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Abstract. In production processes, e.g. J/Ψ → ωππ or p̄p→ 3π, the σ and f0(980) overlap in the same par-
tial wave. The conjecture of extended unitarity (EU) states that the ππ pair should have the same phase
variation as ππ elastic scattering. This is an extension of Watson’s theorem beyond its original derivation,
which stated only that the s-dependence of a single resonance should be universal. The prediction of EU is
that the deep dip observed in ππ elastic scattering close to 1GeV should also appear in production data.
Four sets of data disagree with this prediction. All require different relative magnitudes of σ and f0(980).
That being so, a fresh conjecture is to rewrite the 2-body unitarity relation for production in terms of
observed magnitudes. This leads to a prediction different to EU. Central production data from the AFS
experiment fit naturally to this hypothesis.

PACS. 13.25.-k; 13.25.Gv; 13.75.Lb

1 Introduction

In its simplest form, the idea of extended unitarity (EU)
states that the ππ pair in a single partial wave should have
the same phase variation with s in all reactions as in elas-
tic scattering. This idea originates from Aitchison [1] and
has been adopted in various guises by many authors. His
arguments will be presented in detail in Sect. 2, so as to ex-
pose the assumptions and consequences. At the time the
idea was introduced, it was a reasonable conjecture; now
modern data allow it to be checked accurately, but disagree
with it.
Many experimental groups have made extensive fits to

production data using a K-matrix approach based on EU.
These fits are excellent; no criticism is intended of their
quality. Experimentalists have found empirically the neces-
sary freedom to get good fits to data. However, on close
inspection, this freedom is inconsistent with strict EU.
This whole topic has been the subject of extensive dis-

cussion with many authors. There is a bewildering jungle
of claims and counter-claims. My objective is to cut a path
through this tangle and expose where problems lie; this
makes the presentation pedantic in places.
Aitchison’s essential point is that all processes should

be described by a universal denominator [1− iρ(s)K(s)],
where K is the same as for elastic scattering; ρ is Lorentz
invariant phase space. The assumption which is being
made is that Watson’s theorem [2] applies to the coherent
sum of all components in the JP = 0+ partial wave. This
is a step beyond Watson’s derivation, which referred only
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to a single eigenstate; Watson did not consider overlapping
resonances.
In ππ elastic scattering, the f0(980) is superimposed on

a slowly rising amplitude associated with the σ pole. Cern–
Munich data [3] show that the phases of these two compo-
nents add. Below the KK threshold, both σ and f0(980)
T -matrices T = eiδ sin δ are confined to the unitarity circle
if we neglect the tiny inelasticity due to ππ→ γγ. Unitar-
ity may be satisfied by multiplying S-matrices S = e2iδ of σ
and f0(980), as suggested by Dalitz and Tuan [4]. This fits
the data within errors of∼ 3.5◦.
Figure 1 shows the Argand diagram for the I = 0 ππ

S-wave from my recent re-analysis of these (and other)
data [5]. FromBES data on J/Ψ→ φπ+π−, the f0(980) has
a full-width at half-maximum of 34±8MeV [6]. The com-
bined phase shift rises rapidly from 90◦ at 0.88GeV to 270◦

near 1.1 GeV. There is a deep dip in the cross section where
the combined phase goes rapidly through 180◦. The cru-
cial point of EU is that this feature should be common to
production processes.
BES data on J/Ψ → φππ [6] immediately require

a modification of the rudimentary form of EU. The ππ
mass spectrum in these data is reproduced in Fig. 2. There
is a dominant f0(980) contribution and a small interfering
σ contribution; this is very different to elastic scattering.
Lähde and Meissner [7] modify the conjecture of EU to ap-
ply separately to strange and non-strange components, i.e.
to the scalar form factors for ππ andKK.
The dip in the elastic cross section at 989MeV is a very

delicate feature. If, for any reason, relative magnitudes of σ
and f0 change, the zero at 989MeV can disappear quickly;
here and elsewhere, f0 will denote f0(980) unless there is
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Fig. 1. Argand plot of the ππ I = 0 S-wave in elastic scatter-
ing; masses are marked in GeV

Fig. 2. The ππ mass projection for BES data on J/Ψ →
φπ+π−: the upper histogram shows the current fit to experi-
mental points [5]; the lower histogram shows the fitted σ com-
ponent

confusion with other f0’s. If the phase of f0 changes with
respect to the σ, the mass at which the dip appears will
likewise change. The interference region between σ and
f0(980) is an ideal place to check extended unitarity.
Two considerations will play a critical role: unitarity

and analyticity. Unitarity is often quoted and plays an es-
sential role in setting up the current K-matrix formalism
which treats both elastic scattering and production on the
same basis. For a production reaction, Aitchison conjec-
tures a unitarity relation for the production amplitude F :

ImF = FT ∗el . (1)

He defines his F to be proportional to T (p)/ρ, where T (p)

refers to production:

Fρ= αT (p) . (2)

Dividing both sides of (1) by α,

ImT (p) = T (p)T ∗el . (3)

It is odd that T (p) on the right-hand side is multiplied by
T ∗el, unless T

(p) = Tel. However, experiment will require dif-
ferent contributions to T (p) from σ and f0.
Consider next analyticity. Dispersion relations connect

magnitudes and phases. If the relative magnitudes of f0
and σ change from those of elastic scattering because of
matrix elements, their relative phases must also change.
Conversely, analyticity predicts that if the phase variation
with s of the amplitude is universal, as EU demands, so
is the variation with s of the magnitude (up to a constant
scaling factor); for the simplest situation where only reso-
nances are present, the relative magnitudes of σ, f0(980)
and any further f0 must be almost the same in production
as elastic scattering. This is a point which has almost al-
ways been ignored.
The word ‘almost’ represents a caveat: there may in

addition be a polynomial is s which can be different be-
tween elastic scattering and production. It turns out that
one can plausibly limit deviations of relative magnitudes
within 12%. This question is discussed in Sect. 2.1. Experi-
ment requires larger deviations than this in the four sets of
data discussed here. This implies phases must change from
those predicted by EU. Experimentalists have correctly al-
lowed for this by using complex coupling constants in the
isobar model.
Section 3 compares the prediction of EU with 3 sets of

data. The first concerns BES data for J/Ψ → ωπ+π− [8].
The non-strange components of σ and f0 dominate both
elastic scattering and J/Ψ → ωππ. From Aitchison’s alge-
bra and that of Lähde and Meissner, it follows that the f0
amplitude should have almost the same magnitude as the
σ amplitude, as well as the same phase as elastic scatter-
ing. This prediction is contradicted by the data, where no
f0(980) is visible and a fit to the data places a low limit on
it.
The next two sets are Crystal Barrel data for p̄p→ 3π0,

where σ and f0(980) are clearly visible [9]. One set is for
annihilation in liquid hydrogen and the other for gaseous
hydrogen. Annihilation from the 3P1 initial state is 13% in
liquid and 48% in gas, allowing a clear separation of ampli-
tudes for production of σ and f0 from

1S0 and
3P1. Results

for both are inconsistent with the deep dip of elastic scat-
tering predicted by EU.
Section 4 concerns data from the AFS experiment on

central production: pp→ ppπ+π− [10]. Here one expects
the protons in the final state to act as spectators. However,
EU still fails conspicuously to fit the data. This important
result leads to a revised form of the unitarity relation, as
follows.
Figure 3 sketches the usual diagrammatic approach to

the unitarity relation. It may be derived by cutting the dia-
gram down the middle, along the dashed line. For a 2-body
system of ππ, KK, ηη, etc. the resulting relation is well
known:

ImTel = TelT
∗
el . (4)

The application of 2-body unitarity assumes that the pions
interact only with one another, not with any spectator. In
most sets of data there are large signals where pions do in-
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Fig. 3. Unitarity diagram for ππ→ ππ

teract with the spectator. For J/Ψ → ωππ, as an example,
the b1(1235)π channel accounts for 40% of events [8]. Some
of it may be generated by pions from decays of σ or f0
rescattering from the spectator; this is a so-called triangle
graph. Aitchison himself remarks that this can distort the
unitarity relation. This provides one reason why EU may
fail for the first three sets of data; it does not explain the
fourth, where some further effect is required.
There are fundamental differences between elastic scat-

tering and production. In J/Ψ → ωππ, for example, matrix
elements 〈J/Ψ |ωσ〉 and 〈J/Ψ |ωf0〉 dictate the magnitudes
of these amplitudes; any values are possible. This differs
from elastic scattering, where σ and f0 magnitudes are
fixed purely by their coupling constants gπ to ππ. Equa-
tion (3) is an asymmetric relation, allowing σ and f0 to
be produced with different magnitudes, but requiring that
they rescatter an in elastic scattering. A more logical alter-
native is the symmetric relation

ImT (p) = T (p)T (p)∗ , (5)

hence ImF = FT ∗(p). This relation fits AFS data for cen-
tral production naturally, whereas EU does not. If the f0
is absent from production data, (5) reduces to the obvious
relation ImT σ = |T σ|2; Aitchison’s form of the relation,
taken with analyticity does not allow the f0 to be absent,
as we shall see in Sect. 2.
Section 5 suggests a new way of fitting 2-body data.

Section 6 then summarises conclusions.

2 The hypothesis of extended unitarity

In a two-body process, the scattering of a pair of pions to
final states ππ, KK, ηη, 4π and γγ must satisfy unitarity.
The T -matrix for these coupled channels may be written in
terms of a realK-matrix as

Tel = ρK(1− iρK)
−1 . (6)

It is normalised here so that Tππ = (ηe
2iδ−1)/2i. Below

the inelastic threshold

ρK = tan δ . (7)

The T -matrices used here will include couplings to all
channels. However, it simplifies the presentation of essen-
tial points to reduce the formalism initially to a single ππ
channel. This simplication is sufficient to expose the basic
issues, and can be generalised later to include inelasticity.

The approach of Aitchison [1] will now be outlined. I am
grateful to him for clarifying the algebra in more detail
than is to be found in the original publication. Suppose
S-matrices multiply, i.e. phases add. Let KA and KB be
K-matrices for σ and f0 respectively. The elementary ex-
pression for tan(δA+ δB) then gives a K-matrix for elastic
scattering

Kel =
KA+KB
1−ρ2KAKB

, (8)

from which it follows that the T -matrix for elastic scatter-
ing is

Tel =
(KA+KB)ρ

(1− iρKA)(1− iρKB)
. (9)

Aitchison now conjectures that an amplitude F for pro-
ducing a two-body channel present in Kel may be written
in terms of a vector P , with

F = (1− iρKel)
−1P , (10)

P =
αAKA+αBKB
1−ρ2KAKB

, (11)

where αA and αB are constants for production couplings.
With this ansatz, the relation

ImF = FT ∗el , (12)

known as extended unitarity, is automatically satisfied. It
is a consequence of (10) that F has the same phase as Tel.
Substituting (8) and (11) in (10) gives, in this one-channel
case

F =
αAKA+αBKB

(1− iρKA)(1− iρKB)
, (13)

= αA[TA(1+ iTB)+βTB(1+ iTA)]/ρ , (14)

where β = αB/αA. From (13), the phase of F is indeed δA+
δB, as imposed by (10). Equation (14) will play the decisive
role in comparisons with experiment.
In (14), TA(1+ iTB) = exp i(δA+ δB) sin δA cos δB and

TB(1 + iTA) = exp i(δA+ δB) cos δA sin δB. At 989MeV,
δf = 90

◦ and δσ = 92
◦. So both terms are very close to zero,

regardless of the values of αA and αB. This predicts that
production data should have the same deep dip at this en-
ergy as elastic scattering.
There is a further point. In the second term, (1+ iTA)�

0 over a sizable mass range. In the first term, TB should be
conspicuous, since it has a rapid phase variation and the
same peak magnitude as TA, which is itself clearly visible
in all sets of data considered here. However, the data all
require the magnitude of the f0(980) to be smaller than
predicted.
The key point is that the factor 1/(1− iρKB) of (13)

leads directly to the factor (1+ iTB) in the first term
of (14). The first and third sets of data will require β of (14)
to be small. In the elastic region, the first term becomes

F � iαA
(
1+ ieiδB sin δB

)
.
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The bizarre conclusion of EU is that the phase of the
f0(980) is present even though αB � 0. This is inconsistent
with analyticity. It will be shown in Sect. 3 that experiment
disagrees with EU even without the constraint of analytic-
ity. However this additional constraint makes conclusions
more definitive.

2.1 Analyticity

For purely elastic scattering, the Omnès relation [11] reads
(including a factor ρ(s) in N(s)):

Tel(s) =N(s)/D(s) , (15)

D(s) = e−iδ(s) exp−

[
s−4m2π
π

P

∫
ds′

s′−4m2π

δ(s′)

s− s′

]
,

(16)

where P denotes the principal value integral. We shall not
actually need to evaluate (16). It plays only a conceptual
role and this needs considerable explanation. The basic
point is that D(s) contains both real and imaginary parts,
so δ(s) determines both. For elastic scatteringN(s) is real.
It arises from the left-hand cut, i.e. meson exchanges be-
tween the two pions.
With inelasticity, corresponding relations may be writ-

ten in a 2-channel form. Then δ(s) is replaced by φ(s), the
angle T makes to the real axis when measured from the
origin of the Argand diagram, see Fig. 12 of Sect. 4.1.
If EU is valid, the production amplitude may be writ-

ten F =X(s)/D(s). In principle X(s) could be anything,
depending on production dynamics. However, we have
quite precise experimental information about it. An ex-
treme view is that αA and αB of (13) can be arbitrary
and complex. However if they are complex this leads di-
rectly to a conflict with EU. Equation (14) contains two
parts TA(1+ iTB) and TB(1+ iTA). Substituting Breit–
Wigner formulae for TA and TB, the first term becomes
g2A(M

2
B − s)/DA(s)DB(s). This is real but has a specific

s-dependence in the numerator as well as in the denomina-
tor. If αA or αB becomes complex, the numerator becomes
complex. This then introduces a phase variation separate
from D(s). The “prediction” of EU is distorted by this ex-
tra phase. Only if X(s) is real does EU survive in its strict
form.
Many experimental groups have used the P -vector ap-

proach using complex coupling coefficients, without realis-
ing that this destroys the universality of the phase varia-
tion with s. This is what experiment demands, so they have
done the right thing. But the use of the universal denomi-
nator [1− iρK(el)] is no longer logically correct. One might
as well fit directly in terms of complex coupling constants
and individual T -matrices for each resonance.

2.2 Form factors

There is a further fundamental point. For elastic scatter-
ing, N(el) is uniquely related to ImD(s) by both unitarity
and analyticity. At first sight it appears that analyticity re-
latesX(s) in the same way toD(s) in production reactions,

with the resultX(s) = αN(el), where α is a constant. This
requires β = 1: if the phase of the ππ amplitude is univer-
sal, relative magnitudes of σ and f0 must also be universal.
There is however a caveat. A more fundamental form

of the unitarity relation (12) is that the discontinuity of F
across the elastic branch cut is 2iFT ∗. Then F may be mul-
tiplied by a polynomial X(s), providing it does not have
a discontinuity along the real s-axis. A few examples will
hopefully clarify ideas. Firstly, a form factor in s is one such
example, arising from the sizes of particles, i.e. frommatrix
elements. Secondly, in φ→ γf0, the E1 transition has an
intensity proportional to the cube of the photon momen-
tum; this inflates the lower side of the f0(980). Thirdly, in
3P1 p̄p→ π0σ, there is an L= 1 centrifugal barrier for the
production process. Fourthly, in some special cases, matrix
elements may go through zero as a function of s. Taking
X(s) to be real, let us write in general

F =X(s)N(el)/D(s) . (17)

A feature of all production data considered here is
a strong low-mass ππ peak due to the σ pole. This peak
is not present in elastic scattering because of an Adler
zero in the elastic scattering amplitude at sA � 0.41m2π,
just below the ππ threshold. The elastic amplitude rises
approximately linearly with s and there is no low mass
peak. The origin of the difference has been known to theo-
rists for at least 20 years. Au, Morgan and Pennington [12]
pointed out that the difference between elastic scatter-
ing and central production data can be accomodated by
using the same Breit–Wigner denominator for both, but
replacing the numeratorN(el) by something close to a con-
stant. This polynomial is allowed because sA is outside
the physical region. Data require X(s)N(el) � 1, hence
X(s)� 1/N(el)� 1/(s− sA). More exactly,

X(s) = 1/[(s− sA)(1+ bs) exp
[
−
(
s−M2A

)
/A
]
(18)

for the parametrisation of the σ amplitude in [13]. In prac-
tice, quadatic and cubic terms in s are very small and under
tight control from fits to data up to 1.8 GeV.
For J/Ψ → ωππ, the σ pole is visible by eye in Fig. 4a

below. The phase of the σ amplitude in this reaction is
experimentally the same as in elastic scattering within
∼ 3.5◦ [14]. Values of N(prodn) =X(s)N(el) can be de-
termined directly from the data. The same is true of the
κ [15], which likewise has an Adler zero in the numerator
for elastic scattering, but not for production. In both cases,
N(prodn) is consistent within errors with a constant; the
Adler zero in the numerator of elastic scattering has dis-
appeared. One can try fitting the σ and κ poles in produc-
tion data with the conventional form factor N(prodn) =
exp(−k2R2/6), where k is momentum in the production
channel. For both,R2 optimises at slightly negative values,
which are unphysical. For the σ, R2 < 0.30 fm2 with 95%
confidence and for the κ, R2 < 0.38 fm2 at the same level.
A crucial piece of information in testing EU will be

relative magnitudes of σ and f0. The magnitude of the σ
amplitude is easily separated from the tail of the f0(980)
at 920MeV, three half-widths from 989MeV. IfX(s) is de-
termined at this energy and at 400MeV, the σ amplitude
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Fig. 4. Fits to BES data for
J/ψ → ωπ+π−: a ππ mass
projection from the full Dalitz
plot using the σ amplitude
of [13]; the lower histogram
shows the S-wave component;
bDalitz plot from data; c as a
using (14) for EU; d enlarged
view of part of the Dalitz plot

changes by 20% at 989MeV for the 95% confidence level
quoted above. However, this exaggerates the error, since
there are compensating changes in the line-shape fitted to
the amplitude. Realistically, changes are half this. Adding
in quadrature uncertainties in the σ line-shape due to the
opening of theKK threshold, the uncertainty in the ampli-
tude extrapolated from 920 to 989MeV is < 12% with 95%
confidence. This provides a tight constraint on the relative
magnitudes of σ and f0(980) amplitudes if EU is correct.
This disposes of the paradox that the phase of f0(980) can
be present with αB = 0.
From this point onwards, it will be assumed that EU

should be supplemented with the condition imposed by an-
alyticity within 12%.

2.3 Formulae for σ and f0

Formulae and numerical parameters for the σ amplitude
are to be found in [13] and [5]. The ππ coupling has been
fitted to four sources: (i) phase shifts deduced from Cern–
Munich data by Ochs [16], (ii)Ke4 data of Pislak et al. [17],
(iii) predictions of ππ phase shifts by Caprini et al. [18]
using the Roy equations, and (iv) BES data on J/Ψ →
ωπ+π− [8].
The coupling toKK and ηη has been fitted to available

data on those channels [19], and in [5] the 4π coupling has

been derived from Cern–Munich data. There is close con-
sistency between all these sets of data. Because [13] and [5]
fit the same data with different formulae, the amplitudes
agree within errors up to 1.2 . Those of [5] are more cum-
bersome to use, since they allow for the dispersive effect of
the 4π threshold. Therefore the first and fourth sets of data
discussed below are fitted with the formulae from [13].
The general procedure adopted here is to allow the par-

ameters of the σ to have the freedom allowed in earlier
determinations of its parameters, but no extra freedom in
the vicinity of f0(980). In testing EU, the magnitude of f0
is restricted to the 12% discussed above; its phase is al-
lowed the freedom with which its parameters are known.

2.4 Parameters of f0(980)

The f0(980) is so narrow that it is readily separated from
the σ. The BES data on J/Ψ → φπ+π− shown in Fig. 2 ex-
hibit a very clear f0(980)→ ππ signal. An important point
is the excellent mass resolution and mass calibration of the
BES detector, ∼ 4MeV. Both are easily checked for the
KK channel against the very precisely known parameters
of φ(1020). Data from the same publication [6] on φK+K−

contain a clear f0(980)→KK peak, and the two sets of
data determine accurately the ratio g2(KK)/g2(ππ) of
couplings toKK and ππ. An important detail is an error in
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units in [6]: g2(ππ) is reported as 165MeV; this should read
0.165GeV2.
The Breit–Wigner denominator for the f0(980) ampli-

tude is [M2− s− i(g21ρ1+ g
2
2ρ2)] and ρ2 has to be contin-

ued analytically below theKK threshold as i
√
4m2K/s−1.

Without direct information on the KK channel, this term
gets confused with (M2− s) [20]. Any form factor applied
to g2(KK) adds to the confusion. One only has to glance
at the Particle Data Tables [21] to see the large spread in
parameters fitted to the f0(980) (and a0(980)) in experi-
ments having no direct information on the branching ratio
betweenKK and ππ. Unfortunately, the PDG does not re-
port the BES determination of g2(KK)/g2(ππ), which is
the best in the published literature because of the availabil-
ity of a clear signal in φKK.
It was shown in [19] that the BES parameters for

f0(980) are closely consistent with Kloe data [22] on
φ→ π0π0γ when one allows for interference between σ
and f0. This paper determines g

2(σ→KK)/g2(σ→ ππ) =
0.6± 0.1. BES data on J/Ψ → ωK+K− confirm a large
value ≥ 0.6 for this ratio [23]. The ππ full width at half-
maximum (34MeV) agrees well with Cern–Munich data
30±10MeV [3]. It also agrees closely with the full-width of
the f0(980) signal in Crystal Barrel data (∼ 46MeV). The
BES parametrisation will therefore be adopted in fitting
the AFS data. Further checks from Belle, Babar and Cleo
C will be very welcome.

3 Experimental tests

3.1 J/Ψ → ωππ

Considerable detail needs to be given of fits to experimen-
tal data, in order to pin down the disagreements with EU.
The prime conclusions which will emerge are that (i) the
ππ amplitude does not follow that of elastic scattering,
(ii) the magnitude of the f0(980) amplitude, relative to σ,
is much smaller than predicted by (14), regardless of ana-
lyticity which also requires that their relative magnitudes
should be the same within 12%.
Figure 4 displays features of BES data for J/Ψ →

ωππ [8]. There is a clear peak in Fig. 4a at ∼ 0.5 GeV
due to the σ pole. Its shape is cleanly separated from the
f2(1270) contribution up to 1.05GeV, where the f2 rapidly
overtakes it. The data include a slowly varying 14% back-
ground which is included in the fit. There is also a well
defined slowly varying component due to the reflection of
b1(1235). Both are shown in the experimental publication.
There are two amplitudes for production of σ and

f0(980), with orbital angular momenta L= 0 and 2 in the
production reaction. The L= 2 amplitude includes a cen-
trifugal barrier for production which optimises at a radius
of 0.8 fm (roughly as expected for convolution of wave func-
tions of σ, ω and f0). For the isobar model fit, different
magnitudes are allowed for L = 0 and 2, with complex
coupling constants, though it turns out that the L = 2
contribution from f0(980) is negligible. In the EU fit the
relative phases of σ and f0 components are constrained to

be the same, and relative magnitudes are constrained to
be the same within 12%. In Fig. 4a and c, the lower his-
togram shows the JP = 0+ intensity: from the isobarmodel
fit in Fig. 4a and from EU in Fig. 4c. The upper histogram,
close to data points, shows the result of the full fit. Un-
fortunately, the mass projection alone is not definitive, for
reasons explained shortly. One low point in the mass pro-
jection just above 1 GeV hints at a dip following the EU
prediction.
However, there is a great deal more information con-

tained in the Dalitz plot of Fig. 4b and also in the corre-
lation between the ω decay plane and the ωππ production
plane. In the Dalitz plot, there are strong horizontal and
vertical bands due to b1(1235). These bands interfere with
σ and f2(1270) (and f0(980) if present). Note that the
b1(1235) decays mostly through S-waves, so its intensity
would be almost constant across the Dalitz plot in the ab-
sence of interferences. Also note from the lower histogram
of Fig. 4a that the σ amplitude at 950MeV is sizable.
Cross-hairs on Fig. 4b show where a ππ pair of mass 1 GeV
intersects the b1 band. If f0(980) were present with the
same magnitude as σ and with the phase predicted by EU,
a large but narrow interference with b1 cannot be avoided
due to f0(980), whatever the relative phase of b1(1235).
It should have a full width of ∼ 0.07GeV2 along the b1
band: the line-width of f0(980)→ ππ. There should also
be a dip somewhere along the diagonal at mππ = 1GeV.
Fig. 4d shows an enlarged view of this region. There is no
sign of these features.
The ω decay plays an important role. The spin of the

ω lies along the normal to its decay plane; information
on this decay plane is a key ingredient in determining he-
licity amplitudes. These are essential to determine inter-
ferences between the amplitudes for ωσ, ωf2(1270) and
b1(1235)π. There are in principle five f2(1270) amplitudes
corresponding to production with L= 0 (one amplitude),
L= 2 (three) and L= 4 (one). It turns out that the L= 4
amplitude and one of the three L= 2 amplitudes are neg-
ligible. There are large interferences between σ and the
remaining three f2(1270) amplitudes and even larger inter-
ferences with b1(1235).
With the EU hypothesis, the best fit to the Dalitz plot

(upper histogram) and the ω decay plane fills in the pre-
dicted dip at sππ = 1GeV

2 with other interferences, see
Fig. 4c; however, the price is a considerable deterioration of
log likelihood compared with the fit of Fig. 4a. The isobar
model fit is better than EU by 259 in log likelihood. There
are two reasons. Firstly, the narrow f0 does not appear in
interferences with either b1 or f2. The mass resolution of
the BES data is 4MeV in ππ at 950MeV; searching for the
f0(980) with accurately known line-shape is limited purely
by statistics and there are ∼ 40K events. Secondly, in the
fit based on EU, there are strong conflicts between inter-
ference terms amongst b1(1235)π, ωf2(1270) and ωσ. The
data want slowly varying interferences between b1 and the
broad f2, instead of rapidly varying interferences of the
narrow f0 with b1 and/or f2.
There are two extra fitting parameters for the isobar

model fit: i.e. two complex coupling constant for ωσ in-
stead of one. (The f0(980)ω L= 2 amplitude is negligible.)
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The definition of log likelihood is such that a change of
0.5 corresponds to a one standard deviation change in one
variable. For large statistics, χ2 is approximately twice the
change in log likelihood. So the fit of Fig. 4a is better than
EU by 19.7 standard deviations statistically.
It is important to remark that the BES publication

gives a second fit done independently. This shows a ππ
mass projection almost identical with the scalar form fac-
tor. This requires a very strong f0(980), in conflict with
what one can see by eye in Fig. 4d. However, this analysis
made no use of the ω decay plane. Without that informa-
tion, it is impossible to disentangle the magnitudes of the
five f2(1270) amplitudes; the determination of the magni-
tude and phase of the f0(980) signal becomes very poor.
I have rechecked the analysis omitting information from
the ω decay plane. No stable fit emerges with the ππ mass
projection of the second fit in the BES publication, and
there is no evidence for the presence of f0(980) at all in this
fit. The only explanation I can find of this second BES fit
is that the relative magnitudes of f0(980) and σ have been
constrained to agree with the scalar form factor. This is,
of course, exactly what needs to be checked in the present
work.
Figure 5 shows the Argand diagram for T (prodn) = Fρ

from my fit to σ and f0; the factor ρ is included so that
the diagram goes to zero at the ππ threshold. The ratio of
f0 and σ amplitudes is 0.12±0.06 at 0.99GeV and the f0
lags the σ by (42±20)◦. At the top of a large loop due to
the σ, there is a small structure due to f0(980). For com-
parison purposes, the dashed curve shows the σ amplitude
alone and the dotted curve shows the EU prediction nor-
malised to the full curve at 0.47GeV, the peak of the σ. The
essential point is that the deep dip in this latter curve near
the f0 mass is missing from the data. There is one quali-

Fig. 5. Argand diagram for Fρ; masses are marked in GeV.
Full curve, fit; dashed curve, σ alone; dotted curve, EU predic-
tion

tative feature of Fig. 5 which will be important later. The
amplitudes in a production process are free to add vecto-
rially in any way required by the data. This situation is
quite different from elastic scattering, where the amplitude
is constrained to the unitary circle.
It is now necessary to consider a number of systematic

questions which might blur the argument against EU. Cor-
responding remarks will apply to fits to the other three sets
of data.
Firstly, could the disappearance of the predicted f0(980)

arise from effects of the KK threshold? The answer is no,
because the f0 appears clearly in elastic scattering and the
prediction of EU is that it should be almost identical in
production. A precise cancellation of the magnitude and
phase of the predicted f0 would be needed. This is ruled out
by the known couplings of both σ and f0 to KK. The ana-
lytic continuation for the f0(980) below theKK threshold
is accurately determined over the small mass range con-
cerned by BES data on φππ and φKK. In the σ amplitude,
the KK inelasticity rises over a mass scale of 200MeV as
shown in Fig. 11 of [19]. Any flexibility in the analytic con-
tinuation of the KK term then has a scale of ∼ 300MeV.
Furthermore, it is closely constrained by the fit to Kloe
data on φ→ γπ0π0. So this explanation is highly implau-
sible.
Secondly, could the BES data be fitted assuming

J/Ψ→ ωKK, followed byKK→ ππ? This has been tested
by adding T12 fitted freely. Its magnitude optimises at zero
within errors. It improves log likelihood only by 2.

3.2 An objection of Aitchison

Thirdly, Aitchison argues [24] that a further term C might
be added to the P -vector due to dynamics of the pro-
duction process. A similar approach was used in fits by
Bowler et al. and Basdevant and Berger to the a1(1260)
to allow for the Deck effect [25–27]. An additional term
Cei(δA+δB)(cos δA cos δB− sin δA sin δB) appears in Fρ. If
C = iαA, the second term can cancel the term iTATB of
EU, leaving TA and the first of the additional terms, which
is close to 0 since δA � 90◦. This removes almost all the
structure due to f0(980). However, this cancellation also
leaves a term i exp i(δA+ δB) cos δA cos δB and when δB is
small this becomes i exp iδA cos δA, which is much larger
than the term TA itself if C is a constant. This is ruled out
by the data, so it becomes necessary to tailor the s-depend-
ence of C to reproduce the magnitude of the ππ amplitude.
However, this is not the end of the story. Phase infor-

mation is also available. In [14] it is shown that interference
between σ and b1(1235) measures the phase of the σ am-
plitude (plus any background term C) and requires it to
be the same as for elastic scattering down to 450MeV with
an error of 5◦ in the worst scenario, see Fig. 2 of that
paper. It is worth mentioning that there is a similar re-
sult for the κ in [15]. Figure 4a of that paper shows that
the κ phase from BES data on J/Ψ →K+π−K−π+ agrees
with the LASS effective range formula for elastic scatter-
ing down to 750MeV within 3.5◦. Figure 4f of the same
paper shows a corresponding agreement for E791 data on
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D→Kππ within a similar error. These results rule out any
background different from σ and κwith a magnitude larger
than 12% and a phase difference above±5◦. They of course
agree with Watson’s original statement that D(s) of a sin-
gle resonance should be universal.
There is no obvious source of the background proposed

by Aitchison, as there was in [25], where a Deck back-
ground was visible in the data and made a 40% contribu-
tion to cancelling the a1(1260) amplitude. A similar for-
tuitous cancellation with unidentified backgrounds will be
required also for all three of the following sets of data. In all
cases, the additional background gives rise to a phase vari-
ation different to strict EU. If the background removes the
f0, only the σ is left, i.e. Tσ, which contributes only part of
the phase of elastic scattering; so the amplitude does not
satisfy EU.

3.3 p̄p→ 3π0

A fresh analysis of Crystal Barrel data on p̄p annihila-
tion at rest to 3π0 has been completed recently [5]. Data
are available with statistics of ∼ 700K events (and 0.5%
experimental backgrounds) in both liquid and gaseous hy-
drogen; these allow a good separation of 1S0 and

3P1
initial states. Although the f0(980) appears clearly in
1S0 annihilation, the magnitude of the ππ S-wave am-
plitude does not go to zero on the Argand diagram near
1 GeV, as EU predicts. This Argand diagram is reproduced
in Fig. 6a. Its magnitude is smallest at 0.98GeV, but is
still very distinct from zero. For 3P1 annihilation, the fit-
ted f0(980) amplitude, relative to σ, is much smaller, see
Fig. 6b. The magnitude of the σ amplitude is quite large
near 1 GeV.
The question arises how robust these solutions are.

Could they ‘bend’ to accomodate EU? The published an-
alysis requires some s-dependence of the numerator fitted
to the σ amplitudes, of the form (1+Λs), with complex

Fig. 7. ππ mass projection of
data and fits: a from [5] in li-
quid hydrogen, b with the fit-
ted EU amplitude but other
amplitudes untouched, c after
refitting all amplitudes, d as c
in gaseous hydrogen, e,f with
the I = 2 S-wave included in
the fit

Fig. 6. Argand diagrams for the ππ S-wave of [5] for a 1S0
annihilation, b 3P1

Λ. Can extra flexibility reach agreement with EU? A sec-
ond point is that the analysis does not include the repulsive
I = 2 ππ S-wave. Could this bring conclusions into line
with EU?
The brief answer is definitely no, and will be presented

graphically. Fig. 7a shows the ππ mass projection for data
in liquid from the current analysis; it fits the data points
accurately. In Fig. 7b, the σ+f0 combination of the isobar
model is replaced by the EU combination (with the con-
straint from analyticity that magnitudes of σ and f0(980)
should be equal within 12%). Initially, only the coupling
constant of this combination is refitted, leaving other am-
plitudes untouched; this is for the purpose of illustrating
the change required by EU. The σ component is large and
cannot change much; a deep dip appears at 1 GeV because
of the corresponding dip in the elastic amplitude.
It is of course necessary to re-optimise all components.

The resulting mass projection is shown in Fig. 7c and is still
in severe disagreement with the data. A measure of the dis-
agreement may be obtained from χ2. Here, it is necessary
to point out that even the fit of Fig. 7a has a χ2 larger than
1. This is probably because of the enormous statistics and
small, slowly varying systematic errors in acceptance. The
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procedure adopted here is to renormalise χ2 to 1 per point
for this fit and apply the same scaling factor to all other
fits. The fit of Fig. 7c then has a renormalised χ2 of 40 599
for 3500 bins; this is a 170 standard deviation discrepancy,
allowing for the reduction in the number of fitted parame-
ters by 2.
A much better fit is possible if relative magnitudes of

σ and f0(980) are allowed to vary. The phase of the S-
wave amplitude in Fig. 6a is close to EU, and only a 10MeV
shift is required for a perfect fit. This is consistent with the
energy calibration and resolution of the Crystal Barrel de-
tector. However, the fitted combination of amplitudes no
longer agrees with the crucial equation (14).
Figure 7f shows the effect of including the I = 2 S-wave

amplitude, using the formulae of Sect. 4.1 of [5]. There
is only a rather small improvement, because the slow s-
dependence of this amplitude cannot fill the narrow dip at
1 GeV. The renormalisedχ2 falls to 34 345, a discrepancy of
∼ 130σ.
It is not just the ππ mass projection which governs χ2.

One should inspect discrepancies in χ2 all over the Dalitz
plot. Figure 8 makes such a comparison. Panel a shows
discrepancies in χ2 where the fit is above the liquid data
and panel b the discrepancies where the fit is low. Panels c
and d show results for data in gas. One sees striking sys-
tematic discrepancies all over the Dalitz plot, arising from

Fig. 8. Discrepancies in χ2

over the Dalitz plot for a,b li-
quid hydrogen, c,d gaseous
hydrogen. In a and c the fit is
above the data and in b and d
below

interferences. Such discrepancies are almost completely ab-
sent from the fit of Fig. 7a using the isobar model.
There are two further points for discussion. In the work

shown on Fig. 7e and f, the I = 2 S-wave was fitted without
factoring out the Adler zero which occurs at s∼−0.41m2π.
If this is done (as for the σ amplitude), the broad I = 2
amplitude gets confused with the σ amplitude and leads
to minor improvements all over the Dalitz plot. However,
none of these is distinctive enough to require the I = 2 am-
plitude definitively.
Secondly, could a more complicated polynomial than

(1+Λs) multiply the σ amplitude and give a successful
fit? Extensive tests were made in [5] with the objective
of improving the fits reported there. If one chooses too
free a polynomial, the fitted 3P1 component in gaseous hy-
drogen can fluctuate wildly from the 50% predicted from
Stark mixing by Reifenrofer and Klempt [28]. To avoid
this, the fitted 3P1 component is constrained within the
range (50±7)%. Unless the numerator of the EU ampli-
tude is designed to include a narrow dip at 1 GeV, no large
improvement is observed.
One further observation from the Crystal Barrel data

is worth reporting. Relative intensities of f2(1565) and
f2(1270) are quite different in p̄p annihilation to those in
elastic scattering. In p̄p data, the integrated intensities of
these two resonances are equal within 12% after allowing
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for the (modest) effects of centrifugal barriers for produc-
tion (L= 2 for 1S0 annihilation and L= 1 for

3P1). How-
ever, in elastic scattering the fitted f2(1565)→ ππ width is
a factor 4 smaller than that of f2(1270)→ ππ. This again
disagrees with EU.

4 Central production of ππ

Central production of a ππ pair in pp→ pp(ππ) was fit-
ted using EU by Au, Morgan and Pennington (AMP) [12].
In data from the AFS experiment at the ISR [10], the two
final-state protons are produced with very small 4-momen-
tum transfers t = −0.003GeV2. It is routinely assumed
that the ππ pair is unaffected by final state interactions
with these protons, which are separated from the central
region by a gap in rapidity.
AMP draw attention to structure in the ππ mass spec-

tum similar to the dip in the ππ S-wave elastic cross sec-
tion. Figure 9 shows the AFS data as open squares. There
is a peak at low ππ mass, close to that of the σ pole in BES
data, but not quite identical, for reasons discussed shortly.
Triangles on Fig. 9 show ππ elastic cross sections de-

rived fromCern–Munich phase shifts; this is done by divid-
ing the ππ amplitude of elastic scattering by N(s), leaving
only the term 1/D(s). The curve shows my fit to elas-

Fig. 9. Open squares, AFS data; triangles,
ππ cross sections derived from phase shifts of
Ochs [16]; curve, the elastic cross section with
the numerator N(s) replaced by a constant

Fig. 10. Fits to AFS data: a full curve
isobar model, chain curve using the σ
amplitude of [15], dashed curve the scal-
ing factor for the final fit. b enlargement
of the f0(980) region: full curve isobar
model, chain curve EU fit, dotted EU+
freely fitted I = 2 S-wave

tic data after dividing the ππ amplitude by N(el). The
agreement between the curve and triangles demonstrates
that the parametrisation of the σ reproduces Cern–Munich
phase shifts. Results are similar to the AFS data, but there
is a distinct difference in the vicinity of f0(980). What is
clearly evident is constructive interference between f0 and
σ immediately below 989MeV, where EU predicts a zero.
Even without fitting, one can see that EU will fail.
A detail is that, up to the KK threshold, one piece of

information from each Cern–Munich moment is sufficient
to determine phase shifts for both S- and P -waves. Above
the KK threshold, however, the separation of inelasticity
parameters η and phase shifts δ cannot be made without
further assumptions. Just above the KK threshold, the
solution of Ochs [16] has η = 0.6–0.7, whereas the BES line-
shape for f0(980) demands η parameters dropping to∼ 0.2
at 1.01 GeV. In view of this large discrepancy, predictions
from Cern–Munich phase shifts are not shown above the
KK threshold.
Since the work of Morgan and Pennington [29], infor-

mation on both σ and f0(980) has improved enormously.
The σ amplitude is taken (within errors) from [13], using
fit (iii) given there. The resulting cross section is shown
by the chain curve of Fig. 10a. Although this fit follows
the general features of the data, it is not accurate for low
ππ masses. Varying parameters of f0(980) within errors
quoted by BES has negligible effect on the quality of the fit.
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Some additional flexibility is clearly needed in the numera-
torX(s) of the σ amplitude.
There are two obvious sources. Firstly, AMP point

out that central production goes via two intermediate
Pomerons: PP → ππ, where π exchange is allowed. This
alone does not achieve a good fit. The second explanation
arises from Regge factors in the production process. AMP
argue for an s-dependent factor (m2ρ+ s) in the numerator
arising from the leading Regge trajectory. There may be
contributions also from a daughter trajectory.
The full curve of Fig. 10a shows an isobar model fit

using a complex constant for f0(980), but without any
f0(1370). It uses a scaling factor for the cross section shown
by the dashed curve. This takes the form of a Gaussian
dip: N(prodn) = 1−A exp−(s− s0)2. This scaling factor
gives rise to a slow modulation of the σ amplitude over
hundreds of MeV. It has only a small effect on what is fit-
ted to f0(980). A detail is that a Gaussian mass resolution
of 10MeV, quoted by the AFS collaboration [10], is folded
into each point of the fit; it is significant only near theKK
threshold. The fit to ππ data has a χ2 of 35.2 for 34 degrees
of freedom.
Consider now the f0(980)mass range. The isobar model

fit of Fig. 10a requires an f0 magnitude only ∼ 60% of the
EU prediction. This fit requires constructive interference
between σ and f0 below the f0 mass and destructive inter-
ference above. It implies the f0 phase is (57±7)◦ below the
EU prediction. This immediately throws doubt on EU.
A fit using EU is conspicuously bad. As an example,

if the first 29 points up to 988MeV are fitted alone, χ2 =
141.7 if fitted by σ and f0(980) only. EU predicts an am-
plitude which is almost zero at 989MeV, whereas the data
at 988MeV are far above this. If the EU fit is extended to
1300MeV including the f0(1370) with the elasticity fitted
in [5], χ2 is > 104, because the f0(1370) contribution is far
too large. Even if the f0(1370) is fitted freely in magnitude,
χ2 = 137 for 37 points. The fit, shown by the chain curve
of Fig. 10b is particularly bad close to the KK threshold,
where the dip of elastic scattering is predicted by EU. The
fit to KK data is also poor, with a χ2 of 18 for 5 points.
The dotted curve of Fig. 10b shows the effect of fitting

freely an additional contribution from the I = 2 S-waves:
χ2 = 59.6. This fails to cure the poor fit. It makes almost
no difference whether the I = 2 amplitude is divided by
a factor (s− sA) like the σ amplitude. The basic difficulty
is that the slowly varying I = 2 amplitude cannot cure the
rapid structure due to f0(980). Furthermore, the relative
magnitudes of the fitted I = 2 amplitude and the EU am-
plitude is 0.46, whereas it is only 0.18 for elastic scattering
at 1 GeV. Such a large I = 2 amplitude is implausible.
Obviously the problem with EU is that the magnitude

of the f0 amplitude needs to be smaller than for elastic
scattering. From analyticity, this also requires a difference
in phase. That is also clear from the absence of the pre-
dicted dip at 989MeV in the data.
If the phase of the f0(980) amplitude is constrained to

the EU value, but relative magnitudes of σ and f0 are set
free, χ2 = 144, which is bad. Most of χ2 comes from points
immediately around the KK threshold, showing that the
data reject also the phase variation of EU.

4.1 Proposed modification to EU

At this point, one could argue that the mechanism of
the production reaction is unknown and might generate
a phase for f0(980) different to that of the σ. This ar-
gument is not specific, though the isobar model can fit
the data well. However, the usual argument for a different
phase for f0 and σ is multiple scattering of the pions with
spectator particles. In AFS data, there is an empty rapidity
gap isolating the central region. Remember also that Cern–
Munich phase shifts are derived in the first instance from
data on πp→ ππp at high momentum and small momen-
tum transfer, a similar configuration.
The conjecture of EU will now be replaced with an al-

ternative ansatz. The treatment of production data needs
to be able to cope with the case where one resonance
amplitude is zero. EU does not, since a universal phase
equal to elastic scattering requires a production amplitude
T (p) ∝ 1/Dσ(s)Df0 (s). The correct production amplitude
should reduce to T σ when the f0 is absent. A small f0 am-
plitude should produce a small perturbation to Tσ.
Suppose the 2-body ππ amplitude is written as

Fρ1 = αT
(p) =

α′
√
1+β2

[
TA+βTBe

2iΨ(s)
]
, (19)

where α′ and β are real. This allows freedom in β and in-
cludes a phase Ψ(s) which becomes the same as for elastic
scattering when β→ 1. It is necessary to choose as A the
state with the larger amplitude on resonance, so that β ≤ 1.
If one could create this ππ system in ‘free space’, the appro-
priate 2-body unitarity relation below the KK threshold
would be

ImT (p) = |T (p)|2 . (20)

An alternative way of formulating the basic physics
(with the same outcome) is in terms of the Schwinger–
Dyson equation. Instead of the conventional relation

Tprod = Vprod+VprodGTel , (21)

my conjecture is to replace this with

Tprod = Vprod+VprodGTprod . (22)

Here V is the ‘potential’ generating the final state andG is
the propagator.
For the case of purely elastic scattering, a closed form

for Ψ(s) of (19) may be derived by substituting TA and TB
in the form (e2iδ−1)/2i into (20). After simple cancella-
tions between left- and right-hand sides,

sin(2Ψ + δB−2δA) = β sin δB , (23)

or

2Ψ = 2δA− δB+sin
−1(β sin δB) . (24)

If β 	= 1, this is a different relation from purely elastic
scattering.
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The improvement in the fit is dramatic. Immediately an
excellent fit to points below the KK threshold is obtained
with χ2 = 28.4 for 29 points and 24 degrees of freedom. The
term sin−1(β sin δB) in (24) differs from δB by 54

◦. This is
just what is needed to produce the interference between σ
and f0 observed in the isobar model fit.
Above the KK threshold, it is tempting to satisfy uni-

tarity by introducing a K-matrix. However, the K-matrix
depends on the assumption that the 2-body system is con-
fined to the unitary circle, but that is no longer the case in
a 3-body situation.
The fit may be extended above the inelastic threshold

by writing ππ andKK amplitudes as

Fππ = α
[
T σ11+γT

σ
21+
(
βT f11+ εT

f
21

)
e2iΨ
]
/ρ1

= α

[
T σ11

(
1+
γgσ2 r

gσ1

)
+T f11

(
β+
εgf2 r

gf1

)
e2iΨ
]
/
ρ1 ,

(25)

FKK = α
[
T σ12+γT

σ
22+
(
βT f12+ εT

f
22

)
e2iΨ

′]
/ρ2

= α

[
T σ11
gσ2
gσ1

(
1

r
+
γgσ2
gσ1

)
+T f11

gf2

gf1

(
β+
εgf2

gf1

)
e2iΨ

′
]
/
ρ1 .

(26)

Equations (25) and (26) expose the explicit dependence of
T12 on the ratio r =

√
ρ2/ρ1; the experimental group di-

vides out the phase space ρ2 and ρ1 in the ππ and KK
channels. As explained in Sect. 2.1, all T have the numer-
ator of elastic scattering replaced by a constant.
My T12 is defined so as to contain a factor

√
ρ1ρ2 and

T22 is defined to contain a factor ρ2. With these definitions,
the unitarity relations become

ImT11 = |T11|
2+ |T12|

2 , (27)

ImT12 = T
∗
11T12+T

∗
12T22 , (28)

ImT22 = |T
∗
22|
2+T ∗21T12 . (29)

Equations (25) and (26) satisfy these relations by con-
struction, except that Ψ and Ψ ′ need to be constrained
to obey (27)–(29). Above the KK threshold, this is done
using freely fitted Ψ and Ψ ′ for every data point and intro-
ducing into χ2 a penalty function which applies (27)–(29)
with 3% errors; in practise these constraints are easily sat-
isfied and discrepancies at the end of the fit are below the
1% level; this is well below experimental errors. In fact the
KK data are not very precise, leaving large flexibility in Ψ ′

above theKK threshold. In other words, the data are easy
to fit above the KK threshold, but highly definitive below
it.
A detail is that g2 needs to include form factors both be-

low and above the KK threshold, such that it falls quite
rapidly on both sides of the threshold; formulae are given
in [13].
The best fit with σ and f0(980) alone has χ

2 = 46.4 for
37 points and 32 degrees of freedom. The fit is good up
to 1.1 GeV, but is inadequate for ππ data near 1.3 GeV.
This may be cured straightforwardly by adding a small
f0(1370) component. A technical detail is that the f0(1370)
amplitude is multiplied by a factor exp(2iΨ ′′) and (24) is

iterated; the contribution of f0(1370) to T12 and T22 is neg-
ligible. The resulting fit, shown on Fig. 11a, has β = 0.59±
0.06 and the f0(1370) amplitude is 0.18 times that of the σ
amplitude at 1.3 GeV. The χ2 for ππ data is 28.7 for 29 de-
grees of freedom. The Omega collaboration reports a sig-
nificant contribution from f0(1370) to their data on central
production of π+π− [30]. Their fitted mass and width agree
closely with the line-shape fitted to f0(1370) in [5].
Figure 11b shows the fit to AFS K+K− data. A detail

here is that theK+K− data of AFS are scaled up by a fac-
tor 4/3 to allow for isospin Clebsch–Gordan coefficients in
π+π− andK+K− systems. TheKK data constrain the co-
efficients of T12 and T22 amplitudes. The lowest AFS KK
point has small acceptance which may have significant sys-
tematic uncertainty [31].
Figure 12 shows the Argand diagram for the fitted am-

plitude. This illustrates the form of (20). There is a geomet-
rical relation between the imaginary part of the amplitude
and its modulus squared, but it is a different relation to
EU. The f0(980) amplitude is smaller than that of the σ
and their relative phases are different to EU. The same is

Fig. 11. Fits to AFS data: a using the revised form of 2-body
unitarity, b fit to KK data

Fig. 12. The Argand diagram of the amplitude fitting AFS
data; masses are marked in GeV
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true of Fig. 5, the Argand diagram fitting BES data; there
the f0(980) contribution is very small.
Let us now return to (20) and (24) and review their gen-

eral features. The last term of (24), sin−1(β sin δB)→ δB
as β→ 1 and δB → 90◦. Furthermore it approaches this
limit non-linearly as β→ 1. The interesting point is that
two-body elastic scattering emerges as a limiting case of
a more general relation. Furthermore it has pathological
properties as the relative magnitude of A and B crosses 1
(or −1). If B becomes larger than A, it is necessary to in-
terchange the roles of A and B. As β approaches 1 from
below, Ψ → δA and one recovers the standard result of elas-
tic scattering. Further pathological cases arise if β→−1
(impossible in the 2-body elastic case). Elastic scattering is
in fact a very special case. So EU can fail very badly as β
departs from 1.
As β drops from 1, the phase Ψ measured from the ori-

gin of the Argand diagram soon changes by only a modest
amount over the f0. In this case, the isobar model becomes
an excellent approximation: the f0 has its usual depen-
dence on s through its phase shift δ and the f0 amplitude
adds vectorially to the σ; the isobar model can then fit
a constant phase to both quite successfully if the term
sin−1(β sin δ) is small.
In summary, the modified form of EU suggested in (20)

and (24) gives a much better fit than EU. The fit of Morgan
and Pennington [29] using EU requires an additional third-
sheet pole atM = 978− i28MeV. This additional pole can-
not be accomodated by BES φππ data, which require only
a second-sheet pole at 998− i17MeV and a broad third-
sheet pole at 851− i418MeV. These two poles have a nat-
ural explanation. If the coupling of f0(980) to KK is al-
lowed to decrease gradually to zero, leaving other param-
eters unchanged, the two poles coalesce towards the same
pole positionM = 968− i82MeV; it is the effect of ρ(KK)
which moves the second-sheet pole to the KK threshold
and moves the third-sheet pole away. There is no pole in
this mass range from the σ amplitude.
A second remark is that all of σ, κ, a0(980) and f0(980)

may be reproduced as a nonet by the model of Rupp and
van Beveren, where mesons couple to a quark loop [32].
In this model, no additional pole like that of Morgan and
Pennington appears in the mass range close to the KK
threshold. These two results suggest that the additional
pole is a consequence of the constraint of EU.
The relation (20) is a new conjecture. Are there forsee-

able snags? The σ and f0 may mix, and this mixing could
be different in elastic scattering and production. This mix-
ing would alter the apparent width of f0(980) and could
induce an additional phase change relative to σ. Presently
there is no indication of any need for mixing. Such mix-
ing will be absent if σ and f0(980) have strictly orthogonal
wave functions, as is plausible for members of the same
nonet. On Fig. 2, the σ is definitely visible in φππ data.
It would not be surprising if φππ and ωππ channels fil-
ter out orthogonal combinations of σ and f0. From Fig. 2,
one can estimate the relative intensities of σ and f0. It is
necessary to allow for the mass resolution, since the f0 am-
plitude falls extremely rapidly from its peak at 989MeV,
particularly above the KK threshold. Doing this, the in-

tensity of σ is 4% of f0 at the peak, i.e. 20% in amplitde.
This is marginally higher than the f0 signal fitted to ωππ
but within the error, supporting the idea of orthogonal
amplitudes.

5 How to fit elastic data
above the KK threshold

Many authors use the K-matrix to satisfy unitarity for
2-body scattering, e.g. the coupled channels ππ, KK, ηη,
ηη′ and 4π. The popular approach is to add K-matrices
of all resonances appearing in one partial wave. However,
if resonances overlap, as σ and f0(980) do, the K-matrix
poles occur at masses where combined phase shifts happen
to go through 90◦, 270◦, etc., i.e. at ∼ 750 and 1200MeV.
Firstly, an expansion in terms of these poles is problemati-
cal for f0(980) unless other factors or high powers of s are
included. Secondly, the relation between K-matrix poles
and T -matrix poles is obscure. Any one T -matrix pole is
built up from all K-matrix poles; the converse is obvious.
The prescription that S-matrices multiply below the in-
elastic threshold does not appear naturally, but has to be
enforced by fitting data.
An attractive alternative can be constructed following

the spirit of Aitchison’s approach (for 2-body scattering).
Suppose one combines two resonances according to the pre-
scription

Kij(total) =
(KA+KB)ij

1−0.5ρiρj(KAKB+KBKA)ij
. (30)

Below the KK threshold, this automatically gives the re-
sult that phase shifts add. (Further resonances may be
combined by iterating this prescription). A nice feature
of (30) is that one can write

Kij =
gigj

M2− s
, (31)

using the same mass M as the usual Breit–Wigner de-
nominator. A second attractive feature of (31) is that the
amplitude continues naturally through the KK threshold,
because of the factor ρiρj in the denominator.
My own approach in several papers, [5, 19] has been

close to this. All diagonal elements of S-matrices are mul-
tiplied, as proposed here. Magnitudes of off-diagonal elem-
ents of the S-matrix need to be calculated from unitarity
relations. For example, for a 3-channel system:

|S12|
2 = (1/2)

(
1+ |S33|

2−|S11|
2−|S22|

2
)
. (32)

The phase of these off-diagonal elements has been fitted
empirically, whereas (30) would predict these phases. This
approach successfully fits elastic data, ππ→KK and ηη
with one proviso: a good fit requires inclusion of mixing
between σ, f0(1370) and f0(1500) [5], using the formulae
of Anisovich, Anisovich and Sarantsev [33]; these formu-
lae are the modern equivalent of the Breit–Rabi equation
of molecular spectroscopy, generalised to include resonance
widths.
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6 Conclusions

Crystal Barrel data have f0(980) and σ components with
relative magnitudes seriously different to those predicted
by EU plus analyticity. Furthermore, they are different in
3S1 and

3P1 annihilation. The BES data for J/Ψ→ ωπ+π−

do not reproduce the deep dip of elastic scattering at
989MeV. AFS data likewise do not contain the same dip at
this mass. All these results are in conflict with (14), which
is a direct consequence of EU. This shows unambiguously
that there must be a major flaw in the hypothesis of EU.
Experimentalists have dealt with this problem by using

complex coupling constants for each resonance. However,
as emphasised in Sect. 2.1, the imaginary part of the coup-
ling constant introduces into the numerator of the am-
plitude an s-dependent phase variation which alters the
universal phase coming from the denominator [1− iρK(s)].
This destroys the original idea of a universal phase. One
might as well fit directly in terms of the T -matrix of each
individual resonance, along the lines outlined in Sect. 5.
The form of theK-matrix suggested there would eliminate
differences betweenK-matrix and T -matrix poles, making
interpretation of results more direct.
Not all experimentalists adopt the P -vector approach.

Some fit directly in terms of individual T -matrices for each
resonance, including sequential decays from one resonance
to a daughter with different complex coupling constants
for each decay mode. Ascoli and Wyld [34] and Schult and
Wyld [35] consider a multiple scattering series of the type
R→ (12)3→ 1(23), etc., where R is a 3-body resonance
and brackets indicate resonances in two-body sub-systems;
this is a unitarity effect of a different form to that consid-
ered here.
In view of the failure of EU in the 4 cases considered

here, each new set of data should be inspected on its merits.
Let us examine ways of trying to save EU. Firstly, it is

possible that unspecified backgrounds can be added to the
P-vector so as to side-step the conflict. However, analyt-
icity independently limits relative magnitudes of f0(980)
and σ within 12%. Experimental determinations of σ and
κ phases in [14] and [15] constrain phases within ±5◦. The
probability that unspecified backgrounds can evade (14)
to this accuracy in four sets of data is vanishingly small.
Furthermore, if such backgrounds are introduced, EU loses
any predictive power.
Secondly, Crystal Barrel data and AFS data cannot be

fitted with EU whether or not the I = 2 S-wave amplitude
is included. So this is not a satisfactory escape route.
A third likely possibility, applicable to the first three

sets of data, is that pions from sigma and/or f0(980)
rescatter from the spectator particle, leading to a break-
down of EU. Aitchison himself pointed this out. Today, we
known that such graphs have magnitudes typically 25% of
those of the parent processes before the rescattering. This
is sufficient to introduce large phase changes in some cases,
but not all.
For all of these three sets of data, the isobar model pro-

vides an excellent fit. The production amplitude is then
written F = αANA(el)/DA+αBNB(el)/DB with complex
αA and αB. In this form, no vestige remains of the con-

straint that S-matrices must multiply as in elastic scat-
tering. Relative magnitudes of αA and αB can arise from
matrix elements coupling the initial state to each reson-
ance. For J/Ψ→ ωππ and 3P1 p̄p→ 3π0, the f0 component
is so small that one cannot tell whether the phase alone fol-
lows EU or not. However, for 1S0 p̄p→ 3π0, the f0 signal is
large enough to rule out this possibility.
The fourth point is that one would still expect EU to

work for AFS data, but it does not. An excellent fit may
be obtained by replacing the unitarity relation ImT (p) =
T (p)T ∗el by the new relation

ImT (p) = |T (p)|2 . (33)

This corresponds to the relation

ImF = FT ∗(p) , (34)

rather than the commonly used form ImF = FT ∗el.
Equations (20) and (24) have pathological behaviour in

the vicinity of the 2-body elastic limit β = 1. One can now
see the basic problem of EU. It attempts to impose on the
3-body system a very special behaviour which is narrowly
restricted to 2-body scattering. Away from the special case
β = 1, the isobar model works successfully.
There are two points about the new unitarity relations.

Firstly, it was argued in Sect. 2.1 that a universal phase
in the denominator of the amplitude also requires, via an-
alyticity, almost universal magnitudes; the word ‘almost’
covers the possibility that there may be slowly varying
form factors or centrifugal barrier factors in production re-
actions without corresponding changes to D(s). If relative
magnitudes of resonances differ by large amounts between
2-body scattering and production, their relative phases
must also change.
Secondly, the new unitarity relation (33) succeeds

quantitatively in accounting for the observed relative
phase between σ and f0(980) in central production. That
is a non-trivial result. The fit to AFS data then requires
only two poles in the vicinity of f0(980), in agreement with
the BES line-shape (as does the isobar model). EU requires
an extra pole for which there is no obvious explanation.
The form of this new unitarity relation is illustrated by the
Argand diagrams of Figs. 5 and 12. In both, the f0(980)
amplitude is small or fairly small and so is sin−1(β sin δB)
of (19). As a result, the phase Ψ measured from the origin
of the Argand diagram changes rather little over the f0.
This is an extra source of phases appearing in the isobar
model, and has not been appreciated before.
However, one then needs to ask whether this new rela-

tion can be used universally in the isobar model. Does it,
for example, correctly describe the relative phases of σ and
f0 in

1S0→ 3π0 data and in J/Ψ → φππ? The answer is
no. For these two reactions, the agreement between data
and (20) and (24) improves substantially over EU. How-
ever, there are still discrepancies with the new unitarity
relation of 20–30◦, which is still significant. It seems likely
that rescattering of pions from the spectator introduces
some additional phases.
The new unitarity relation needs to be tested elsewhere.

A possible testing ground is in Kloe data on φ→ γπ0π0,
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where both σ and f0 may contribute, but the decay is elec-
tromagnetic; the small amplitude from φ→ ρπ0 introduces
a perturbation of only 4% in amplitude and only in well
defined parts of the Dalitz plot.
The remedy which succeeds well in fitting nearly all

data is the isobar model, where both magnitudes and
phases of resonances are both fitted freely. It needs to be
emphasised that experimental groups have adopted the
flexibility needed to fit existing data, so their results are
essentially sound and are not in question. The hypothe-
sis of EU has mostly been adopted by theorists for making
predictions. Those predictions now need to be viewed with
suspicion. Although the scalar form factor is well deter-
mined for elastic scattering, it is dangerous to assume that
this form factor is universal and can predict production
processes.
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