30–38]. Conversely,

e. g. in the Constrained MSSM, the LHC results already rule out the possibility to explain

the deviation (1.1) [39–41], further highlighting the complementarity between LHC and

low-energy observables such as aµ. Ref. [42] stresses the complementarity between aµ and

a future linear collider. Ref. [21, 43] also demonstrates that the future more precise aµ
determination will help in measuring MSSM parameters such as tanβ, and in solving

the LHC inverse problem [44], i. e. in discriminating between discrete choices of MSSM

parameters that fit equally well to LHC data.

For realizing the full potential of the future aµ experiments, the theory uncertainty of

the MSSM should be reduced. In ref. [27], it is estimated to 3× 10−10 due to unknown

two-loop corrections — twice as large as the future experimental uncertainty. The current

status of the MSSM prediction for aµ is as follows: the MSSM one-loop contributions

to aµ have been computed and extensively documented in refs. [27, 45–47]. The two-

loop corrections have been classified in ref. [27] into two classes. In class 2L(a) a pure

SUSY loop of either charginos, neutralinos or sfermions is inserted into a SM-like diagram.

For reference, figure 2 shows a sample diagram of this class. Diagrams like this have

been computed in ref. [48], after approximate calculations in refs. [49, 50], and the full

calculation of all class 2L(a) contributions has been completed in ref. [19]. Diagrams of

class 2L(b) correspond to two-loop corrections to SUSY one-loop diagrams. This class

of contributions has not been computed fully yet. The fermion/sfermion-loop corrections

of figure 1 belong to this class. Up to now, the full QED corrections [51], including the

leading QED logarithms of ref. [52], and the (tanβ)2-enhanced corrections [53] have been

evaluated. Further computations of selected diagrams of classes 2L(a) and 2L(b) have been

carried out in refs. [54–57].

– 2 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

γ

µ µµ

H Z

t̃

t̃

Figure 2. Sample Feynman diagram with closed stop loop inserted into a SM-like one-loop diagram

with Higgs- and Z-boson exchange, computed in refs. [48–50]. The photon can couple to each

charged particle.

For a full two-loop calculation of aµ in the MSSM it remains to exactly compute

all non-QED diagrams of class 2L(b), i.e. all two-loop diagrams which contain at least

one chargino or neutralino, one smuon or sneutrino, and potentially further SM or SUSY

particles. These remaining diagrams can be subdivided into diagrams with and diagrams

without a closed fermion/sfermion loop.

Numerically, all the known contributions of class 2L(b) can be as large as the future

experimental uncertainty or even larger. Hence, these are relevant corrections, and it is

motivated to continue the evaluation of the two-loop contributions to aµ in the MSSM.

1.2 Fermion/sfermion-loop contributions

The fermion/sfermion-loop contributions discussed in the present work correspond to the

diagrams of figure 1 and the associated counterterm diagrams. Obviously these diagrams

can be regarded as SUSY partners to the diagrams of the type in figure 2. Like the latter,

these fermion/sfermion-loop contributions form a gauge independent and finite class of

contributions.

This class of two-loop contributions is interesting for several reasons. Of course, its

computation represents a significant step towards the full two-loop computation of aµ in

the MSSM, and it reduces the theory uncertainty. The present paper provides full details

of the calculation and analytical and numerical results. It also provides a very compact

approximation formula for the full result, which can be easily implemented.

Further, this diagram class introduces a dependence of aµ on squarks and sleptons

of all generations, which is phenomenologically interesting. Most notably, if the squark

masses (or slepton masses of the first or third generation) become large, the contributions

to aµ do not decouple, instead they are even logarithmically enhanced. This is a strik-

ing contrast to the Feynman diagrams considered in the past and illustrated in figure 2.

Generally, top/stop loops or top/sbottom loops can have a significant influence and non-

trivial parameter dependence owing to the large top-Yukawa coupling and the potentially

large stop mixing. The present paper thoroughly discusses the numerical behaviour of the

fermion/sfermion-loop contributions as a function of all relevant input parameters.

Finally, the fermion/sfermion-loop contributions involve a set of interesting counter-

term contributions which are finite and do not correspond to genuine two-loop diagrams.
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These are counterterm contributions to the muon-neutralino-smuon or muon-chargino-

sneutrino vertex from counterterm insertions with a fermion/sfermion loop. These coun-

terterms contain in particular the large, universal ∆ρ corrections from top (and stop) loops

to the SUSY one-loop diagrams. The influence of ∆ρ and the non-decoupling behaviour

have already been stressed and discussed in ref. [25].

Technically, the computation of the diagrams of figure 1 is significantly more compli-

cated than all previously considered aµ two-loop diagrams in the MSSM. This is mainly

because of the higher number of different mass scales. Therefore, the diagrams have been

computed in two different ways — once by appropriately extending the standard techniques

developed for refs. [19, 48], and once using an iterated one-loop calculation similar to the

simpler cases of ref. [58]. A similar class of diagrams with neutralino or gluino exchange and

non-decoupling behaviour has been considered for electric dipole moments in ref. [59, 60] in

an approximation where higgsino-gaugino mixing is neglected. In refs. [58–60] all two-loop

diagrams were ultraviolet finite, while in the present case diagrams involve subdivergences

and need to be renormalized.

1.3 Outline

Our paper is organized as follows: in section 2 a systematic notation for all appearing

MSSM coupling constants is introduced, and it is shown that the one-loop contributions

can be elegantly expressed in terms of these. Section 3 is devoted to the renormalization of

the two-loop results. Analytic results for the one-loop counterterm diagrams are provided,

and in particular the difference between the standard one-loop diagrams and the counter-

term diagrams with mixing between two different charginos or neutralinos is highlighted.

In section 4 the full analytic results for all two-loop diagrams are given. Also intermediate

results for the one-loop subdiagrams are expressed in a form useful for the Barr-Zee tech-

nique. The numerical and phenomenological discussion is prepared in section 5 with an

overview of the input parameters. In section 6 a very compact approximation formula for

the full result is provided which can be easily implemented. Finally, in section 7 a thorough

analysis of the numerical behaviour of the fermion/sfermion-loop contributions in a variety

of parameter scenarios is presented.

2 Preparations

As a preliminary step, a useful and compact notation for the MSSM coupling constants and

vertices is introduced. It generalizes the notation used in the literature and is appropriate

for all diagrams considered in the present paper. Then, the known MSSM one-loop results

for aµ are expressed in this simplified notation.

2.1 Coupling structures

All one- and two-loop aµ diagrams considered in the present paper have the structure

represented by the prototypes of figure 1. Apart from the interaction with the external
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photon, only vertices of the type fermion-sfermion-chargino/neutralino appear. The rele-

vant interaction Lagrangian is written as

Lint = χ̃−
i

(
cLiν̃PL + cRiν̃PR

)
l ν̃† + χ̃+

i

(
cR∗

il̃†k
PL + cL∗

il̃†k
PR

)
ν l̃†k

+ χ̃−
i

(
cLiũk

PL + cRiũk
PR

)
d ũ†k + χ̃+

i

(
cR∗

id̃†k
PL + cL∗

id̃†k
PR

)
u d̃†k

+
∑

(f,f̃)

χ̃0
i

(
nL
if̃k

PL + nR
if̃k

PR

)
ff̃ †

k + h.c.

(2.1)

In this formula, family indices have been suppressed and ν, l, u, d denote neutrino,

charged lepton, up-type and down-type quarks of any family, respectively. The sum in the

last line extends over all these fermions and the corresponding sfermions.

The down-type sfermions in eq. (2.1) couple to the positively charged charginos. For

the purposes of the muon (g − 2) computation it is more appropriate to rewrite these

couplings in terms of negatively charged charginos and anti-up-type fermions. This can be

achieved by using flipping rules [61] like

χ̃+
i

(
cR∗

id̃†k
PL + cL∗

id̃†k
PR

)
u d̃†k = uc

(
cR∗

id̃†k
PL + cL∗

id̃†k
PR

)
χ̃−
i d̃†k. (2.2)

Then, it is possible to rewrite the interaction Lagrangian in a compact and unified

form as

Lint =
∑

(f ′,f̃)

χ̃−
i

(
cL
if̃k

PL + cR
if̃k

PR

)
f ′f̃ †

k

+
∑

(f,f̃)

χ̃0
i

(
nL
if̃k

PL + nR
if̃k

PR

)
ff̃ †

k + h.c.,
(2.3)

where the sums extend over the following fermion/sfermion pairs:

(
f ′, f̃

)
=
(
l, ν̃
)
,
(
νc, l̃†

)
,
(
d, ũ
)
,
(
uc, d̃†

)
, (2.4a)

(
f, , f̃

)
=
(
ν, ν̃
)
,
(
l, l̃
)
,
(
u, ũ

)
,
(
d, d̃
)
. (2.4b)

In this notation the coupling coefficients in eq. (2.3) are all systematically indexed by

the outgoing sfermion and the chirality of the incoming fermion.1

The relevant coupling coefficients in the MSSM are given by

cLiν̃l = −g2V
∗
i1, (2.5a)

cRiν̃l = ylUi2, (2.5b)

cR∗

il̃†k
= −g2U

∗
i1U

l̃
k1 + ylU

∗
i2U

l̃
k2, (2.5c)

cL∗
il̃†k

= 0, (2.5d)

1Compared to refs. [46, 51] the notation has been streamlined by removing relative signs and complex

conjugations in nL,R and cL,R.
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cLiũk
= −g2V

∗
i1U

ũ
k1 + yuV

∗
i2U

ũ
k2, (2.5e)

cRiũk
= ydUi2U

ũ
k1, (2.5f)

cR∗

id̃†k
= −g2U

∗
i1U

d̃
k1 + ydU

∗
i2U

d̃
k2, (2.5g)

cL∗
id̃†k

= yuVi2U
d̃
k1, (2.5h)

nL
iũk

=
1√
2

(
−1

3
g1N

∗
i1 − g2N

∗
i2

)
U ũ
k1 − yuN

∗
i4U

ũ
k2, (2.5i)

nR
iũk

= +
2

3

√
2g1Ni1U

ũ
k2 − yuNi4U

ũ
k1, (2.5j)

nL
id̃k

=
1√
2

(
−1

3
g1N

∗
i1 + g2N

∗
i2

)
U d̃
k1 − ydN

∗
i3U

d̃
k2, (2.5k)

nR
id̃k

= −1

3

√
2g1Ni1U

d̃
k2 − ydNi3U

d̃
k1, (2.5l)

nL
iν̃l

=
1√
2
(g1N

∗
i1 − g2N

∗
i2) , (2.5m)

nR
iν̃l

= 0, (2.5n)

nL
il̃k

=
1√
2
(g1N

∗
i1 + g2N

∗
i2)U

l̃
k1 − ylN

∗
i3U

l̃
k2, (2.5o)

nR
il̃k

= −
√
2g1Ni1U

l̃
k2 − ylNi3U

l̃
k1, (2.5p)

with gauge and Yukawa couplings defined as

g1 =
e

cW
, g2 =

e

sW
, yd,l =

md,lg2√
2MW cosβ

, yu =
mug2√

2MW sinβ
. (2.6)

The weak mixing angle is defined via theW and Z pole masses: s2W = 1−c2W = 1−M2
W /M2

Z .

The unitary matrices U f̃ diagonalize the sfermion-mass matrices, while the unitary ma-

trices U/V and N are needed for a Singular Value Decomposition of the chargino- and a

Takagi factorization [62] of the neutralino-mass matrices, respectively. For these matrices

the same notation as in refs. [25, 27] is used; similarly for the underlying SUSY parame-

ters: µ is the higgsino mass parameter, tanβ = tβ = vu/vd is the ratio of the Higgs doublet

vacuum expectation values, M1,2 are the gaugino masses, and the soft mass parameters for

the squark and slepton doublets and singlets are denoted by MQi, MUi, MDi, MLi, MEi

for each generation i ∈ {1, 2, 3}. For simplicity, we choose generation-independent masses

for the first two generations, MQ1 = MQ2 ≡ MQ, etc.

A common feature of all aµ diagrams considered in the present paper, see figure 1, is

that the above couplings always appear in pairs, associated with the exchange of a sfermion

— either of a smuon/sneutrino from the outer loop or of the generic sfermion from the inner

loop. The structure of these coupling pairs is illustrated in figure 3. For the following it is

useful to abbreviate the appearing coupling combinations as

Az±

ijf̃k
≡ zL

if̃k
zL ∗

jf̃k
± zR

if̃k
zR ∗

jf̃k
, (2.7a)
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Figure 3. Illustration of the coupling combinations Az±

ijf̃k
, Bz±

ijf̃k
, z ∈ {n, c}, arising from sfermion

exchange between two neutralino/chargino vertices.

Bz±

ijf̃k
≡ zL

if̃k
zR ∗

jf̃k
± zR

if̃k
zL ∗

jf̃k
, (2.7b)

with z ∈ {c, n}.
The A combinations correspond to “no chirality flip”, and the B combinations cor-

respond to “one chirality flip”. The B combinations are therefore always proportional

to the Yukawa coupling and mass of the fermion involved in the vertex. The left- and

right-handed couplings can be equivalently expressed in terms of scalar and pseudoscalar

coefficients as zLPL + zRPR = zS − zPγ5. This leads to an alternative expression for the

As and Bs,

Az+

ijf̃k
= 2zS

if̃k
zS∗
jf̃k

+ 2zP
if̃k

zP∗

jf̃k
, (2.8a)

Az−

ijf̃k
= 2zS

if̃k
zP∗

jf̃k
+ 2zP

if̃k
zS∗
jf̃k

, (2.8b)

Bz+

ijf̃k
= 2zS

if̃k
zS∗
jf̃k

− 2zP
if̃k

zP∗

jf̃k
, (2.8c)

Bz−

ijf̃k
= 2zP

if̃k
zS∗
jf̃k

− 2zS
if̃k

zP∗

jf̃k
, (2.8d)

which shows the correspondence of Az+ and Bz+ to “even numbers of γ5” on the one hand

and Az− and Bz− to “odd numbers of γ5” on the other hand. For exchanged indices these

coupling combinations satisfy the relations

Az±

ijf̃k
= +

(
Az±

jif̃k

)∗
, (2.9a)

Bz±

ijf̃k
= ±

(
Bz±

jif̃k

)∗
. (2.9b)

2.2 One-loop results up to O(ǫ)

In the following we state the SUSY one-loop results up to first order in the dimensional

regularization parameter ǫ = (4−D)/2. For reference, the results are expressed in terms of

the coupling combinations introduced above. The SUSY one-loop contributions are given

by the Feynman diagrams of figure 4. For later purposes, also slightly generalized diagrams

are introduced in figure 5, where different neutralino/chargino indices are assigned to the

vertices and propagators. It will turn out to be useful to define the following quantities,

corresponding to these generalized diagrams:

a(n-gen)µ

(
An±

jiµ̃m
,Bn±

jiµ̃m
, k
)
≡ −1

16π2

m2
µ

m2
µ̃m

{
1

12
An±

jiµ̃m
FN
1 (xk) +

mχ̃0
i

6mµ
Bn±
jiµ̃m

FN
2 (xk)

}
, (2.10a)
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γ

Figure 4. SUSY one-loop diagrams with neutralino-smuon and chargino-sneutrino exchange.

j i
µ µ

µ̃m

χ̃0
k

γ

j i
µ µ

ν̃µ

χ̃−
k

γ

Figure 5. Generalized diagrams, corresponding to eqs. (2.10a), (2.10b). At each vertex different

chargino/neutralino indices are applied. These generalized expressions are useful building blocks

for expressing one-loop and one-loop counterterm results.

a(c-gen)µ

(
Ac±

jiν̃µ
,Bc±

jiν̃µ
, k
)
≡ 1

16π2

m2
µ

m2
ν̃µ

{
1

12
Ac±

jiν̃µ
FC
1 (xk) +

mχ̃−
i

3mµ
Bc±
jiν̃µ

FC
2 (xk)

}
. (2.10b)

The dimensionless mass ratios are defined as xk = m2
χ̃0
k
/m2

µ̃m
and xk = m2

χ̃−
k

/m2
ν̃µ

for neutralinos and charginos, respectively. The ǫ-dependent loop functions FN,C
1,2 (x) have

been given in ref. [51] and are listed for reference in appendix A.

The known SUSY one-loop results for neutralino-smuon and chargino-sneutrino loops

can then be expressed in terms of these generic results as

a1L χ̃0

µ =
∑

i,m

a(n-gen)µ

(
An+

iiµ̃m
,Bn+

iiµ̃m
, i
)
, (2.11a)

a1L χ̃±

µ =
∑

i

a(c-gen)µ

(
Ac+

iiν̃µ
,Bc+

iiν̃µ
, i
)
, (2.11b)

respectively. The total SUSY one-loop contribution is a1LSUSY
µ = a1L χ̃0

µ + a1L χ̃±

µ .

It shall be stressed that these one-loop contributions involve only the “plus”-coupling

combinations Az+, Bz+ and only diagonal indices iiµ̃m, iiν̃µ. This will change later in the

case of the considered counterterm and two-loop diagrams.

3 Renormalization and counterterms

In this and the subsequent section detailed results of the calculation of the

fermion/sfermion-loop contributions to aµ are presented. This section is devoted to renor-

malization and the counterterm contributions. The fermion/sfermion-loop contributions
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(µnv)

×µ µ
µ̃m

χ̃0
i

γ

+

×µ µ
µ̃m

χ̃0
i

γ

(µcv)

×µ µ
ν̃µ

χ̃−
i

γ

+

×µ µ
ν̃µ

χ̃−
i

γ

Figure 6. The two classes of counterterm diagrams with counterterm insertions at the external

muon vertices. To these counterterm diagrams no corresponding two-loop diagrams exist. The

crosses denote counterterm insertions.

a2L,f f̃µ are defined as all two-loop diagrams, where a mixed fermion/sfermion loop is inserted

into a SUSY one-loop correction to aµ, see figure 1, and all SUSY one-loop counterterm

diagrams with counterterm insertions from diagrams with only fermions and/or sfermions

in the loop.2 Like pure fermion-loop contributions in the SM, this class of contributions is

gauge independent and finite by itself.

The one-loop corrections to aµ are UV finite. However, divergences arise in the cal-

culation of the two-loop corrections, shown in section 4. Therefore, counterterms have

to be introduced, together with appropriate renormalization constants. The counterterm

diagrams can be classified according to their topologies into six classes:

• muon vertex counterterm diagrams with insertions of renormalization constants in

the vertex with the incoming/outgoing muon of the one-loop neutralino or chargino

diagrams, see figure 6(µnv, µcv). There are no corresponding two-loop diagrams with

fermion/sfermion loops, hence these counterterm diagrams are finite.

• neutralino counterterm diagrams with insertions of renormalization constants into a

neutralino-neutralino-photon vertex or the neutralino self-energy, see figure 7(nv,ns).

• chargino counterterm diagrams with insertions of renormalization constants into the

vertex with the external photon or the chargino self-energy, see figure 7(cv,cs).

All renormalization constants have to be computed from one-loop diagrams involving only

fermions and/or sfermions in the loop.

2Diagrams where a pure sfermion loop is attached to a smuon or sneutrino propagator, and the associ-

ated counterterm diagrams are excluded. These diagrams arise from sfermion four-point interactions and

effectively induce a shift in one of the smuon masses; they are separately gauge independent and finite,

straightforward to compute and lead to numerically smaller results. They will be reported on elsewhere.
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(nv)

×

µ µ
µ̃m

χ̃0
j χ̃0

i

γ
(ns)

×

µ µ
µ̃m

χ̃0
j χ̃0

i

γ

(cv)

×

µ µ
ν̃µ

χ̃−
j χ̃−

i

γ (cs)

×

µ µ
ν̃µ

χ̃−
j χ̃−

iγ +
×

µ µ
ν̃µ

χ̃−
j χ̃−

i γ

Figure 7. The four classes of counterterm diagrams for which corresponding non-vanishing two-

loop diagrams exist. In the (cs) case the sum of the two contributing diagrams is considered. The

crosses denote counterterm insertions.

3.1 Definition of α

The anomalous magnetic moment of the muon is proportional to the fine-structure con-

stant α at the one-loop level. For the considered class of two-loop corrections it is necessary

to calculate the renormalization of α from the photon vacuum polarization with sfermion

and fermion loops, including light quark loops. Since the masses of the light quarks are not

known exactly and large QCD corrections arise, a perturbative evaluation of these light

quark loops is problematic. The definition of α in the Thomson limit, α(0), would lead

to a large intrinsic uncertainty. To avoid this issue we choose the parametrization of the

electric charge in terms of α(MZ), defined by3

α(MZ) =
α(0)

1−∆α(MZ)
. (3.1)

The finite shift ∆α(MZ) is defined as the on-shell renormalized photon vacuum polariza-

tion from SM leptons and quarks. The light quark contribution can be obtained from

experimental data via the optical theorem and dispersion relations. We use the recent

determination by ref. [4]:

∆α = ∆αleptonic +∆αhadronic +∆αtop

= 0.031498 + (0.027626± 0.000138)− (0.0000728± 0.0000014).
(3.2)

The choice of α(MZ) for the parametrization of the one-loop result leads to the following

renormalization constant for the electric charge:

δe

e
= δZe = −1

2

(
δZAA − sW

cW
δZZA

)
(3.3)

3This definition of α may not be confused with the DR or MS definition of a running α(µ).
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with the photon-photon and photon-Z field renormalizations, defined in terms of the trans-

verse self-energies ΣAA, ΣZA,

δZAA = −ℜe
[
Σfermions
AA (M2

Z)

M2
Z

]
−ℜe

[
∂p2Σ

others
AA (p2)

]

p2=0
, (3.4a)

δZZA = −ℜe
[
2ΣZA(0)

M2
Z

]
. (3.4b)

The mixing self-energy ΣZA(0) has only contributions from the non-abelian structure of

the theory; it is zero for the considered class of Feynman diagrams. Σfermions
AA (MZ) refers to

all contributions to the photon self-energy with internal SM leptons and quarks, evaluated

at the scale MZ , while Σothers
AA denotes all other particle insertions, in our case sfermions.

It should be noted that other schemes, such as replacing α(0) by the muon decay

constant GF, avoid the large QCD uncertainties as well. In ref. [25], table 2, we have

shown that the alternative choice of using GF instead of α(MZ) for the SUSY one-loop

contributions would lead to significantly larger two-loop corrections. Hence we prefer the

α(MZ) parametrization. A full MSSM calculation of aµ also involves the electroweak

SM contributions to aµ. These are usually parametrized in terms of GF, whereby the

renormalization scheme for the SM [16, 17] and SUSY [19, 48] loop corrections to these

SM one-loop diagrams is defined accordingly. It is fully consistent to parametrize the

electroweak SM one-loop contributions with GF and the SUSY one-loop contributions with

α(MZ) at the same time, and we assess this parametrization as optimal for a full MSSM

calculation.

3.2 Renormalization constants and scheme

The necessary renormalization constants correspond to the renormalization of the physical

parameters appearing at the one-loop level,

δe, δM2
Z , δM2

W , δtβ, δM1, δM2, δµ, (3.5)

and to the field renormalization of the photon, photon–Z mixing, charginos χ̃−
i and neutrali-

nos χ̃0
i (the latter two field renormalization constants cancel in the sum of all counterterm

diagrams),

δZAA, δZZA, δZ
L/R
χ̃−,ij

, δZ
L/R
χ̃0,ij

. (3.6)

As stated above, the renormalization constants have to be computed from one-loop dia-

grams involving only fermions and/or sfermions in the loop. For this reason, further renor-

malization constants not listed above, such as smuon mass or muon field renormalization

constants vanish.

Charge and photon field renormalization have been defined above. The renormaliza-

tion scheme defining the remaining renormalization constants is similar to the scheme of

refs. [63–68]. It implements an on-shell renormalization of the MSSM [69] as far as possi-

ble. The creation and selection of the Feynman diagrams is done with FeynArts [70], using

a preliminary model file of ref. [66]. The calculation of the renormalization constants is
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done with FormCalc [71]. The gauge-boson masses and sW are renormalized on-shell by

requiring

δM2
Z = ℜe

[
ΣZZ(M

2
Z)
]
, (3.7)

δM2
W = ℜe

[
ΣWW (M2

W )
]
, (3.8)

δsW =
c2W
2sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
(3.9)

in terms of the transverse self-energies ΣZZ and ΣWW . The renormalization constant

δsW contains the leading contributions to the quantity ∆ρ from SM fermion loops and

the leading MSSM corrections to ∆ρ from sfermion loops. This and the discussion of the

previous subsection show that the fermion/sfermion-loop corrections to aµ are sensitive to

the two universal quantities ∆α(MZ) and ∆ρ.

For the parameter tβ the DR scheme is chosen which has emerged as the best scheme

in ref. [72]; for alternative process-dependent schemes see ref. [73]. It can be written in the

form given in ref. [74], using self-energies of the physical Higgs bosons h0, H0, evaluated at

zero Higgs mixing angle α = 0:

δtβ =
tβ
2

(
−ℜe

[
∂p2ΣH0H0(p2)

]
div.

+ ℜe
[
∂p2Σh0h0(p2)

]
div.

)∣∣
α=0

. (3.10)

Counterterms for cosβ ≡ cβ and sinβ ≡ sβ can be derived from that. The reason why δtβ
can be reduced to Higgs boson field renormalization at the one-loop level has been clarified

recently in refs. [75, 76].

Next, the one-loop masses of the charginos and neutralinos have to be defined. We

choose the renormalization of the chargino/neutralino sector as detailed in refs. [63, 64, 77,

78]. The lightest neutralino and both charginos are defined on-shell, which fixes the defini-

tions of δM1, δM2 and δµ in the following way (other schemes can be found in ref. [79, 80]):

δM1 =(N∗
11)

−2

×
{
ℜe
[
Σχ̃0,L
S,11 (m

2
χ̃0
1
)
]
+mχ̃0

1
ℜe
[
Σχ̃0,L
V,11(m

2
χ̃0
1
)
]
− (N∗

12)
2 δM2 + 2N∗

13N
∗
14δµ

−2N∗
11

[
N∗

13 (δ(MZcW cβ)− δ(MZsW cβ))

−N∗
14 (δ(MZcW sβ)− δ(MZsW sβ))

]}
,

(3.11)

δM2 =
1

2
(U∗

11U
∗
22V

∗
11V

∗
22 − U∗

12U
∗
21V

∗
12V

∗
21)

−1

×
{
U∗
22V

∗
22

(
mχ̃−

1
ℜe
[
Σχ̃−,L
V,11 (m

2
χ̃−
1

) + Σχ̃−,R
V,11 (m

2
χ̃−
1

)
]
+ 2ℜe

[
Σχ̃−,L
S,11 (m2

χ̃−
1

)
])

− U∗
12V

∗
12

(
mχ̃−

2
ℜe
[
Σχ̃−,L
V,22 (m

2
χ̃−
2

) + Σχ̃−,R
V,22 (m

2
χ̃−
2

)
]
+ 2ℜe

[
Σχ̃−,L
S,22 (m2

χ̃−
2

)
])

− 2 (U∗
11U

∗
22 − U∗

12U
∗
21)V

∗
12V

∗
22δ
(√

2MW sβ

)

− 2 (V ∗
11V

∗
22 − V ∗

12V
∗
21)U

∗
12U

∗
22δ
(√

2MW cβ

)}
,

(3.12)
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δµ =
1

2
(U∗

11U
∗
22V

∗
11V

∗
22 − U∗

12U
∗
21V

∗
12V

∗
21)

−1

×
{
U∗
11V

∗
11

(
mχ̃−

2
ℜe
[
Σχ̃−,L
V,22 (m

2
χ̃−
2

) + Σχ̃−,R
V,22 (m

2
χ̃−
2

)
]
+ 2ℜe

[
Σχ̃−,L
S,22 (m2

χ̃−
2

)
])

− U∗
21V

∗
21

(
mχ̃−

1
ℜe
[
Σχ̃−,L
V,11 (m

2
χ̃−
1

) + Σχ̃−,R
V,11 (m

2
χ̃−
1

)
]
+ 2ℜe

[
Σχ̃−,L
S,11 (m2

χ̃−
1

)
])

− 2 (U∗
11U

∗
22 − U∗

12U
∗
21)V

∗
11V

∗
21δ
(√

2MW cβ

)

− 2 (V ∗
11V

∗
22 − V ∗

12V
∗
21)U

∗
11U

∗
21δ
(√

2MW sβ

)}
.

(3.13)

Here the chiral and covariant decomposition of the fermionic self-energies,

Σχ̃
ij(p

2) = /p
(
PLΣ

χ̃,L
V,ij(p

2) + PRΣ
χ̃,R
V,ij(p

2)
)
+
(
PLΣ

χ̃,L
S,ij(p

2) + PRΣ
χ̃,R
S,ij(p

2)
)
, (3.14)

has been used. Knowing these quantities, the renormalization constants for all chargino and

neutralino masses δmχ̃−
ij
and δmχ̃0

ij
can be derived by applying the usual renormalization

procedure for the tree-level mass matrices X and Y

U∗XV † = diag
(
mχ̃−

1
, mχ̃−

2

)
,

[
U∗δXV †

]

ij
= δmχ̃−

ij
, (3.15a)

N∗YN † = diag
(
mχ̃0

1
, mχ̃0

2
,mχ̃0

3
, mχ̃0

4

)
,

[
N∗δYN †

]

ij
= δmχ̃0

ij
, (3.15b)

with

X =

(
M2

√
2MW sβ√

2MW cβ µ

)
, Y =




M1 0 −MZsW cβ MZsW sβ
0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ

MZsW sβ −MZcW sβ −µ 0


 ,

(3.16)

and the matrices U , V and N of the tree-level Singular Value Decomposition and Takagi

factorization, respectively.

It should be pointed out that this renormalization scheme is not a good choice for all

parameter scenarios. It leads to artificially large corrections if the lightest neutralino is not

bino-like which has been discussed in refs. [79, 80] before; it also introduces an artificial

singularity for M2 = µ, because of the explicitly appearing combination of mixing-matrix

elements in the denominators of δM2 and δµ; a solution by using a different renormalization

scheme would be provided in ref. [79], however in our numerical examples the exact equality

M2 = µ does not appear.

Finally, the chargino and neutralino fields are renormalized according to the DR defi-

nitions

δZ
L/R

χ̃0/−,ii
=−ℜe

[
Σ
χ̃0/−,L/R
V,ii (m

χ̃
0/−
i

)
]

div.
(3.17a)
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δZ
L/R

χ̃0/−,ij
=

2

m2

χ̃
0/−
i

−m2

χ̃
0/−
j

×
{
m

χ̃
0/−
j

(
m

χ̃
0/−
j

ℜe
[
Σ
χ̃0/−,L/R
V,ij (m

χ̃
0/−
j

)

]
+m

χ̃
0/−
i

ℜe
[
Σ
χ̃0/−,R/L
V,ij (m

χ̃
0/−
j

)

])

+m
χ̃
0/−
i

ℜe
[
Σ
χ̃0/−,L/R
S,ij (m

χ̃
0/−
j

)

]
+m

χ̃
0/−
j

ℜe
[
Σ
χ̃0/−,R/L
S,ij (m

χ̃
0/−
j

)

]

−m
χ̃
0/−
i

δm
L/R

χ̃
0/−
ji

−m
χ̃
0/−
j

(
δm

L/R

χ̃
0/−
ij

)∗}

div.

,

(3.17b)

with

δmL
χ̃−
ij
= δmχ̃−

ij
, δmR

χ̃−
ij
= δm∗

χ̃−
ji
, δmL

χ̃0
ij
= δmχ̃0

ji
. (3.17c)

The DR definition of δZ
L/R
χ̃−,ij

and δZL
χ̃0,ij leads to results which are numerically more

stable than a corresponding on-shell definition. In any case, the field renormalization

constants of charginos and neutralinos cancel in the sum of all diagrams, but their inclusion

renders the self-energy and vertex diagrams individually finite.

3.3 Counterterms

Now, the explicit results for the six classes of counterterm diagrams are given in terms of

the renormalization contants defined above. We use the compact notation for the coupling

combinations A and B and the abbreviations a
(n-gen)
µ (A,B, k) and a

(c-gen)
µ (A,B, k) for gener-

alized one-loop results, introduced in sections 2.1 and 2.2. The automated calculation and

implementation of the counterterm diagrams has been done using FeynArts [70], OneCalc

(part of the TuCalc package) [81] and the aµ-specific routines developed for [19, 48].

The contribution to aµ from the finite muon-vertex counterterm diagrams for neu-

tralinos and charginos, see figure 6(µnv,µcv), can be expressed in terms of the abbrevia-

tions (2.10a) and (2.10b)

a
(µnv-ct)
µ iµ̃m

= a(n-gen)µ

(
δAn+

iiµ̃m
+ 2ℜe

4∑

k=1

[
vnikAn+

kiµ̃m
+ anikAn−

kiµ̃m

]
,

δBn+
iiµ̃m

+ 2ℜe
4∑

k=1

[
vnikBn+

kiµ̃m
+ anikBn−

kiµ̃m

]
, i

)
,

(3.18a)

a
(µcv-ct)
µ i = a(c-gen)µ

(
δAc+

iiν̃µ
+ 2ℜe

2∑

j=1

[
vcijAc+

jiν̃µ
+ acijAc−

jiν̃µ

]
,

δBc+
iiν̃µ

+ 2ℜe
2∑

j=1

[
vcijBc+

jiν̃µ
+ acijBc−

jiν̃µ

]
, i

) (3.18b)

– 14 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

with

δAz+

ijf̃
=
(
zL
if̃
δzL∗

jf̃
+ zL∗

jf̃
δzL

if̃

)
+
(
zR
if̃
δzR∗

jf̃
+ zR∗

jf̃
δzR

if̃

)
, (3.19a)

δAz−

ijf̃
=
(
zL
if̃
δzL∗

jf̃
+ zL∗

jf̃
δzL

if̃

)
−
(
zR
if̃
δzR∗

jf̃
+ zR∗

jf̃
δzR

if̃

)
, (3.19b)

δBz+

ijf̃
=
(
zL
if̃
δzR∗

jf̃
+ zL∗

jf̃
δzR

if̃

)
+
(
zR
if̃
δzL∗

jf̃
+ zR∗

jf̃
δzL

if̃

)
, (3.19c)

δBz−

ijf̃
=
(
zL
if̃
δzR∗

jf̃
+ zL∗

jf̃
δzR

if̃

)
−
(
zR
if̃
δzL∗

jf̃
+ zR∗

jf̃
δzL

if̃

)
, (3.19d)

vnij =
1

4

(
δZL

χ̃0,ji + δZL∗
χ̃0,ji

)
, (3.19e)

anij =
1

4

(
δZL

χ̃0,ji − δZL∗
χ̃0,ji

)
, (3.19f)

vcij =
1

4

(
δZR∗

χ̃−,ji + δZL∗
χ̃−,ji

)
, (3.19g)

acij =
1

4

(
δZR∗

χ̃−,ji − δZL∗
χ̃−,ji

)
, (3.19h)

for z ∈ {c, n} and f̃ ∈ {ν̃µ, µ̃m}, and

δcLiν̃µ = −δg2V
∗
i1, (3.20a)

δcRiν̃µ = δyµUi2, (3.20b)

δnL
iµ̃m

=
1√
2
(δg1N

∗
i1 + δg2N

∗
i2)U

µ̃
m1 − δyµN

∗
i3U

µ̃
m2, (3.20c)

δnR
iµ̃m

= −
√
2δg1Ni1U

µ̃
m2 − δyµNi3U

µ̃
m1, (3.20d)

δyµ =
mµg2√
2MW cβ

(
δmµ

mµ
+

δg2
g2

− δMW

MW
− δcβ

cβ

)
, (3.20e)

δg1 =
e

cW

(
δZe −

δcW
cW

)
, (3.20f)

δg2 =
e

sW

(
δZe −

δsW
sW

)
, (3.20g)

δcW = −sW
cW

δsW . (3.20h)

The quantities δAz± and δBz± correspond to the renormalization of the coupling combina-

tions and contain the entire effect of the parameter renormalization constants. As stressed

in the beginning, these counterterm diagrams are finite by themselves, since there are no

corresponding two-loop diagrams (as long as field renormalization is included).

Next, the four counterterm classes of figure 7 are considered, starting with the neu-

tralino vertex and neutralino self-energy counterterm diagrams. In each case, only the result

for off-diagonal neutralino/chargino indices ij is given; the result for j = i can be obtained

by a limiting procedure. The neutralino vertex counterterm diagram of figure 7(nv) is zero,

a
(nv-ct)
µ ijµ̃m

= 0. (3.21)

In general it would be proportional to δZZA which, however, vanishes for the considered

class of fermion/sfermion-loop diagrams.

– 15 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

The neutralino self-energy counterterm diagram of figure 7(ns) can be expressed easily

with the help of eq. (2.10a):

a
(ns-ct)
µ ijµ̃m

=
v

mχ̃0
i
−mχ̃0

j

[
mχ̃0

j
a(n-gen)µ

(
An+

jiµ̃m
,Bn+

jiµ̃m
, j
)
−mχ̃0

i
a(n-gen)µ

(
An+

jiµ̃m
,Bn+

jiµ̃m
, i
)]

+
a

mχ̃0
i
+mχ̃0

j

[
mχ̃0

j
a(n-gen)µ

(
An−

jiµ̃m
,−Bn−

jiµ̃m
, j
)
+mχ̃0

i
a(n-gen)µ

(
An−

jiµ̃m
,Bn−

jiµ̃m
, i
)]

+
s

mχ̃0
i
−mχ̃0

j

[
a(n-gen)µ

(
An+

jiµ̃m
,Bn+

jiµ̃m
, j
)
− a(n-gen)µ

(
An+

jiµ̃m
,Bn+

jiµ̃m
, i
)]

+
p

mχ̃0
i
+mχ̃0

j

[
a(n-gen)µ

(
An−

jiµ̃m
,Bn−

jiµ̃m
, i
)
− a(n-gen)µ

(
An−

jiµ̃m
,−Bn−

jiµ̃m
, j
)]

.

(3.22)

Here the constants v, a, s, p correspond to a generic counterterm Feynman rule given by

i/ℓ(v−aγ5)+i(s−pγ5); they have to be replaced by the following renormalization constants:

v =
1

4

(
δZL

χ̃0,ij + δZL∗
χ̃0,ji + δZL

χ̃0,ji + δZL∗
χ̃0,ij

)
, (3.23a)

a =
1

4

(
δZL

χ̃0,ij + δZL∗
χ̃0,ji − δZL

χ̃0,ji − δZL∗
χ̃0,ij

)
, (3.23b)

s = −1

4
mχ̃0

i

(
δZL∗

χ̃0,ij + δZL
χ̃0,ij

)
− 1

4
mχ̃0

j

(
δZL∗

χ̃0,ji + δZL
χ̃0,ji

)

− 1

2

(
δm∗

χ̃0,ji + δmχ̃0,ij

)
,

(3.23c)

p = −1

4
mχ̃0

i

(
δZL∗

χ̃0,ij − δZL
χ̃0,ij

)
− 1

4
mχ̃0

j

(
δZL∗

χ̃0,ji − δZL
χ̃0,ji

)

− 1

2

(
δm∗

χ̃0,ji − δmχ̃0,ij

)
.

(3.23d)

Several differences between the counterterm result (3.22) and the standard one-loop re-

sult (2.11a) are noteworthy. Off-diagonal couplings with indices jiµ̃m and the “minus”-

coupling combinations A− and B− appear. Characteristically, only the a- and p-terms

involve the “minus”-coupling combinations. These terms also involve denominators with

sums of the neutralino masses instead of their differences. Note also that the B−s in

some terms appear with negative prefactor. Importantly, thanks to partial fractioning,

the counterterm results can be expressed in terms of the generalized one-loop result of

eq. (2.10a) and therefore of the standard one-loop functions which depend only on a single

mass ratio.

The chargino vertex counterterm diagram, i. e. the diagram with counterterm insertion

at the photon-chargino-chargino vertex, has a slightly more complicated structure. The

chargino vertex counterterm diagram of figure 7(cv) with the generic counterterm Feynman
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rule γµ(v − aγ5) leads to the expression

a
(cv-ct)
µ ij =

1

16π2

m2
µ

m2
ν̃µ

{
1

12

(
vAc+

jiν̃µ
− aAc−

jiν̃µ

)
FC
1 (xj , xi)

+ v
Bc+
jiν̃µ

6mµ

[
(mχ̃−

j
+mχ̃−

i
)FC

2 (xj , xi) + 6(mχ̃−
j
−mχ̃−

i
)FC

3 (xj , xi)
]

+ a
Bc−
jiν̃µ

6mµ

[
(mχ̃−

j
−mχ̃−

i
)FC

2 (xj , xi) + 6(mχ̃−
j
+mχ̃−

i
)FC

3 (xj , xi)
]}

.

(3.24)

It cannot be written in terms of the generalized one-loop result. Instead, and as an addi-

tional complication, eq. (3.24) contains new loop functions depending on two mass ratios,

given in the appendix. Consistency with the standard one-loop result is reflected in the

relations

FC
1,2(xi, xi) = FC

1,2(xi), FC
3 (xi, xi) = 0. (3.25)

The generic constants v and a have to be replaced by

v =
1

4

(
δZR∗

χ̃−,ji + δZL∗
χ̃−,ji + δZR

χ̃−,ij + δZL
χ̃−,ij

)
, (3.26a)

a =
1

4

(
δZR∗

χ̃−,ji − δZL∗
χ̃−,ji + δZR

χ̃−,ij − δZL
χ̃−,ij

)
. (3.26b)

Finally, the chargino self-energy counterterm contribution is obtained by summing up

the two chargino self-energy counterterm diagrams of figure 7(cs). The result combines all

complications of the previous terms and reads

a
(cs-ct)
µ ij =

v

mχ̃−
i
−mχ̃−

j

[
mχ̃−

j
a(c-gen)µ

(
Ac+

jiν̃µ
,Bc+

jiν̃µ
, j
)
−mχ̃−

i
a(c-gen)µ

(
Ac+

jiν̃µ
,Bc+

jiν̃µ
, i
)]

+
a

mχ̃−
i
+mχ̃−

j

[
mχ̃−

j
a(c-gen)µ

(
Ac−

jiν̃µ
,−Bc−

jiν̃µ
, j
)
+mχ̃−

i
a(c-gen)µ

(
Ac−

jiν̃µ
,Bc−

jiν̃µ
, i
)]

+
s

mχ̃−
i
−mχ̃−

j

[
a(c-gen)µ

(
Ac+

jiν̃µ
,Bc+

jiν̃µ
, j
)
− a(c-gen)µ

(
Ac+

jiν̃µ
,Bc+

jiν̃µ
, i
)]

+
p

mχ̃−
i
+mχ̃−

j

[
a(c-gen)µ

(
Ac−

jiν̃µ
,Bc−

jiν̃µ
, i
)
− a(c-gen)µ

(
Ac−

jiν̃µ
,−Bc−

jiν̃µ
, j
)]

− 1

16π2

m2
µ

m2
ν̃µ

{
1

12

(
vAc+

jiν̃µ
− aAc−

jiν̃µ

)
FC
1 (xj , xi)

+ v
Bc+
jiν̃µ

6mµ

[
(mχ̃−

j
+mχ̃−

i
)FC

2 (xj , xi) + 6(mχ̃−
j
−mχ̃−

i
)FC

3 (xj , xi)
]

+ a
Bc−
jiν̃µ

6mµ

[
(mχ̃−

j
−mχ̃−

i
)FC

2 (xj , xi) + 6(mχ̃−
j
+mχ̃−

i
)FC

3 (xj , xi)
]}

.

(3.27)

– 17 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

(nv)

µ µ
µ̃m

χ̃0
j χ̃0

i

γ (ns)

µ µ
µ̃m

χ̃0
j χ̃0

i

γ

(cv)

µ µ
ν̃µ

χ̃−
j χ̃−

i

γ (cs)

µ µ
ν̃µ

χ̃−
i

χ̃−
j

γ +

µ µ
ν̃µ

χ̃−
i

χ̃−
j

γ

Figure 8. The four classes of two-loop diagrams with fermion/sfermion loop insertions into the neu-

tralino vertex (nv), neutralino self-energy (ns), chargino vertex (cv), and chargino self-energy (cs).

In the (cs) case always the sum of the two contributing diagrams is considered. The dark circles

denote fermion/sfermion-loop insertions.

The generic constants v, a, s, p have to be replaced by

v =
1

4

(
δZL∗

χ̃−,ji + δZR∗
χ̃−,ji + δZL

χ̃−,ij + δZR
χ̃−,ij

)
, (3.28a)

a =
1

4

(
δZL∗

χ̃−,ji − δZR∗
χ̃−,ji + δZL

χ̃−,ij − δZR
χ̃−,ij

)
, (3.28b)

s = −1

4
mχ̃−

i

(
δZL

χ̃−,ij + δZR
χ̃−,ij

)
− 1

4
mχ̃−

j

(
δZL∗

χ̃−,ji + δZR∗
χ̃0,ji

)

− 1

2

(
δmχ̃−,ji + δm∗

χ̃−,ij

)
,

(3.28c)

p = −1

4
mχ̃−

i

(
δZL

χ̃−,ij − δZR
χ̃−,ij

)
− 1

4
mχ̃−

j

(
δZR∗

χ̃−,ji − δZL∗
χ̃−,ji

)

− 1

2

(
δmχ̃−,ji − δm∗

χ̃−,ij

)
.

(3.28d)

We highlight several characteristic properties which are shared by the more complicated

two-loop contributions discussed below: off-diagonal coupling combinations with indices ji

and the “minus”-coupling combinations A− and B− appear. Some parts of the counterterm

results can be reduced by partial fractioning to loop functions that appear already in the

standard one-loop results, some parts involve more complicated loop functions that depend

on two mass ratios. Results at O(ǫ0) for generic diagrams similar to these counterterm

diagrams have already been computed in ref. [82].

4 Two-loop contributions

The two-loop diagrams with a closed fermion/sfermion loop can be classified according to

their topologies, as shown in figure 8, where the fermion/sfermion loops are denoted by

dark circles. There are four classes:
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• neutralino diagrams with an inner fermion/sfermion loop generating either an effec-

tive three-point neutralino-neutralino-photon vertex (nv), or a neutralino self-energy

(ns). The inner loops are shown in more detail in figures 9 and 10.

• chargino diagrams with an inner fermion/sfermion loop generating either an effective

three-point chargino-chargino-photon vertex (cv), or a chargino self-energy (cs). The

inner loops are shown in more detail in figures 11 and 12.

There are no fermion/sfermion-loop corrections to the external vertices involving the

muons, which is the reason why the counterterm diagrams in figure 6(µnv, µcv) are fi-

nite.

The computation of the diagrams has been carried out in two different ways. The

first way uses the procedure described in refs. [19, 48] and is based on standard techniques

for evaluating two-loop integrals, reduction to master integrals, large mass expansion and

automated analytical simplification.

The second computation is completely different and uses the technique of Barr-Zee

diagrams [58]. In the simplest Barr-Zee diagrams a closed loop generates an effective γ–γ-

Higgs vertex. The computational strategy is to first compute the inner one-loop diagram

alone using a Feynman parametrization, simplify it, and then insert it into the second loop

diagram. By performing the second loop integration one obtains an integral representation

of the full two-loop diagram. This Barr-Zee technique has been employed to compute

several classes of contributions to electric [58, 83, 84] and magnetic dipole moments [49, 50,

85, 86]. In the latter references either fermion or sfermion loops generate a γ-vector-Higgs

interaction. The diagrams considered in this paper can be regarded as supersymmetric

counterparts to this, since the fermion/sfermion loops of figures 9 and 11 effectively generate

γ-gaugino-higgsino interactions.

Compared to the previous applications of the method used by Barr and Zee the dia-

grams considered here are more complicated for three reasons:

• There is one more heavy mass scale in the diagram. As a consequence the two-loop

results depend on four dimensionless mass ratios instead of three.

• The QED Ward identity constrains the results for the inner loops. As a consequence

the inner loops in the references quoted above can be simplified to expressions which

depend only on a single covariant and a single scalar function. However, in our case

the Ward identity allows four such covariants already in the simplest case.

• The inner loops can be ultraviolet divergent. Apart from the requirement of renor-

malization this implies that the outer loop has to be computed to higher orders in

the dimensional regularization parameter ǫ = (4−D)/2.

In the following the calculation and the results of the four classes of figure 8 are

described in detail. The results are expressed in terms of generic neutralino and chargino

couplings, defined in section 2.1. All results will be given only for i 6= j; for the case i = j

a limit can be performed.
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In the neutralino cases we will close with some remarks on the structure of the results,

similar to the remarks at the end of section 3. We will be briefer in the chargino cases,

where the structure of the results is similar.

4.1 Notations for the neutralino results

We first introduce abbreviations which help us to write the neutralino two-loop results in

a compact way.

The Feynman parametrization of the inner loops leads to a denominator of the form

w(1− w) ℓ2 − (1− w)m2
f − wm2

f̃
, which depends on the Feynman parameter w. This de-

fines a propagator denominator

Dff̃k
(ℓ) ≡ ℓ2 −m2

ff̃k
(w) (4.1)

with momentum ℓ and an effective mass

m2
ff̃k

(w) ≡
m2

f

w
+

m2
f̃k

1− w
. (4.2)

The quantitiesmf andmf̃ denote fermion and sfermion masses, respectively. Due to partial

integration also the derivative of the denominator appears, so it is convenient to introduce

the abbreviation

gw(ℓ
2,m2

f ,m
2
f̃k
) ≡

(1− 2w) ℓ2 +m2
f −m2

f̃k

1− w
, (4.3)

which is related to this derivative. In the case of neutralinos the results depend on the

electric charge Qf of the inner fermion, which equals +2
3 ,−1

3 ,−1 for up-type quarks, down-

type quarks and charged leptons, respectively. The color factor NC is 1 for leptons and 3

for quarks. The results further depend on the dimensionless mass ratios defined as

Ni ≡
m2

i

m2
µ̃m

, Nj ≡
m2

j

m2
µ̃m

, Nf ≡
m2

f

m2
µ̃m

, Nf̃k
≡

m2
f̃k

m2
µ̃m

, Nff̃k
≡

m2
ff̃k

(w)

m2
µ̃m

, (4.4)

where the neutralino masses are defined as mi,j ≡ mχ̃0
i,j

and mµ̃m is the smuon mass. It is

also useful to introduce the following abbreviations for logarithms

lz ≡ logNz, L(m2) ≡ log
m2

µ2
DRED

. (4.5)

Here µDRED is the scale of dimensional regularization/dimensional reduction (there is no

difference between the two schemes for the considered class of contributions). This scale

does not drop out of the final, renormalized two-loop result because of the DR renormal-

ization of tanβ.
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q↓

f

f̃k

χ̃0
j

ℓℓ− q

χ̃0
i

(a) q↓

f

f̃kχ̃0
j

ℓℓ− q

χ̃0
i

(b) q↓

f c

f̃k

χ̃0
j

ℓℓ− q

χ̃0
i

(c) q↓

f c

f̃kχ̃0
j

ℓℓ− q

χ̃0
i

(d)

Figure 9. Feynman diagrams contributing to the neutralino vertex insertion. The sum of these

diagrams is denoted as iΓ0µ

ijf̃k
(ℓ). The momenta flow in the directions indicated by the arrows.

4.2 Neutralino vertex contributions

The neutralino vertex diagrams, shown in figure 8(nv), constitute the only ultraviolet

finite class of two-loop diagrams containing a closed fermion/sfermion loop. They show

the closest similarity to the Barr-Zee type diagrams calculated in refs. [49, 50, 85, 86]. For

each fermion/sfermion pair, there are four different inner loop diagrams, shown in figure 9,

which generate an effective χ̃0χ̃0γ interaction. This three-point function is calculated to

first order in the photon momentum q. The use of Feynman parameter representation then

yields the form of a Feynman propagator with an effective mass defined in eq. (4.2) and

simplifies the subsequent calculation.

For a generic fermion/sfermion pair (f, f̃k), the sum of the four inner loop diagrams of

figure 9 results in

Γ0µ

ijf̃k
(ℓ) =

eQf

16π2

∫ 1

0

dw

2

[ (
An+

ijf̃k
−An−

ijf̃k
γ5
) /ℓ/qγµ − /ℓqµ + /qℓµ − (ℓ · q)γµ

Dff̃k
(ℓ)

+
(
Bn+

ijf̃k
− Bn−

ijf̃k
γ5
) mf

w

/qγµ − qµ

Dff̃k
(ℓ)

]
.

(4.6)

The appearing coupling combinations correspond to the imaginary and real parts of

the coupling constants involved:

An±

ijf̃k
≡ An±

ijf̃k
∓An±∗

ijf̃k
, (4.7a)

Bn±

ijf̃k
≡ Bn±

ijf̃k
∓ Bn±∗

ijf̃k
. (4.7b)

The result of eq. (4.6) can be divided into four parts according to these four different

coupling combinations.

Apparently, the QED Ward identity qµΓ
0µ

ijf̃k
(ℓ) = 0 is manifestly valid for each of

the four parts separately. In line with the interpretation from section 2.1, the chirality-

conserving A combinations appear in terms with odd powers of γ-matrices; the chirality-

flipping B combinations in the ones with even powers. Further, the “plus”-combinations

appear without γ5; the “minus”-combinations with γ5.
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Inserting eq. (4.6) into the outer loop, performing the loop integration and extracting

aµ yields

a
(nv)

µ ijmf̃k
=

∫ 1

0
dw

[
An+

jiµ̃m

(
An+

ijf̃k
T nv+
AA + Bn+

ijf̃k
T nv+
AB

)
+ Bn+

jiµ̃m

(
An+

ijf̃k
T nv+
BA + Bn+

ijf̃k
T nv+
BB

)

+An−
jiµ̃m

(
An−

ijf̃k
T nv−
AA + Bn−

ijf̃k
T nv−
AB

)
+ Bn−

jiµ̃m

(
An−

ijf̃k
T nv−
BA + Bn−

ijf̃k
T nv−
BB

)]
.

(4.8)

The loop functions T are either symmetric or antisymmetric in i, j and read

T nv±
AA =

(
1

16π2

)2 NCQf

4

m2
µ

m2
µ̃m

mi

mi∓mj

×
[

1−Nff̃k
+ lff̃kN

2
ff̃k

(1−Nff̃k
)2(Nff̃k

−Ni)
− 1−Ni + liN

2
i

(1−Ni)2(Nff̃k
−Ni)

]
+ (i ↔ j),

(4.9a)

T nv±
AB =

(
1

16π2

)2 NCQf

4w

m2
µmf

m2
µ̃m

1

±mi −mj

×
[

1−Nff̃k
+ lff̃kN

2
ff̃k

(1−Nff̃k
)2(Nff̃k

−Ni)
− 1−Ni + liN

2
i

(1−Ni)2(Nff̃k
−Ni)

]
± (i ↔ j),

(4.9b)

T nv±
BA =

(
1

16π2

)2 NCQf

4
mµ

1

mi∓mj

×
[
−

lff̃kN
2
ff̃k

(1−Nff̃k
)(Nff̃k

−Ni)
+

liN
2
i

(1−Ni)(Nff̃k
−Ni)

]
± (i ↔ j),

(4.9c)

T nv±
BB =

(
1

16π2

)2 NCQf

2w

mµmf

m2
µ̃m

mimj

m2
i −m2

j

×
[
−

lff̃kNff̃k

(1−Nff̃k
)(Nff̃k

−Ni)
+

liNi

(1−Ni)(Nff̃k
−Ni)

]
+ (i ↔ j).

(4.9d)

The notation ±(i ↔ j) indicates adding or subtracting the preceding expression

with i and j exchanged.

We close with some comments on the structure of the results. The A+,B+-terms

and the A−,B−-terms in the inner loop generate the vector and axial vector parts of the

χ̃0χ̃0γ interaction and further terms without/with γ5, respectively. They combine with the

coupling combinations of the outer loop similarly to v and a in eq. (3.24), such that only

“++” and “−−” coupling combinations exist in eq. (4.8). The index structure of the outer

loop, jiµ̃m, matches the index structure ijf̃k of the inner loop.

An important property of the B-terms of the inner loop is that they are all proportional

to the inner fermion mass mf . This factor is needed in the inner loop because of the

chirality-flipping nature of the B coupling combinations. As a result, the B-terms of the

inner loop can be sizeable only for third-generation insertions. In contrast, the B-terms
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f̃k

χ̃0
j

ℓℓ

χ̃0
i
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Figure 10. Feynman diagrams contributing to the neutralino self-energy insertion iΣ0

ijf̃k
(ℓ).

of the outer loop are always important; as already at one-loop, they are tanβ-enhanced

compared to the A-terms of the outer loop.

The loop functions appearing in the two-loop results of eqs. (4.9) depend on three

mass ratios, Ni, Nj , Nff̃k
. The neutralino vertex contributions are particularly simple in

this respect, since the masses mf and mf̃k
of the inner loop do not appear individually but

only in the combination Nff̃k
.

4.3 Neutralino self-energy contributions

The next diagram class in our consideration is the one corresponding to figure 8(ns), where

the inner loop generates a neutralino self-energy. For each fermion/sfermion pair, the cor-

responding one-loop insertions are given by the two Feynman diagrams shown in figure 10.

The sum of these diagrams yields the effective self-energy insertion iΣ0
ijf̃k

(ℓ), given by

Σ0
ijf̃k

(ℓ) =
1

16π2

∫ 1

0

dw

2

[ (
Ãn+

ijf̃k
− Ãn−

ijf̃k
γ5
)
w/ℓ

(
1

ǫ
− L(m2

f̃k
) +

gw(ℓ
2,m2

f ,m
2
f̃k
)/2

Dff̃k
(ℓ)

)

+
(
B̃n+

ijf̃k
− B̃n−

ijf̃k
γ5
)
mf

(
1

ǫ
− L(m2

f̃k
) +

gw(ℓ
2,m2

f ,m
2
f̃k
)

Dff̃k
(ℓ)

)]
.

(4.10)

Compared to the neutralino vertex contributions in eqs. (4.7), the coupling combina-

tions appear with opposite signs:

Ãn±

ijf̃k
≡ An±

ijf̃k
±An±∗

ijf̃k
, (4.11a)

B̃n±

ijf̃k
≡ Bn±

ijf̃k
± Bn±∗

ijf̃k
. (4.11b)

Similar to the previous case, the chirality-conserving A-combinations appear in the terms

with odd powers of γ-matrices, the chirality-flipping B-couplings in those without γ-matrix.

Also the “plus”(“minus”)-combinations appear without(with) γ5.

Inserting eq. (4.10) into the two-loop diagrams of figure 8(ns) and performing the loop

integration yields a rather compact expression for aµ. The divergent part can be trivially

– 23 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

read off from combining eqs. (3.22) and (4.10). The finite part is given by:

a
(ns)

µ ijmf̃k
=

∫ 1

0
dw

[
An+

jiµ̃m

(
Ãn+

ijf̃k
T ns+
AA + B̃n+

ijf̃k
T ns+
AB

)
+ Bn+

jiµ̃m

(
Ãn+

ijf̃k
T ns+
BA + B̃n+

ijf̃k
T ns+
BB

)

+An−
jiµ̃m

(
Ãn−

ijf̃k
T ns−
AA + B̃n−

ijf̃k
T ns−
AB

)
+ Bn−

jiµ̃m

(
Ãn−

ijf̃k
T ns−
BA + B̃n−

ijf̃k
T ns−
BB

)]
.

(4.12)

Each of the loop functions T ns±
XY can be expressed in terms of two simpler functions

T ns1
XY and T ns2

XY , such that the dependence on Nff̃k
and Ni/Nj is essentially separated:

T ns±
AA =

(
1

16π2

)2

NC

m2
µ

m2
µ̃m

mi

mi∓mj

[
T ns1
AA + T ns2

AA

]
+ (i ↔ j), (4.13a)

T ns±
AB =

(
1

16π2

)2

NC

m2
µmf ′

m2
µ̃m

1

±mi −mj

[
T ns1
AB + T ns2

AB

]
± (i ↔ j), (4.13b)

T ns±
BA =

(
1

16π2

)2

NCmµ
1

mi∓mj

[
T ns1
BA + T ns2

BA

]
± (i ↔ j), (4.13c)

T ns±
BB =

(
1

16π2

)2

NC
mµmf ′

m2
µ̃m

mi

±mi −mj

[
T ns1
BB + T ns2

BB

]
+ (i ↔ j), (4.13d)

with

T ns1
AA =w

gw(Nff̃k
, Nf , Nf̃k

)

Nff̃k
−Ni

FN
1 (Nff̃k

)

48
, (4.14a)

T ns2
AA =

(
− 4L(m2

µ̃m
)− li − 2lf̃k

− 1

6N2
i

+
1

Ni
+

5

2
+

Ni

3
− 2w

gw(Ni, Nf , Nf̃k
)

Nff̃k
−Ni

)
FN
1 (Ni)

96
+

1− 8Ni − 4N2
i

288N2
i

,

(4.14b)

T ns1
AB =

gw(Nff̃k
, Nf , Nf̃k

)

Nff̃k
−Ni

FN
1 (Nff̃k

)

24
, (4.14c)

T ns2
AB =

(
− 4L(m2

µ̃m
)− li − 2lf̃k

− 1

6N2
i

+
1

Ni
+

5

2
+

Ni

3
− 2

gw(Ni, Nf , Nf̃k
)

Nff̃k
−Ni

)
FN
1 (Ni)

48
+

1− 8Ni

144N2
i

,

(4.14d)

T ns1
BA =w

gw(Nff̃k
, Nf , Nf̃k

)

Nff̃k
−Ni

Nff̃k
FN
2 (Nff̃k

)− 3

24
, (4.14e)

T ns2
BA =

(
− 4L(m2

µ̃m
)− li − 2lf̃k

− 1

2N2
i

+
2

Ni
+

1

2
+Ni − 2w

gw(Ni, Nf , Nf̃k
)

Nff̃k
−Ni

)
Ni F

N
2 (Ni)− 3

48
− 3− 15Ni

96N2
i

,

(4.14f)
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T ns1
BB =

gw(Nff̃k
, Nf , Nf̃k

)

Nff̃k
−Ni

FN
2 (Nff̃k

)

12
, (4.14g)

T ns2
BB =

(
− 4L(m2

µ̃m
)− li − 2lf̃k

+
1

2N2
i

+ 2 +
Ni

2
− 2

gw(Ni, Nf , Nf̃k
)

Nff̃k
−Ni

)
FN
2 (Ni)

24
− 1 +Ni

16Ni
,

(4.14h)

The comments at the end of section 4.2 apply here as well. However, the loop functions

are now more complicated. The masses mf and mf̃k
appear not only via the combination

Nff̃k
but also explicitly via Nf and Nf̃k

. Their dependence is localized to the abbreviation

gw, which already appears in the inner loop, i. e. the self energy eq. (4.10). In spite of

this complication, the loop functions in eq. (4.13) could be partially expressed in terms of

the one-loop functions FN
1,2. This is similar to the corresponding counterterm diagram in

figure 7(ns), eq. (3.22).

4.4 Notations for the chargino results

We now turn to the chargino results. Since the chargino is negatively charged, the inner

loop contains the fermion f ′, which is the U(2) doublet partner of the fermion f . In analogy

to the neutralino case we introduce an effective mass

m2
f ′f̃k

(w) ≡
m2

f ′

w
+

m2
f̃k

1− w
, (4.15)

and its corresponding propagator denominator

Df ′f̃k
(ℓ) ≡ ℓ2 −m2

f ′f̃k
(w). (4.16)

As mentioned in section 2.1, the chargino interactions in the Lagrangian (2.1) can

be rewritten using flipping rules for the anti-up-type fermions. Recalling the (f ′, f̃) com-

binations in eq. (2.4) we apply Quc = −2
3 for anti-up-type quarks, Qd = −1

3 for down-

type quarks, and Ql = −1 for leptons. In this way, the relation for charge conservation

Qf ′ −Qf̃k
= Qχ̃− = −1 is always valid. The chargino results further depend on the color

factor NC of the inner fermion, the chargino masses mi,j ≡ mχ̃−
i,j

and the dimensionless

mass ratios

Ci ≡
m2

i

m2
ν̃µ

, Cj ≡
m2

j

m2
ν̃µ

, Cf ′ ≡
m2

f ′

m2
ν̃µ

, Cf̃k
≡

m2
f̃k

m2
ν̃µ

, Cf ′f̃k
≡

m2
f ′f̃k

(w)

m2
ν̃µ

. (4.17)

The logarithms defined in eq. (4.5) are modified to

lz ≡ logCz, L(m2) ≡ log
m2

µ2
DRED

(4.18)

for the chargino case.
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q↓

f ′

f̃k

χ̃−
j

ℓℓ− q

χ̃−
i

(a)
q↓

f ′

f̃kχ̃−
j

ℓℓ− q

χ̃−
i

(b)

Figure 11. Feynman diagrams for the chargino vertex insertion iΓ−µ

ijf̃k
(ℓ). The possible insertions

are given in eq. (2.4) and involve only negative fermions and positive sfermions.

4.5 Chargino vertex contributions

The chargino vertex contributions are shown in figure 8(cv). The corresponding one-loop

insertions are shown in figure 11 and can be written as:

Γ−µ

ijf̃k
(ℓ) =

eQf ′

16π2

∫ 1

0

dw

2

{(
Ac+

ijf̃k
−Ac−

ijf̃k
γ5

) /ℓ/qγµ − /ℓqµ + /qℓµ − (ℓ · q)γµ
Df ′f̃k

(ℓ)

+
(
Bc+

ijf̃k
− Bc−

ijf̃k
γ5

) mf ′

w

/qγµ − qµ

Df ′f̃k
(ℓ)

}

−eQχ̃−

16π2

∫ 1

0

dw

2

{(
Ac+

ijf̃k
−Ac−

ijf̃k
γ5

)
w

×
[(

1

ǫ
− L(m2

f̃k
)

)
γµ − 2

(ℓ · q) /ℓ ℓµ
D 2

f ′f̃k
(ℓ)

+
/qℓµ + /ℓqµ + (ℓ · q)γµ − 2 /ℓ ℓµ + gw(ℓ

2,m2
f ′ ,m2

f̃k
)γµ/2

Df ′f̃k
(ℓ)

]

+
(
Bc+

ijf̃k
− Bc−

ijf̃k
γ5

)
mf ′

[
− 2

(ℓ · q)ℓµ
D 2

f ′f̃k
(ℓ)

+
qµ − 2ℓµ

Df ′f̃k
(ℓ)

]}
.

(4.19)

The part proportional to the inner fermion charge Qf ′ can be written in exactly the same

way as the neutralino vertex corrections. The remaining terms proportional to Qχ̃− have

no neutralino counterpart. They are divergent and have a far more involved structure.

Inserting eq. (4.19) into the outer loop and integrating over the loop momentum yields

for the finite part

a
(cv)

µ ijf̃k
=

∫ 1

0
dw

[
Ac+

jiν̃µ

(
Ac+

ijf̃k
T cv+
AA + Bc+

ijf̃k
T cv+
AB

)
+ Bc+

jiν̃µ

(
Ac+

ijf̃k
T cv+
BA + Bc+

ijf̃k
T cv+
BB

)

+Ac−
jiν̃µ

(
Ac−

ijf̃k
T cv−
AA + Bc−

ijf̃k
T cv−
AB

)
+ Bc−

jiν̃µ

(
Ac−

ijf̃k
T cv−
BA + Bc−

ijf̃k
T cv−
BB

)]
.

(4.20)

Now the loop functions have a significantly more involved structure. On the one hand

this is due to the additional terms in the inner loop, and on the other hand it is caused by the
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outer loop, for which the counterterm result of eq. (3.24) already provides an illustration.

For the loop functions we find the following expressions

T cv±
AA =

(
1

16π2

)2

NC

m2
µ

mν̃µ
2

[
1

Ci − Cj

(T cv1a
AA (Cf ′f̃k

)− T cv1a
AA (Ci)

Cf ′f̃k
− Ci

+ T cv2
AA (Ci)

)

± mimj

m2
i −m2

j

T cv1b
AA (Cf ′f̃k

)− T cv1b
AA (Ci)

Cf ′f̃k
− Ci

]
+ (i ↔ j),

(4.21a)

T cv±
AB =

(
1

16π2

)2

NC

m2
µmf ′

mν̃µ
2

1

±mi −mj

1

w

[T cv1
AB (Cf ′f̃k

)− T cv1
AB (Ci)

Cf ′f̃k
− Ci

]
± (i ↔ j), (4.21b)

T cv±
BA =

(
1

16π2

)2

NCmµ

[
1

mi∓ mj

(T cv1a
BA (Cf ′f̃k

)− T cv1a
BA (Ci)

Cf ′f̃k
− Ci

+ T cv2a
BA

)

+
1

mi±mj

( T cv1b
BA

Cf ′f̃k
− Ci

+ T cv2b
BA

)]
± (i ↔ j),

(4.21c)

T cv±
BB =

(
1

16π2

)2

NC
mµmf ′

mν̃µ
2

[ ±1

Ci − Cj

T cv1
BB (Cf ′f̃k

)− T cv1
BB (Ci)

Cf ′f̃k
− Ci

+
mimj

m2
i −m2

j

T cv1b
BB (Cf ′f̃k

)− T cv1b
BB (Ci)

Cf ′f̃k
− Ci

]
+ (i ↔ j),

(4.21d)

with

T cv1a
AA (Cx) =

Qf ′

4

Cx(1− Cx + lxC
2
x)

(1− Cx)2
+

w

4

1− Cx + lxC
3
x

(1− Cx)2
+

w

24(1− w)

1

(1− Cx)3

×
[
2−6Cx+4C2

x−3lxC
3
x+lxC

4
x+(Cf ′−Cf̃k

)Cx(2−2Cx+3lxCx−lxC
2
x)

]
,

(4.22a)

T cv1b
AA (Cx) =

Qf ′

4

1− Cx + lxC
2
x

(1− Cx) 2
+

w

12

3− 8Cx + 5C2
x − 2lxC

3
x

(1− Cx) 3
, (4.22b)

T cv2
AA (Cx) =

[
− 12L(m2

ν̃µ)− 6lf̃k − 3lx + 5− 6

Cx

]
Cx

(
2− 2Cx + 3lxCx − lxC

2
x

)

144 (1− Cx) 3

+
1 + 2lxCx − C2

x

12 (1− Cx) 3
,

(4.22c)

T cv1
AB (Cx) = T cv1b

AA (Cx) , (4.22d)

T cv1a
BA (Cx) = − Qf ′

4

lxC
2
x

1− Cx
+

w

8

[
2

1− Cx
+

lxC
2
x (1 + Cx)

(1− Cx) 2

]

− 1

16
w gw(Cf ′f̃k

, Cf ′ , Cf̃k
)

[
1

1− Cx
+

lxCx (2− Cx)

(1− Cx) 2

]
,

(4.22e)

T cv1b
BA =

1

16
w gw(Cf ′f̃k

, Cf ′ , Cf̃k
)

[
liCi(C

2
i − 2Cj + CiCj)

(Ci − Cj) (1− Ci) 2
+

Ci

1− Ci
+

+
lf ′f̃k

C2
f ′f̃k

1− Cf ′f̃k

(
2

Ci − Cj
− 1

Cf ′f̃k
− Ci

)]
− w

8

liC
2
i

1− Ci
,

(4.22f)
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f ′

f̃k

χ̃−
j

ℓ

χ̃−
i

ℓ

Figure 12. Feynman diagram for the chargino self-energy insertion iΣ−

ijf̃k
(ℓ).

T cv2a
BA =

Ci

(
−3 + 3Ci − 4li + liCi + 2l2i − l2iCi

)

32 (1− Ci) 2

+
1

16

[
2L(m2

ν̃µ) + lf̃k − w
1− 2w

1− w

]
×
[
li (2− Ci)Ci

(1− Ci) 2
+

Ci

1− Ci

]
,

(4.22g)

T cv2b
BA = T cv2a

BA +

(
3li − l2i

)
C2
i

16 (1− Ci) (Ci − Cj)

− 1

8

[
2L(m2

ν̃µ) + lf̃k − w
1− 2w

1− w

]
×
[

liC
2
i

(1− Ci) (Ci − Cj)

]
,

(4.22h)

T cv1
BB (Cx) =

1− Cx + lxC
2
x

4 (1− Cx) 2
, (4.22i)

T cv1b
BB (Cx) = − Qf ′

2w

lxCx

1− Cx
+

1− Cx + lxC
2
x

4 (1− Cx) 2
(4.22j)

In some of these functions an explicit argument Cx is specified, which is specialized in

eqs. (4.21) to Cx ∈ {Ci, Cj , Cf ′f̃k
}.

4.6 Chargino self-energy contributions

The last class of diagrams is the one corresponding to figure 8(cs), where the

fermion/sfermion loop generates a chargino self-energy. Figure 12 shows the chargino

self-energy one-loop diagram. The result has the same structure as the corresponding

neutralino self-energy result, see eq. (4.10),

Σ−

ijf̃k
(ℓ) =

1

16π2

∫ 1

0

dw

2

[ (
Ac+

ijf̃k
−Ac−

ijf̃k
γ5
)
w/ℓ

(
1

ǫ
− L(m2

f̃k
) +

gw(ℓ
2,m2

f ′ ,m2
f̃k
)/2

Df ′f̃k
(ℓ)

)

+
(
Bc+

ijf̃k
− Bc−

ijf̃k
γ5
)
mf

(
1

ǫ
− L(m2

f̃k
) +

gw(ℓ
2,m2

f ′ ,m2
f̃k
)

Df ′f̃k
(ℓ)

)]
.

(4.23)

This self-energy vertex can be inserted in the outer loop in two different ways, as shown

in figure 8(cs). Inserting the self-energy result into the two-loop diagrams, the following

contribution to aµ is obtained:

a
(cs)

µ ijf̃k
=

∫ 1

0
dw
[
Ac+

jiν̃µ

(
Ac+

ijf̃k
T cs+
AA + Bc+

ijf̃k
T cs+
AB

)
+ Bc+

jiν̃µ

(
Ac+

ijf̃k
T cs+
BA + Bc+

ijf̃k
T cs+
BB

)

+Ac−
jiν̃µ

(
Ac−

ijf̃k
T cs−
AA + Bc−

ijf̃k
T cs−
AB

)
+ Bc−

jiν̃µ

(
Ac−

ijf̃k
T cs−
BA + Bc−

ijf̃k
T cs−
BB

) ]
.

(4.24)
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As is clear from the corresponding one-loop counterterm diagrams of figure 7(cs), eq. (3.27),

the chargino self-energy corrections lead to the most complicated two-loop expressions. It

would result in very long formulas for the loop functions T cs±
XY to express the O(ǫ0)-result

like in the previous cases. Hence we employ the ǫ-dependent one-loop functions defined

with two variables FC
1,2,3(Cj , Ci). The O(ǫ0)-part can then be obtained by evaluating the

following expressions explicitly.

Furthermore, the particular structure of the one-loop self-energy result is used. All

terms have the form of a counterterm insertion, possibly multiplied with an additional

propagator and w-dependent rational functions, which can be split off:

T cs±
XA =

(
1

16π2

)2[(
1

ǫ
− L(m2

ν̃µ)− lf̃k −
2w − 1

2(1− w)

)
T cs1±
XA +

gw(Cf ′f̃k
, Cf ′ , Cf̃k

)

2
T cs2±
XA

]
w,

(4.25a)

T cs±
XB =

(
1

16π2

)2[(
1

ǫ
− L(m2

ν̃µ)− lf̃k −
2w − 1

1− w

)
T cs1±
XB + gw(Cf ′f̃k

, Cf ′ , Cf̃k
) T cs2±

XB

]
,

(4.25b)

where X ∈ {A,B}. The individual results for the coefficients of the w-dependent func-

tions are

T cs1±
AA =− NC

24

m2
µ

m2
ν̃µ

mi

mi∓mj

[
FC
1 (Ci) + FC

1 (Cj , Ci)
]
+ (i ↔ j), (4.26a)

T cs2±
AA =

NC

24

m2
µ

m2
ν̃µ

mi

mi∓mj

1

Cf ′f̃k
− Ci

×
[
FC
1 (Ci)−FC

1 (Cf ′f̃k
, Ci)−FC

1 (Cj , Cf ′f̃k
) + FC

1 (Cj , Ci)
]
+ (i ↔ j),

(4.26b)

T cs1±
AB =− NC

24

m2
µ

m2
ν̃µ

mf ′
1

±mi −mj
FC
1 (Ci)± (i ↔ j), (4.26c)

T cs2±
AB =

NC

24

m2
µ

m2
ν̃µ

mf ′
1

±mi −mj

1

Cf ′f̃k
− Ci

×
[
FC
1 (Ci)−FC

1 (Cf ′f̃k
, Ci)−FC

1 (Cj , Cf ′f̃k
) + FC

1 (Cj , Ci)
]
± (i ↔ j),

(4.26d)

T cs1±
BA =− NC

12

mµ

m2
ν̃µ

mi

mi∓mj

×
[
2miFC

2 (Ci) + (mi±mj)FC
2 (Cj , Ci)− 6(mi∓mj)FC

3 (Cj , Ci)
]
± (i ↔ j),

(4.26e)

T cs2±
BA =− NC

12

mµ

m2
ν̃µ

mi

mi ∓mj

1

Cf ′f̃k
− Ci

×
[
2mi

(
−FC

2 (Ci) + FC
2 (Cf ′f̃k

, Ci)
)
+ (mi±mj)

(
FC
2 (Cj , Cf ′f̃k

)−FC
2 (Cj , Ci)

)

+ 6(mi∓mj)
(
FC
3 (Cj , Ci)−FC

3 (Cj , Cf ′f̃k
)
)]

+ (i ↔ j),

(4.26f)
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T cs1±
BB =− NC

6

mµmf ′

m2
ν̃µ

mi

±mi −mj
FC
2 (Ci) + (i ↔ j), (4.26g)

T cs2±
BB =− NC

12

mµmf ′

m2
ν̃µ

1

±mi −mj

1

Cf ′f̃k
− Ci

×
[
2mi

(
−FC

2 (Ci) + FC
2 (Cf ′f̃k

, Ci)
)
+ (mi±mj)

(
FC
2 (Cj , Cf ′f̃k

)−FC
2 (Cj , Ci)

)

+ 6(mi∓mj)
(
FC
3 (Cj , Ci)−FC

3 (Cj , Cf ′f̃k
)
)]

+ (i ↔ j).

5 Overview of input parameters and benchmark scenarios

In the remaining three sections the phenomenological behaviour of the results is discussed.

The present section gives an overview of the input parameters and useful benchmark pa-

rameter scenarios; then a compact approximation is provided, and finally the parameter

dependence of the fermion/sfermion-loop contributions to aµ is analyzed in detail.

The fermion/sfermion-loop contributions to aµ depend on the following fifteen

parameters.

• One-loop parameters:

µ,M1,M2,ME ,ML, tanβ. (5.1)

Of course, all parameters of the one-loop SUSY contributions appear again.

• Two-loop sfermion-mass parameters appearing in the inner loop:

MU ,MD,MQ,MU3,MD3,MQ3,ME3,ML3. (5.2)

The additional sensitivity on these sfermion masses of all generations is one of the

most important properties of the fermion/sfermion-loop contributions. For simplicity,

the sfermion-mass parameters of the first two generations are set equal; hence the

first-generation slepton masses do not appear as free parameters here.

• Stop A-parameter:

At. (5.3)

All other A-parameters appear only multiplied with small fermion masses and are

neglected.

In our analysis all parameters are considered to be real quantities, and generation mixing

is neglected. SM input parameters are defined as in ref. [87]:

MW = (80.385± 0.015)GeV, mt = (173.5± 0.6± 0.8)GeV,

MZ = (91.1876± 0.0021)GeV, mµ = (105.6583715± 0.0000035)MeV.
(5.4)

Since we define tanβ in the DR renormalization scheme, the final result also depends on

the scale µDRED, which we always set to the SPS1a value µDRED = 454.7GeV [88].

– 30 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
0

BM1 BM2 BM3 BM4

µ[GeV] 350 1300 4000 −160

tanβ 40 40 40 50

M1[GeV] 150 150 150 140

M2[GeV] 300 300 300 2000

ME [GeV] 400 400 400 200

ML[GeV] 400 400 400 2000

a1L SUSY
µ [10−10] 44.02 26.95 46.78 15.98

Table 1. Definition of the benchmark points; see also ref. [25]. In BM1, all one-loop masses are

similar; in BM2, the µ-parameter is increased by a factor 4. In BM3, the µ-parameter is very large

and the bino-exchange contribution dominates. In BM4, the contribution from the right-handed

smuon dominates.

In the following numerical discussions, the benchmark points for the one-loop param-

eters, introduced in ref. [25] and defined in table 1, are used repeatedly. They characterize

qualitatively different regions of the one-loop parameter space, where the one-loop result

is dominated by different mass-insertion diagrams (see refs. [27, 45, 47]).

• BM1: all one-loop masses are similar; the one-loop contribution to aµ is dominated

by the chargino mass-insertion diagram a1Lµ (W̃–H̃, ν̃µ) with wino-Higgsino exchange.

• BM2: the µ-parameter is increased by a factor ∼ 4. The one-loop chargino contri-

bution a1Lµ (W̃–H̃, ν̃µ) and the bino-exchange contribution a1Lµ (B̃, µ̃L–µ̃R) are similar.

The well-known benchmark point SPS1a [88] has a similar characteristic.

• BM3: the µ-parameter is very large. All one-loop contributions involving higgsi-

nos are suppressed, and the bino-exchange contribution a1Lµ (B̃, µ̃L–µ̃R) dominates.

Parameter scenarios with this characteristic have been studied extensively also in

refs. [30, 38] recently.

• BM4: the parameters are chosen such that the right-handed smuon contribution

a1Lµ (B̃–H̃, µ̃R) dominates: M2 and ML are heavy, and the other three one-loop mass

parameters are light. The µ-parameter is negative to allow for a positive contribution

to aµ. Parameter scenarios with this characteristic have been studied recently also

in ref. [89].

6 Leading logarithmic approximation

As a first step of the numerical discussion, a very compact approximate formula is pro-

vided. It can be easily implemented, and it captures many features of the qualitative and

quantitative behaviour of the exact result. The approximation is based on the leading

logarithms of the result.
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As discussed in ref. [25], the fermion/sfermion-loop contributions are logarithmically

enhanced if the sfermions in the inner loop become heavy. This non-decoupling behaviour

can be understood in an effective field theory. If heavy sfermions are integrated out, the

effective field theory is not supersymmetric anymore, and gaugino and higgsino couplings

can differ from the corresponding gauge and Yukawa couplings.

Based on this idea, we start from the one-loop result, approximated by mass-insertion

diagrams, see refs. [27, 45, 47].4 In the form given in ref. [47] the approximation reads

a1L SUSY,M.I.
µ = a1Lµ (W̃–H̃, ν̃µ) + a1Lµ (W̃–H̃, µ̃L) + a1Lµ (B̃–H̃, µ̃L)

+ a1Lµ (B̃–H̃, µ̃R) + a1Lµ (B̃, µ̃L–µ̃R), (6.1)

with

a1Lµ (W̃–H̃, ν̃µ) =
g22
8π2

m2
µM2

m4
ν̃µ

µ tanβ Fa

(
M2

2

m2
ν̃µ

,
µ2

m2
ν̃µ

)
, (6.2a)

a1Lµ (W̃–H̃, µ̃L) = − g22
16π2

m2
µM2

M4
L2

µ tanβ Fb

(
M2

2

M2
L2

,
µ2

M2
L2

)
, (6.2b)

a1Lµ (B̃–H̃, µ̃L) =
g21

16π2

m2
µM1

M4
L2

µ tanβ Fb

(
M2

1

M2
L2

,
µ2

M2
L2

)
, (6.2c)

a1Lµ (B̃–H̃, µ̃R) = − g21
8π2

m2
µM1

M4
E2

µ tanβ Fb

(
M2

1

M2
E2

,
µ2

M2
E2

)
, (6.2d)

a1Lµ (B̃, µ̃L–µ̃R) =
g21
8π2

m2
µ

M3
1

µ tanβ Fb

(
M2

L2

M2
1

,
M2

E2

M2
1

)
. (6.2e)

The loop functions appearing here are defined as

Fa(x, y) = −G3(x)−G3(y)

x− y
, (6.3a)

Fb(x, y) = −G4(x)−G4(y)

x− y
, (6.3b)

with

G3(x) =
1

2(x− 1)3

[
(x− 1)(x− 3) + 2 log x

]
, (6.4a)

G4(x) =
1

2(x− 1)3

[
(x− 1)(x+ 1)− 2x log x

]
. (6.4b)

4Note that we only use a1L SUSY,M.I.
µ and the definitions of eq. (6.2) as building blocks in an approxi-

mation of the two-loop results. They should not be used in a precision evaluation of the SUSY one-loop

contributions, since the error can be significant.
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In terms of these expressions, the leading logarithmic approximation of the

fermion/sfermion two-loop contributions, a2L,f f̃ LL
µ , is given by

a2L,f f̃ LL
µ = a1Lµ (W̃–H̃, ν̃µ)

(
∆g2 +∆H̃ +∆W̃ H̃ +∆tβ + 0.015

)
,

+ a1Lµ (W̃–H̃, µ̃L)
(
∆g2 +∆H̃ +∆W̃ H̃ +∆tβ + 0.015

)
,

+ a1Lµ (B̃–H̃, µ̃L)
(
∆g1 +∆H̃ +∆B̃H̃ +∆tβ + 0.015

)
,

+ a1Lµ (B̃–H̃, µ̃R)
(
∆g1 +∆H̃ +∆B̃H̃ +∆tβ + 0.04

)
,

+ a1Lµ (B̃, µ̃L–µ̃R)
(
∆g1 +∆tβ + 0.03

)
.

(6.5)

The shifts ∆g1 , ∆g2 , ∆H̃ , ∆B̃H̃ , ∆W̃ H̃ and ∆tβ are defined as follows:

∆g1 =
g21

16π2

4

3

(
8

3
log

MU

mSUSY
+

4

3
log

MU3

mSUSY
+

2

3
log

MD

mSUSY
+

1

3
log

MD3

mSUSY

+
1

3
log

MQ

mSUSY
+

1

6
log

MQ3

mSUSY
+ log

ME3

mSUSY
+

1

2
log

ML3

mSUSY

)
,

(6.6a)

∆g2 =
g22

16π2

4

3

(
3 log

MQ

mSUSY
+

3

2
log

MQ3

mSUSY
+

1

2
log

ML3

mSUSY

)
, (6.6b)

∆H̃ =
1

16π2

1

2

(
3y2t log

MU3

mSUSY
+ 3y2b log

MD3

mSUSY
+ 3(y2t + y2b ) log

MQ3

mSUSY

+ y2τ log
ME3

mSUSY
+ y2τ log

ML3

mSUSY

)
,

(6.6c)

∆B̃H̃ =
1

16π2
y2t

(
2 log

MQ3

mSUSY
− 8 log

MU3

mSUSY

)
, (6.6d)

∆W̃ H̃ =
1

16π2
y2t

(
−6 log

MQ3

mSUSY

)
, (6.6e)

∆tβ =
1

16π2
(3y2b − 3y2t + y2τ ) log

µDRED

mSUSY
, (6.6f)

where mSUSY = min(|µ|, |M1|, |M2|,ML2,ME2). The gauge and Yukawa coupling constants

in the coefficients are given in eq. (2.6).

Here, ∆g1 and ∆g2 are effective shifts to the gaugino couplings of the bino and wino,

respectively. The logarithms of the inner sfermion masses appear weighted with the respec-

tive squared gauge couplings. ∆H̃ corresponds to the higgsino self energies and contains

logarithms multiplied with squared Yukawa couplings. Here, the 1st and 2nd generation

Yukawa couplings are neglected. ∆B̃H̃ and ∆W̃ H̃ correspond to effective B̃–H̃ and W̃–H̃

transitions generated by fermion/sfermion loops. ∆tβ arises from DR renormalization of

tanβ and contains µDRED. The non-logarithmic numerical constants appearing in eq. (6.5)

approximate the typical magnitude of the additional non-logarithmic contributions. They

have been obtained by fitting eq. (6.5) to the exact result for the data points shown in

figure 13.

We briefly summarize the terms which are neglected by this approximation and state

criteria when the approximation is expected to fail.
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BM1 BM2 BM3 BM4

a1L SUSY
µ [10−10] 44.02 26.95 46.78 15.98

a1L SUSY,M.I.
µ [10−10] 44.69 27.25 47.41 17.59

r = a2L,f f̃µ /a1L SUSY
µ 0.041 0.045 0.047 0.049

rLL = a2L,f f̃ LL
µ /a1L SUSY

µ 0.040 0.043 0.047 0.053

Table 2. Comparison of exact results and corresponding approximation formulas. The first and

the third line are taken from ref. [25].
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Figure 13. The exact result for r ≡ a2L,f f̃µ /a1L SUSY
µ compared with the approximation expressed

as rLL ≡ a2L,f f̃ LL
µ /a1L SUSY

µ . The mass parameters are chosen randomly around the benchmark

points BM1 and BM4, with the ranges given in table 3. The first and second figure show rLL − r

as a function of r, the third figure shows rLL − r as a function of the minimum SUSY mass

min(|µ|, |M1|, |M2|,ME ,ML). The light blue points correspond to the same data points as the

ones used for figure 5 of ref. [25], the red (black) points to a minimum SUSY mass bigger than

150 (180)GeV.

• Already the one-loop approximation in eqs. (6.2) neglects terms with a relative sup-

pression of the orders O(1/ tanβ) and O(M2
Z/M

2
SUSY), where MSUSY denotes the

relevant SUSY masses appearing at the one-loop level. Hence, the two-loop approxi-

mation becomes invalid if tanβ or MSUSY become too small.

• The dependence on the inner sfermion masses beyond leading logarithms, in partic-

ular the behaviour for small inner sfermion masses and large mixing, is neglected.

Furthermore, the dependence on all one-loop parameters µ,M1,M2,ML,ME and

tanβ (beyond the one-loop dependence) is neglected and replaced by the numerical

constants in eq. (6.5).

We have verified that the approximation is in good agreement with the results for the

benchmark points BM1. . . BM4 from ref. [25].5 Table 2 shows a comparison of the results

5Some of the benchmark points involve equal mass parameters, ME = ML, M2 = ML. A direct evalua-

tion of the approximation formulas for these benchmark points would suffer from the artificial singularities

of the loop functions Fa(x, y) and Fb(x, y) for x = y. These are avoided in the numerical evaluation of

the approximations in table 2 by shifting the mass parameters of the benchmark points in a numerically
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BM1 BM4

µ[GeV] [100, 200] [−200,−100]

tanβ 40 50

M1[GeV] [100, 200] [100, 200]

M2[GeV] [200, 400] [1000, 3000]

ME [GeV] [200, 500] [100, 300]

ML[GeV] [200, 500] [1000, 3000]

Table 3. Scan intervals for the least restrictive light blue parameter regions of figure 13.

from ref. [25] (repeated in the first and third line) with the corresponding one-loop and

leading log approximations (second and fourth line). Also, all entries of table 3 of ref. [25]

are reproduced well, except for the coefficient of log(MU3) in the case of BM4. The reason

is that BM4 has very small SUSY masses, so it is outside the region of approximation

validity. Figure 13 quantifies how well the approximation works. It compares the approx-

imate results with the exact ones, normalized to the one-loop result, for a random set of

parameters. The same data set as for figure 5 of ref. [25] has been used, see table 3 for the

one-loop masses; the other eight sfermion-mass parameters appearing in the inner loop are

varied in the range [103, 106] GeV.

The scatter plot around BM1, figure 13(a), shows an almost perfect agreement between

approximate and exact results. For almost all data points, the difference is at most 1%

of the one-loop result. Hence, the approximation represents a significant improvement

compared to the fit formula given in ref. [25] with fixed coefficients of the logarithms.

For the scatter plot around BM4, figure 13(b), the improvement compared to the fit

formula of ref. [25] is only marginal. This is due to the smallness of the SUSY masses

in these data points. The blue/red/black points in figure 13(b) are the points for which

the minimum SUSY mass is ≥ 100/150/180GeV, respectively. Figure 13(c) shows the

same data points as a function of the minimum SUSY mass. The figures confirm that the

approximation quickly improves as the ratio MSUSY/MZ increases.

7 Numerical analysis

In this section the parameter dependence of the fermion/sfermion-loop contributions to aµ
is analyzed in detail. To begin with, we recall that the fifteen relevant parameters can be

devided into one-loop parameters, two-loop sfermion-mass parameters for the inner loops,

and the stop A-parameter, see section 5:

µ,M1,M2,ME ,ML, tanβ,

MU ,MD,MQ,MU3,MD3,MQ3,ME3,ML3,

At.

insignificant way, but such that all mass parameters are different. Note that this problem is not present in

the exact result.
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As stated above, the additional sensitivity on the sfermion masses of all generations is a

distinctive feature of the fermion/sfermion-loop contributions.

The dependence on all parameters is studied systematically, starting with the region of

large two-loop sfermion masses, where the leading logarithmic approximation of section 6

is valid. Then, the focus is set on smaller inner sfermion masses and the influence of stop

mixing.

We also briefly recall the benchmark points for the one-loop parameters, introduced

in ref. [25] and in section 5, table 1. They characterize qualitatively different regions of

the one-loop parameter space, in particular, BM1 is a point where all one-loop masses are

similar. BM3 is a point where the bino-exchange contribution strongly dominates, and

BM4 is a point where the right-handed smuon contribution dominates.

7.1 Parameter region of the leading logarithmic approximation

The leading logarithmic behaviour has been studied extensively in ref. [25], and it can

be well understood from the approximation a2L,f f̃ LL
µ in section 6. The approximation is

expected to be valid if the hierarchy (2-loop sfermion masses) ≫ (1-loop masses) ≫ MZ

holds. In practice it is already good for one-loop masses above around 200GeV and two-

loop masses around 1TeV, as shown in figure 13.

The largest two-loop contributions can arise from the correction factors ∆W̃ H̃ and

∆B̃H̃ , which contain the logarithms of MU3 and MQ3 multiplied with the top-Yukawa

coupling and large prefactors. These large logarithms are effective if the one-loop con-

tribution is dominated by a1Lµ (W̃–H̃, ν̃µ) or a1Lµ (B̃–H̃, µ̃R), as in BM1 or BM4. In these

cases, the logarithms can drive the two-loop corrections up to 15% (30%) of the one-loop

contributions for two-loop masses in the 20TeV (1000TeV) range.

On the other hand, in the case that a1Lµ (B̃, µ̃L–µ̃R) dominates at the one-loop level, as

in BM3, the two-loop corrections are smaller since the leading logarithms are suppressed

by the small gauge coupling g21. In this case, the two-loop corrections remain below 10%

of the one-loop contributions for two-loop masses up to 1000TeV. The parameter region

where a1Lµ (B̃, µ̃L–µ̃R) dominates has also been investigated in ref. [38]. There, analytical

results have been given for the leading logarithm if not only sfermion masses but also the

wino and higgsino masses M2 and µ are set to a common, very large scale.

7.2 Decomposition of contributions

To deepen the understanding of the fermion/sfermion-loop corrections, we now show how

the full result is decomposed into the individual two-loop and counterterm contributions.

The parameters are still chosen such that the leading logarithmic approximation a2L,f f̃ LL
µ

in section 6 is valid. Figure 14 shows two such parameter scenarios, considered already in

ref. [25]. In both panels, the upper half shows the full result for the fermion/sfermion-loop

corrections, and the lower half shows the following individual contributions:

• BA(χ̃±), BA(χ̃0): all genuine chargino/neutralino two-loop contributions with cou-

pling combination BA, as given in section 4. These contributions are tanβ-enhanced
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Figure 14. Full result r ≡ a2L,f f̃µ /a1L SUSY
µ and individual contributions as defined in section 7.2,

for two different scenarios. Left: one-loop parameters as in BM1, BM2, BM3 except that µ is

varied, and MU,D,Q,U3,D3,Q3 = 7 TeV, ME3,L3 = 3 TeV. Right: one-loop parameters as in BM4,

two-loop parameters as before, except that MU3 = 1 TeV and MQ3 is varied.

due to the couplings B of the outer loop. They do not involve an explicit factor of

the inner fermion mass.

• BB3(χ̃±), BB3(χ̃0): all genuine chargino/neutralino two-loop contributions with

couplings BB, but only from third generation fermion/sfermion pairs. These are

tanβ-enhanced and proportional to the mass of the inner fermion, due to the cou-

pling combination B of the inner loop.

• BBrest: all remaining contributions of the type BB. These contributions are sup-

pressed by a factor of the first or second generation fermion from the inner loop.

• AA + AB: all genuine two-loop contributions involving the coupling combinations

AA or AB. These are not tanβ-enhanced and expected to be small.

• µvct: all counterterm contributions from the external muon vertex, i. e. of the

classes (µnv) and (µcv). These counterterms are individually finite, contain ∆ρ,

and are the only contributions which involve pure fermion and pure sfermion loops.

• ctrest: all remaining counterterm contributions.

The parameters of figure 14 are chosen as follows: in the left panel, the one-loop

parameters are set as in BM1, BM2, BM3 except that µ is varied. The sfermion masses

are set to MU,D,Q,U3,D3,Q3 = 7 TeV and ME3,L3 = 3 TeV (see table 2 of ref. [25]). In the

right panel, the one-loop parameters are set as in BM4, the two-loop parameters as before,

except that MU3 = 1 TeV and MQ3 is varied (see figure 6 of ref. [25]).

The full result in the left panel is always around 4%, in agreement with the result

of ref. [25], and this result is well described by the leading logarithmic approximation of
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Figure 15. Relative correction r ≡ a2L,f f̃µ /a1L SUSY
µ from fermion/sfermion loops for the benchmark

points BM1 and BM4 as a function of each sfermion mass parameter. One sfermion mass is varied

at a time; the remaining sfermion masses are set to 1.5TeV, and At = 0.

section 6. Among the contributions listed above, only BA, BB3, and the counterterms

are sizeable. This is expected, as discussed above. For small values of µ, many individual

contributions are large and there are strong cancellations. For larger µ, in the BM2 and

BM3 region, the a1Lµ (B̃, µ̃L–µ̃R) one-loop contribution becomes dominant. All two-loop

corrections are therefore governed by the small gauge coupling g21, and the individual two-

loop contributions become smaller. For all µ, the muon-vertex counterterms µvct almost

account for the full result.

In the right figure the muon-vertex counterterms do not dominate the full result. Since

in the scenario of BM4 the bino-higgsino exchange is most important, the neutralino con-

tributions of the type BA(χ̃0) and BB3(χ̃0) are most important. They rise logarithmically,

while the chargino contributions are much smaller and cancel each other to a large extent.

7.3 Behaviour for small inner sfermion masses

Figure 15 shows the general behaviour of a2L,f f̃µ if one of the inner sfermion masses is varied

at a time in the range 100 . . . 2500GeV and can be viewed as an extension of figure 4

of ref. [25] to smaller sfermion masses. Since the approximation of section 6 cannot be

expected to be valid over the whole mass range, figure 15 quantifies when and to what

extent the exact dependence on the inner sfermion masses differs from a purely logarithmic

one. In the left (right) panel of figure 15 the one-loop parameters are set to the values of

benchmark point BM1 (BM4). The inner sfermion masses are set to 1.5TeV as a standard

value and all A-parameters are set to zero.

Both plots show the familiar logarithmic dependence on the inner sfermion masses, as

long as the masses remain sufficiently large. For inner sfermion masses below 500GeV the

contributions saturate, and the difference between the leading logarithmic approximation

and the exact result can be quite sizeable.

The mass scale of 500GeV can be compared with the typical mass scale of the one-

loop parameters in BM1 and BM4, which is 300GeV and 200GeV, respectively. Generally,

therefore, the leading logarithmic approximation can be expected to work well only as long

as the inner sfermion masses are at least twice as large as the one-loop masses in the outer
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Figure 16. The dependence of r ≡ a2L,f f̃µ /a1L SUSY
µ on M ≡ MQ3 = MU3 = MD3 and the ratio

Xt/M . All other squark and the third generation slepton masses are set to 1.5TeV. The one-loop

parameters are set to the values of BM1 in the left and of BM4 in the right panel. The red and

yellow bands indicate the mass of the lightest Higgs boson. The dashed lines depict the thresholds

for a lighter stop mass of 500GeV or 1TeV.

loop. For smaller inner sfermion masses, the exact result can be expected to be smaller

than the approximated one.

7.4 Dependence on stop mixing

The discovery of a Higgs-like particle at the LHC constrains the allowed parameter space

of the MSSM. If stop mixing is not allowed, i. e. At = 0, its rather high mass can be

accomodated only by very heavy stops with a mass of several TeV. In contrast, a non-zero

mixing allows for stop masses below the TeV scale.

So far, all trilinear A-parameters were set to zero in the discussion of a2L,f f̃µ . Now, the

influence of stop mixing, induced by At 6= 0, is studied. At and the associated stop-mixing

parameter Xt = (At − µ∗/tβ) enter the calculation of aµ at the two-loop level through the

mixing matrices of the stops in the inner loop.

Figure 16 compares the influence of a normalized Xt on both a2L,f f̃µ and the Higgs-

boson mass. It shows contour plots in the plane of the universal SUSY breaking parameter

M ≡ MQ3 = MU3 = MD3 and Xt/M . Contours are drawn for both a2L,f f̃µ /a1L SUSY
µ and

mh0 ; the latter is computed using FeynHiggs [74, 90–92]. The dashed lines at the bot-

tom depict the thresholds where the mass of the lighter stop falls below 500GeV and

1TeV, respectively. The input parameters besides M and Xt in figure 16 are chosen

as MQ = MU = MD = ME3 = ML3 = 1.5TeV; the one-loop parameters are chosen as in

benchmark points BM1 (left) and BM4 (right).

For the Higgs-boson mass we find the well-known dependence on Xt/M as an approx-

imate fourth order polynomial. In particular the dependence is approximately symmetric

for Xt ↔ −Xt. For a2L,f f̃µ , however, the dependence is approximately linear. In the case

of BM4, Xt/M has a pronounced influence. Moving from Xt/M = −2 to Xt/M = +2
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Figure 17. Full result r ≡ a2L,f f̃µ /a1L SUSY
µ and individual contributions as defined in section 7.2,

for the scenarios of figure 16, but with fixed M = 750GeV.

changes the aµ correction from 1% to 5% at M = 750 GeV, and by an even larger amount

for smaller M . In the case of BM1, however, the influence of Xt is tiny.

Again, a deeper understanding of this behaviour can be obtained by considering the

decomposition of contributions introduced in section 7.2. Figure 17 shows plots corre-

sponding to the parameter choices of figure 16, but at fixed M = 750GeV. The style is as

in figure 14. In the left plot, based on BM1, wino-higgsino mass-insertion diagrams dom-

inate. As a result, the BA-contributions of charginos and neutralinos (from stop/bottom

and stop/top loops generating a wino-higgsino transition) have the strongest dependence

on the mixing parameter. Accidentally these contributions cancel out to a large extent,

and the full result is almost insensitive to the choice of Xt. In the right plot, based on BM4

with bino-higgsino dominance, only the BA and BB3 contributions of the neutralinos are

important. Since they have positive slopes and add up constructively the full result is very

sensitive to the mixing parameter.

These considerations also show that the behaviour found for BM1 and BM4 is typical

for the behaviour in the larger parameter regions represented by these benchmark points.

7.5 Particular scenarios with extremely small SUSY masses

In the previous sections the behaviour of a2L,f f̃µ has been studied in a quite generic way.

Now, special parameter scenarios are considered in which particular SUSY masses can be

very small, without violating experimental bounds. We focus on the following three cases:

• light stop and large stop-mass splitting, in the scenario of ref. [93]: this scenario fixes

the stop sector in a particular way, such that the lighter stop mass is as small as the

one-loop masses; we study a2L,f f̃µ for several choices of the one-loop parameters.

• light stau scenario of ref. [94]: this scenario essentially fixes the two-loop parameters
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Figure 18. Full result r ≡ a2L,f f̃µ /a1L SUSY
µ for the scenario of ref. [93], MU3 = 200GeV,

A2
t = 6MU3MQ3, as a function of mS = (mt̃1

mt̃2
)1/2. The one-loop parameters are defined for

slightly modified benchmark points BM1 (dotted) and BM4 (dashed), respectively.

for a2L,f f̃µ as well as most one-loop parameters, such that both staus can be lighter

than the one-loop masses.

• light smuon, chargino and neutralino masses and extremely small tanβ, in the sce-

nario of ref. [95]: this scenario fixes all one-loop parameters, such that none of the

usual hierarchies (tanβ ≫ 1, MSUSY ≫ MZ) is valid; we study the dependence on

the two-loop parameters.

Light stop scenario: In ref. [93], arguments are put forward in favour of a very light

right-handed stop with almost degenerate neutralino, together with large At and a heavier

left-handed stop. This parameter choice is of interest for a2L,f f̃µ since a large left/right

stop-mass splitting can lead to particularly large logarithmic corrections. However, the

scenario of ref. [93] differs from the scenarios considered so far in the present paper or in

ref. [25], because it combines large stop-mass splitting with large stop mixing, and because

one stop is so light that the leading logarithmic approximation cannot be expected to be

valid.

Figure 18 shows the result for r ≡ a2L,f f̃µ /a1LSUSY
µ if the stop and neutralino param-

eters are chosen according to this scenario. According to ref. [93] the right-handed stop

mass MU3 is set to 200GeV, and MQ3 is varied such that the quantity mS = (mt̃1
mt̃2

)1/2

is in the range 500 . . . 600GeV, depicted by the blue shaded area in figure 18. The trilin-

ear mixing parameter is always set to A2
t = 6MU3MQ3 ≈ 6m2

S . All remaining two-loop

mass parameters equal 1.5TeV. The one-loop parameters are not fixed by the scenario

of ref. [93], except for the requirement that the lightest neutralino is 30 . . . 40GeV lighter

than the lightest stop. Hence we set the one-loop parameters to the values of either BM1

or BM4, with the modifications M1 = 178GeV (BM1-like scenario), M1 = 190GeV and

µ = −220GeV (BM4-like scenario).

The results can be understood by comparing with figure 15, where At = 0. There,

varying down the value of MU3 from 1.5TeV to 200GeV for BM1 leads to a relative
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Figure 19. Relative correction r ≡ a2L,f f̃µ /a1L SUSY
µ as in figure 15, except that the one-loop

parameters are set to the scenario of ref. [95] with light one-loop masses, see eq. (7.6).

reduction of r ≡ a2L,f f̃µ /a1LSUSY
µ from ≈ 3% to ≈ 2% for BM1. In the BM4-like scenario

the reduction of MU3 has an even larger impact on the final result and r increases from

≈ 4% up to ≈ 7%. The large At present in figure 18 and the slightly different one-loop

parameters do not significantly modify the result.

Light stau scenario: in ref. [94], benchmark scenarios for the MSSM Higgs sector are

proposed which are in agreement with the most recent experimental data. One of them

contains a very light stau. This scenario is of interest for the evaluation of a2L,f f̃µ since it

constitutes an example where the sfermion mass in the inner loop can be lighter than the

one-loop masses in the outer loop, i. e. the opposite of the situation in which the leading

logarithmic approximation is valid.

According to ref. [94] we consider the following parameter choice:

tanβ = 25, µ = 500GeV, M2 = 200GeV, M1 = 95.61GeV, (7.1)

ML = ME = 400GeV, ML3 = ME3 = 245GeV, (7.2)

MQ3 = MU3 = MD3 = 1TeV, At = Ab = 1620GeV. (7.3)

All other sfermion mass parameters are set to 1.5TeV. This leads to the following

results for a1L SUSY
µ and r ≡ a2L,f f̃µ /a1LSUSY

µ :

a1L SUSY
µ = 26.25× 10−10, (7.4)

r = 0.0289. (7.5)

The input parameters are similar to BM1, so the result can be compared to figure 15. In

that figure, the BM1 result for r with very small stau masses is slightly below 0.03, like in

eq. (7.5).

Light one-loop masses and small tanβ: In ref. [95] a scenario is considered where a

chargino, a neutralino, a slepton and a sneutrino are all lighter than the Z boson, and it
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is demonstrated that such a scenario cannot be ruled out by current experimental data.

In that scenario tanβ takes the very small value of tanβ = 1.5. For aµ this scenario

is interesting since all usual approximations are invalid: tanβ is small, and the usually

tanβ-suppressed terms become important; likewise, the approximation (1-loop masses) ≫
MZ fails.

We consider the following parameter choice:

tanβ = 1.5, µ = 149GeV, M2 = 160GeV, M1 = 1TeV,

ML = 76GeV, ME = 1TeV,
(7.6)

which is similar to the choice made in ref. [95] but avoids the singularity for µ = M2 in

the chargino-mass renormalization constants. This choice fixes all one-loop parameters and

thus a1L SUSY
µ . The small masses, together with the small tanβ, lead to an interesting value

in the ballpark of the deviation (1.1),

a1L SUSY
µ = 16.29× 10−10. (7.7)

The two-loop corrections can be large, too, as shown in figure 19. Like figure 15 it

shows the two-loop corrections if one of the inner sfermion masses is varied at a time, while

all others remain at the standard value of 1.5TeV. If all inner sfermion masses are 1.5TeV,

the two-loop corrections accidentally cancel. But whenever either MQ3, MU3, or MQ is

varied away from 1.5TeV, large corrections arise.

The pattern of the individual slopes in figure 19 is similar to the one in figure 15 for

BM1, but the slopes are much larger. They cannot be predicted by the approximation of

section 6 for the reasons mentioned above. Positive and negative corrections of around 10%

are possible if the inner sfermion masses are in the sub-TeV or few-TeV region. For smaller

inner sfermion masses, there is a slight saturation effect, but less pronounced compared to

figure 15.

Because of the very peculiar nature of the parameter scenario eq. (7.6), it is instruc-

tive to consider again the decomposition of the contributions, as in section 7.2. Figure 20

shows two corresponding plots; the left one corresponds to the MU3 line, the right one to

the MQ3 line of figure 19. Several features are noteworthy. First, in contrast to the previous

cases, only BB3(χ̃−), µvct and ctrest are sizeable; all other contributions are very small.

This observation is particularly interesting as tanβ is very small, and the tanβ-suppressed

AA+AB contributions could have been expected to play a more important role. Further-

more, there is always a strong cancellation between ctrest and the other contributions. In

the left plot the MU3 dependence is dictated by the muon-vertex counterterms. All other

contributions are almost insensitive to MU3. In the right plot the situation is slighly dif-

ferent, and the full MQ3 dependence is governed by a combination of the BB3(χ̃−), µvct

and ctrest contributions.

8 Conclusions

The calculation of the fermion/sfermion-loop contributions extends the known results of

the MSSM two-loop contributions to aµ in several important ways.
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Figure 20. Full result r ≡ a2L,f f̃µ /a1L SUSY
µ and individual contributions as defined in section 7.2,

for the scenario of ref. [95] and figure 19. The one-loop parameters are chosen as in eq. (7.6). Left:

MU3 line of figure 19, Right: MQ3 line of figure 19,

• It is an exact evaluation of the fermion/sfermion-loop corrections to MSSM one-loop

diagrams and all associated counterterm diagrams. The two-loop diagrams contain

the maximum number of different mass scales possible in the MSSM.

• It introduces a dependence of aµ on the squarks and sleptons of all generations. As

shown already in ref. [25] this sensitivity is strong: the contributions are logarith-

mically enhanced by heavy sfermions in the inner loop, and they can be the largest

SUSY two-loop contributions.

• It eliminates the ambiguity from parametrizing the one-loop contributions either in

terms of α, α(MZ), or GF. This is due to the fact that the counterterms contain

in particular the leading contributions to the large quantities ∆α and ∆ρ from light

and heavy SM quarks and leptons.

In the present paper, full details of the calculation and analytical results, as well as a

complete survey of the numerical behaviour have been given.

A very compact approximation formula was provided in section 6. It can be easily

implemented in any code for numerical evaluation, and it is available as Mathematica

code.6 This compact formula is based on the leading logarithms and numerical constants

approximating the non-logarithmic terms. It is a good approximation in large regions

of the parameter space, and it also provides qualitative understanding of the parameter

dependence of the result.

The largest possible two-loop corrections can be obtained from loops involving stops

or sbottoms due to their large Yukawa couplings; these Yukawa-enhanced corrections can

6The Mathematica implementation of the approximation formula of section 6 can be obtained from

http://iktp.tu-dresden.de/?id=theory-software.
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be positive or negative, depending on the hierarchy between left- and right-handed stop

masses. Large two-loop corrections can also arise from 1st/2nd generation squarks due to

their large multiplicity and SU(2) gauge coupling. Generally, for inner sfermion masses in

the sub-TeV or few-TeV range, the two-loop corrections can be around 10% of the SUSY

one-loop contributions to aµ.

Even if certain or all relevant SUSY masses become small, such that the leading log-

arithmic approximation fails, the corrections can be sizeable. We have considered three

examples of experimentally allowed scenarios with extremely light stop, light stau, or light

slepton and chargino masses. In all cases the total SUSY contribution to aµ can be in the

ballpark of the deviation (1.1), and the two-loop corrections are up to 10%.

The computation of the fermion/sfermion-loop correction represents an important step

towards the full two-loop calculation of aµ in the MSSM. On a technical level, the diagrams

involve 2 light and up to 5 different heavy mass scales. This is a higher number than for

all previously considered aµ two-loop corrections, and it is the maximum number possible

in the MSSM. The standard two-loop techniques based on integration by parts lead to

very cumbersome expressions. Our second, alternative calculation based on an iterated

one-loop calculation leads to elegant final analytical results in terms of a one-dimensional

Feynman parameter integration.

It is interesting to compare the fermion/sfermion-loop corrections to other SUSY two-

loop contributions to the muon magnetic moment. Up to now, two classes of corrections to

SUSY one-loop diagrams were known. The first are photonic, or QED corrections [51, 52],

which are dominated by QED logarithms and amount to around (−7 . . . − 9)% in typical

parameter regions. The second is a universal (tanβ)2-enhanced correction arising from a

shift of the muon Yukawa coupling [53]. In large regions of the MSSM parameter space,

particularly for approximately degenerate SUSY masses, the (tanβ)2-corrections are posi-

tive (for positive a1LSUSY
µ ) and can partially or fully compensate the photonic corrections

for large tanβ. Further, two-loop corrections to SM one-loop diagrams from SUSY particle

loops have been fully evaluated in ref. [19, 48], and they amount to around 2% of a1L SUSY
µ

for degenerate masses. However, these corrections decouple for heavy SUSY particles.

Hence, the fermion/sfermion-loop corrections can be as large as any of the previously

known corrections. For all these corrections either the exact result or a useful approxima-

tion formula can be easily implemented. Numerical comparisons between all these known

two-loop results can be found in ref. [25].

The remaining MSSM two-loop corrections to aµ comprise SUSY one-loop diagrams

with a second loop with gauge or Higgs boson or neutralino/chargino exchange. These

remaining corrections depend on a subset of parameters of the fermion/sfermion-loop cor-

rections, hence their parameter dependence will be more straightforward. Nevertheless,

their evaluation will be important to reduce the theory error of the SUSY prediction of aµ
below the experimental uncertainty of the future aµ experiments.
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A Loop functions for one-loop diagrams

The one-loop functions with a single mass ratio read

FC
i (x) = FC

i (x)[1− ǫ L(m2
ν̃µ)] + ǫ FC

iǫ (x), (A.1)

FN
i (x) = FN

i (x)[1− ǫ L(m2
µ̃)] + ǫ FN

iǫ (x), (A.2)

where we have used the abbreviation

L(m2) = log
m2

µ2
DRED

(A.3)

with the dimensional-regularization scale µDRED, and the well-known functions

FC
1 (x) =

2

(1− x)4

[
2 + 3x− 6x2 + x3 + 6x log x

]
, (A.4)

FC
2 (x) =

3

2(1− x)3

[
− 3 + 4x− x2 − 2 log x

]
, (A.5)

FN
1 (x) =

2

(1− x)4

[
1− 6x+ 3x2 + 2x3 − 6x2 log x

]
, (A.6)

FN
2 (x) =

3

(1− x)3

[
1− x2 + 2x log x

]
, (A.7)

normalized such that F j
i (1) = 1. The functions for the ǫ-dependent parts are defined as

FC
1ǫ(x) = FC

1 (x)

(−x3 + 6x2 + 15x+ 2− 6x log x

12x

)
+

x2 − 8x− 4

6x
, (A.8)

FC
2ǫ(x) = FC

2 (x)

(−2x2 + 8x+ 6− 4 log x

8

)
+

3x− 15

8
, (A.9)

FN
1ǫ (x) = FN

1 (x)

(
2x3 + 15x2 + 6x− 1− 6x2 log x

12x2

)
+

1− 8x− 4x2

6x2
, (A.10)

FN
2ǫ (x) = FN

2 (x)

(
x2 + 4x+ 1− 2x log x

4x

)
− 3x+ 3

4x
, (A.11)

and are normalized to F j
iǫ(1) = 0.

The one-loop functions with two mass ratios can be related to the loop functions of

single mass ratios. For k = 1, 2, we have

FC
k (xi, xj) =

GC
k (xi)− GC

k (xj)

xi − xj
(k = 1, 2), (A.12)
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where

GC
k (x) =

∫
FC
k (x) (k = 1, 2). (A.13)

In this way the GC
1,2 are defined up to irrelevant constants. The third chargino one-loop

function can be expressed in terms of new one-variable functions as

FC
3 (xi, xj) =

GC
3a(xi) + GC

3a(xj)

xi − xj
+

GC
3b(xi)− GC

3b(xj)

(xi − xj)2
(A.14)

with

GC
3a(x) = −

x[1− ǫ L(m2
ν̃µ
)]

8(x− 1)2

[
− 2(−1 + x+ (x− 2) log x)

+ ǫ
(
3− 3x− (x− 4) log x+ (x− 2) log2 x

) ] , (A.15)

GC
3b(x) =

x2 log x[1− ǫ L(m2
ν̃µ
)]

4(x− 1)

[
− 2− 3ǫ+ ǫ log x

]
. (A.16)

Similarly to the case with only one mass ratio, the one-loop functions can be decomposed

into terms of O(ǫ0, ǫ1), as

FC
k (xi, xj) = FC

k (xi, xj)[1− ǫ L(m2
ν̃µ)] + ǫ FC

kǫ(xi, xj), (A.17)

GC
k (x) = GC

k (x)[1− ǫ L(m2
ν̃µ)] + ǫGC

kǫ(x), (A.18)

with

FC
k (xi, xi) = FC

k (xi), FC
kǫ(xi, xi) = FC

kǫ(xi), (k ∈ {1, 2, 3}) (A.19)

FC
3 (xi) = 0, FC

3ǫ(xi) = 0. (A.20)

For reference we list the explicit expressions for the GC
k and GC

kǫ are as follows:

GC
1 (x) =

2x(−2 + (2− 3 log x)x+ x2 log x)

(−1 + x)3
, (A.21)

GC
1ǫ(x) =

x(−22 + (22− 27 log x+ 9 log2 x)x+ (5 log x− 3 log2 x)x2)

3(−1 + x)3
, (A.22)

GC
2 (x) =

3(−1 + x− 2x log x+ x2 log x)

2(−1 + x)2
, (A.23)

GC
2ǫ(x) =

3(−3 + (3− 4 log x+ 2 log2 x)x+ (log x− log2 x)x2)

4(−1 + x)2
, (A.24)

GC
3a(x) =

x(−1− 2 log x+ (1 + log x)x)

4(−1 + x)2
, (A.25)

GC
3aǫ(x) =

x(−3− 4 log x+ 2 log2 x+ (3 + log x− log2 x)x)

8(−1 + x)2
, (A.26)

GC
3b(x) = − x2 log x

2(−1 + x)
, (A.27)

GC
3bǫ(x) =

x2(−3 log x+ log2 x)

4(−1 + x)
. (A.28)
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