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1 Introduction

A great lesson of the Standard Model (SM) is the existence of accidental global symme-

tries that explain basic phenomenological features, for example the stability of the proton.

Arguably the most attractive solution of the strong CP problem is provided by axions,

Goldstone bosons (GB) of a U(1) global symmetry, known as Peccei-Quinn (PQ) symme-

try, dominantly broken by QCD anomalies [1–4]. Judging from the standpoint of the SM

an important weakness of most axion models is that the global symmetry must be enforced

by hand.1 The quality of the PQ symmetry must be exceptional since even tiny explicit

symmetry breaking effects would produce an axion potential incompatible with the solu-

tion of the strong CP problem [6–12]. If for example the PQ symmetry is broken by an

operator of dimension d suppressed by powers of the Planck scale, generically this induces

and effective θ-angle,

θ̄ ∼ 1

Λ4
QCD

〈Od〉
Md−4
p

. (1.1)

1The same criticism can be made for dark matter models where the cosmological stability is typically

achieved invoking discrete or continuous global symmetries. Models where dark matter is accidentally stable

can be constructed using a new gauge theory, see [5].

– 1 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
4

To explain the absence of neutron electric dipole moment, PQ breaking terms up to at least

dimension 11 should be forbidden, if the VEV is order fPQ = 1012 GeV. We regard this as

a strong motivation to look for models where the PQ symmetry emerges as an accidental

symmetry.

In this note we will construct very simple models where the axion emerges accidentally

from the dynamics of 4 dimensional gauge theories. We begin by observing that the only

way to obtain accidental global symmetries, at least in weakly coupled 4D field theories, is

in theories with massless spin-1 particles. Since these are described by a gauge theory, the

renormalizable Lagrangian enjoys an accidental global (flavor) symmetry when reducible

representations of the gauge group are present. For the axion solution of the strong CP

problem we need a U(1) global symmetry anomalous under QCD. If the fermions are in a

real representation of the gauge group (including QCD), mass terms can be written down

and all global symmetries are not anomalous, as they are vectorial. Therefore we are led

to consider chiral gauge theories. In this case there are accidental symmetries that are

anomalous in the background of SM gauge fields. Next the accidental symmetry should be

spontaneously broken by the vacuum, producing the axion particle.2

A natural setting to construct chiral theories with the required properties is provided

by Georgi’s moose theories [13] with fermions that are bi-fundamentals fields of nearest

neighbour gauge groups. Such theories can also be understood as the deconstruction of an

extra-dimension [14, 15]. An axion model in the deconstruction framework can be found

in ref. [16], and axion models have been constructed in extra-dimensions [17–22]. More

possibilities exist in 4D. For example in [23] a model was presented where suppression of

higher dimensional operators was achieved with a chiral gauging of the global symmetries.

We extend these works in several directions and show the general conditions to construct

composite accidental axion scenarios where operators up to dimension 11 or larger are

forbidden.

The paper is organised as follows: in section 2 we review and generalize composite

axion models based on SU(Nc) gauge dynamics. In section 3 we show how to realize the

PQ symmetry as accidental symmetry of the dynamics. Several models are constructed

that are distinguished by the way the SM gauge symmetry into the global symmetry of the

dynamics. Some phenomenological highlights are given in 4. Conclusion are in section 5

and generalization to SO(Nc) gauge theories can be found in the appendix.

2 Composite axions in vector-like models

Axion-like particles are a generic prediction of confining gauge theories. The first composite

axion model was built by Choi and Kim (CK) in [24, 25]. They introduced massless

Dirac fermions with quantum numbers of a color triplet and a singlet, charged under

a new SU(Nc) confining gauge interaction. In Weyl notation the fermions are in the

2If the vacuum does not break the symmetry the θ-angle can still be removed. Since the vacuum does

not break color by anomaly matching this would imply the existence of colored massless fermions, which is

excluded experimentally.
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representation,

(Nc, 3) + (N̄c, 3̄) + (Nc, 1) + (N̄c, 1) . (2.1)

The dynamics of this theory is well known from QCD. Assuming that the SU(Nc) gauge

coupling is the strongest interaction its confinement at the scale f spontaneously breaks

the flavour symmetry SU(4)L × SU(4)R to SU(4)V , where the SU(3)c ⊂ SU(4)V is gauged

by QCD. This gauging leaves an exact singlet GB. To see this note that the 15 GBs in the

adjoint representation of SU(4) decompose under SU(3)c as,

15 = 8⊕ 3⊕ 3̄⊕ 1 . (2.2)

Color interactions explicitly break the global symmetry and colored GBs acquire mass from

(calculable) loop corrections. The chiral symmetries under which the singlet shifts instead

is not broken so it remains exactly massless up to non perturbative effects induced by the

anomaly. The singlet is associated to the combination of charges of the 8 Weyl fermions

in eq. (2.1),

TPQ = (Id3, Id3,−3,−3) . (2.3)

This symmetry is anomalous in the background of QCD. This generates the term in the

axion effective action,

− 2Nc

32π2

a

fPQ
GµνG̃

µν (2.4)

where fPQ is the decay constant of the axion precisely defined below. The dynamics of

a is then determined by QCD non-perturbative effects that drive a to 0 thus solving the

strong CP problem of QCD. The orthogonal combination of charges Tη′ = (1, 1, 1, 1) is

instead anomalous under SU(Nc). The corresponding GB is the analog of the η′ in QCD

and acquires a mass proportional to fPQ from the SU(Nc) anomaly.

This construction can be easily generalized to arbitrary representations: for any choice

of SM quantum numbers one can construct a composite axion model along the lines above.

The flavor symmetry is SU(NF )× SU(NF ) with,

NF =

NS∑
i=1

di (2.5)

where di is the dimension of the i-th SM representation and NS is the number of species. It

is easy to see that the gauging of SM symmetries leaves NS − 1 exact GBs (in addition the

combination proportional to the identity is again anomalous under the SU(Nc) gauge fields)

that are singlets under the gauge interactions.3 If at least one fermion carries color charge

one combination of singlets will be anomalous under QCD while the orthogonal NS − 2

combinations will have only anomalies with electro-weak gauge bosons and therefore remain

massless until explicit breaking effects are included.

3If a SM rep appears with a multiplicity κ a non Abelian chiral symmetry U(κ) is preserved so that the

number of singlets is increased to κ2.
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q1 q2 N E/N

D + L 2 −3 4Nc −7/3

Q+ E 1 −6 4Nc −13/3

U + E 1 −3 2Nc −10/3

U + V 1 −1 2Nc −4/3

D +N 1 −3 2Nc 2/3

Table 1. Anomaly coefficients for the axion singlet in SU(Nc) models with various choices of reps

of SM fermions. We use the notation as in [5].

More in detail assigning a chiral charge qi to the i-th SM rep the combinations of

charges that is not anomalous under SU(Nc) and QCD satisfies

NS∑
i=1

qidi = 0 ,

NS∑
i=1

qiNi = 0 (2.6)

where Ni is the color anomaly coefficient given in table 2 for branches of SU(5) reps. The

QCD axion can be identified with the combination of charges TPQ orthogonal to these

massless modes and to the identity (up to negligible corrections of order Λ2
QCD/Λ

2
SU(Nc)).

It is interesting to note that this type of models unavoidably not only solves the strong CP

problem but also eliminates the SU(Nc) θ-angle.

Once we identify the combination that corresponds to the QCD axion, anomalies are

determined purely from group theory. Parametrizing the axion field as exp(ia TPQ/fPQ)

the low energy Lagrangian is,4

La =
1

2
(∂a)2 − 1

32π2

a

fPQ

[
e2E FµνF̃

µν + g2
3 N GµνG̃

µν
]

(2.7)

where

E = 4Nc Tr(TPQQ
2) , and NδAB = 4Nc Tr (TPQT

ATB) . (2.8)

Here Q is the electric charge matrix, TA are the SU(3)c generators, and TPQ is the generator

of the chiral symmetry of the axion. Note that because SM fermions have no PQ charge

there is no UV contribution to the coupling to SM fermions (∂µa)f̄γµγ5f . As a consequence

the couplings to matter are model independent, see section 4.

The structure of the low energy Lagrangian is fixed by the global structure of the vac-

uum and can be encoded in the Wess-Zumino-Witten term of the GBs effective Lagrangian.

In particular the ratio of anomalies E/N that determines the coupling to photons does not

depend on the UV completion. For example in the case of two species we find,

E

N
=
d2E1 − d1E2

d2N1 − d1N2
(2.9)

where E1,2 and N1,2 are the electromagnetic and color anomalies associated to each multi-

plet. A sample of models and their anomaly coefficients is given in table 1.

4We normalize TPQ so that the periodicity of a is a multiple of 2πfPQ. The axion decay constant is

related to the decay constant of the σ-model by f2
PQ = 2

∑
i diq

2
i f

2.
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SU(5) SU(3)c SU(2)L U(1)Y charge name ∆N ∆E

1 1 1 0 0 N 0 0

5̄ 3̄ 1 1/3 1/3 D 1/2 1/3

1 2 −1/2 0,−1 L 0 1

10 3̄ 1 −2/3 −2/3 U 1/2 4/3

1 1 1 1 E 0 1

3 2 1/6 2/3,−1/3 Q 1 5/3

15 3 2 1/6 2/3,−1/3 Q 1 5/3

1 3 1 0, 1, 2 T 0 5

6 1 −2/3 −2/3 S 5/2 8/3

24 1 3 0 −1, 0, 1 V 0 2

8 1 0 0 G 3 0

3̄ 2 5/6 4/3, 1/3 X 1 17/3

1 1 0 0 N 0 0

Table 2. SM representations arising from the smallest SU(5) representations. We give the SM de-

composition, assign standard names used throughout the paper, and list the anomaly contributions

∆N and ∆E for a chiral rotation with unit charge.

3 Accidental Peccei-Quinn symmetry

The composite axion models described above are vector-like so that PQ symmetry could

be already violated by fermion mass terms. Moreover the higher dimensional operators

that break the PQ symmetry should also be forbidden.

Here we explore the possibility that the PQ symmetry of composite axion models is

accidental. We focus on the symmetry breaking pattern SU(NF )L×SU(NF )R → SU(NF )V
obtained with QCD-like dynamics where the axion a is identified with one of the GBs

(extension to SO(N) gauge theories is described in the appendix). In general, we can

weakly gauge any subgroup HL×HR of the global symmetry group SU(NF )L×SU(NF )R as

long as cancellation of gauge anomalies is satisfied. Because of the spontaneous symmetry

breaking, the unbroken gauge group will be given by the intersection of HL × HR with

⊂ SU(NF )V . In order to generate an anomaly with QCD the unbroken group should

contain SU(3)c. There are two possibilities:

• SU(3)c ⊂ HV : this gauging is not chiral so that anomaly cancellations is automatic.

The gauge theory allows mass terms that would break explicitly the PQ symmetry.

• SU(3) ⊂ HR: this gauging is chiral and SU(3)c at low energy emerges as the unbroken

diagonal subgroup. Mass terms are forbidden.

In what follows we explain in detail how render the PQ symmetry accidental to the

required accuracy.
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SU(N)1 SU(N)2 SU(N)n SU(N)n+1SU(4)1 SU(4)n

SU(3)

χ1,1 ψ1,2 χn,n ψn,n+1

Q Q̄
S S̄

qL, u
c
R, d

c
R

Figure 1. Moose diagram of accidental axions based on the pattern SU(4)L × SU(4)R/ SU(4). Q

transforms as SM color triplet and S as a singlet.

3.1 SU(3)c ⊂ HV

This is the same embedding as the CK model. PQ breaking mass terms and higher di-

mensional operators can be forbidden making the theory chiral. This can be achieved

introducing gauge fields with fermions in a bi-fundamental representations under nearest

neighbour gauge groups [13], as described by the moose in figure 1.

The moose describes a gauge theory
∏n+1
i=1 SU(Nc)i×

∏n
j=1 SU(M)j with Weyl fermions

transforming as bi-fundamentals under nearest neighbour gauge fields. Explicitly we take

Weyl fermions χi,i, ψi,i+1 transforming as (Nc, M̄ , 1) and (1,M, N̄c) under SU(Nc)i ×
SU(M)i×SU(Nc)i+1 gauge symmetry. The theory so constructed is chiral. No mass terms

can be written down and the global symmetry is then accidentally SU(NF )× SU(NF ).

The dynamics of the theory is as follows. We assume that SU(Nc) gauge groups

confine at scale fi. This spontaneously breaks the global symmetries that are (weakly)

gauged by SU(M) gauge fields. One obtains a theory with a global symmetry SU(M)L ×
SU(M)R/ SU(M)V broken at the scale,

1

f2
=

n∑
i=1

1

f2
i

. (3.1)

Starting from this chiral moose we can proceed exactly as in the previous section

gauging a subgroup of the unbroken global group that corresponds to SM symmetries.

The anomalies are identical to that case being determined by the number of colors of the

boundary confining gauge theories. Explicitly for the CK model Q and S transform as

(3, N̄c) and (1, N̄c) under SU(3)c × SU(Nc)1, and Q̄ and S̄ behave as (3̄, Nc) and (1, Nc)

under SU(3)c×SU(Nc)n+1. Simplest gauge invariant PQ breaking operators are obtained by

stringing together the fermions along the moose, i.e. Q(Πn
i=1χi,iψi,i+1)Q̄ whose dimension

is 3n+ 3.

In general suppression of higher dimensional operators in controlled by the “length”

of the moose, i.e. how many sites it contains. It is interesting to note that there is a limit

to the possible suppression. Indeed the low energy SM couplings are given by,

1

g2
SM

=
1

g2
0

+

n∑
i=1

1

g2
i

(3.2)

so that perturbativity of gauge couplings implies the mild constraint n� 16π2/g2
SM.
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All this mimics the locality of an extra-dimension and in fact it is just the deconstruc-

tion of a 5D gauge theory. It is interesting to consider the continuum limit of this theory,

see [27] for the same construction applied to QCD. This is given by an SU(M) gauge the-

ory in a 5 dimensional interval with appropriate boundary conditions that reproduce the

spontaneous breaking of the global symmetry. As discussed in refs. [28–30], the effects of

anomalies are encoded in the Chern-Simons term,

SCS =
Nc

96π2

∫
d4x

∫ L

0
dzεMNOPQTr

[
AMGNOGPQ+iAMANAOGPQ−

2

5
AMANAOAPAQ

]
.

(3.3)

In this construction the axion is the Wilson line APQ
5 and receives an anomalous coupling

to gluons from the Chern-Simons term. Strictly only certain 5D models can be reproduced

with simple SU(Nc) gauge dynamics. For example the axion model in [21] considers an

SU(3)×U(1) gauge theory in 5 dimensions. This can be thought as the truncation of the

action above.

3.1.1 Accidental symmetries

The models presented above naturally feature accidental symmetries that are only broken

by non renormalizable interactions. Some of these symmetries (vectorial) are respected

by the vacuum while others (chiral) are spontaneously broken. The first kind leads to

accidentally stable particles. These are:

• Baryon number: the rotation of all the Dirac fermions with an equal phase ψi → eiαψi
guarantees the stability of baryon states εi1...iNψi1 . . . ψiN .

• Species number: in models with more than one SM representation we can rotate two

fermions independently. Pions made of different species carry a net species number

and are therefore stable.

The stability of these states leads to phenomenological problems unless the scale of inflation

is below f , see section 4.

Chiral symmetries are responsible for the existence of composite axions. These are

singlets that do not carry species number, indeed they couple to gluons and photons. A

model independent PQ breaking operator is the “Wilson line” operator such as Qχ1,1ψ1,2 · · ·
χn,nψn,n+1Q̄, whose dimension is 3n + 3 where n is the number of sites. For the axion to

solve the strong CP problem one should have n > 3 for fPQ = 1012 GeV. The other terms

that can break explicitly the global symmetries are baryon operators.5 From a fundamental

representation we can build a singlet of SU(Nc) using the ε tensor with Nc fermions. A

singlet under the SM can be constructed multiplying together various of these terms. The

lowest dimensional operator that breaks the symmetry is model dependent. Consider for

example the model D + L. The lowest dimensional baryon-like operator has the structure

D3NcL2Nc which has sufficiently high dimensionality even for Nc = 3. In models with

singlets lower dimensional PQ breaking operators exist. Indeed in this case NNc is a

singlet so that Nc > 4(8) for Nc odd (even).

5Since these operators do not have VEV bounds on their dimensionality will be weaker, see [12].
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3.2 SU(3) ⊂ HR

In the construction above the SM gauges a subgroup of the unbroken global symmetry and

chirality of the theory is induced by the moose structure. Another possibility that we now

explore is that the SM gauge group arises as the unbroken group of a chiral gauging of the

global symmetry SU(NF )L × SU(NF )R/ SU(NF )V . As we will see this further constrains

the possible gauge invariant operators.

To construct a chiral composite axion model starting from SU(Nc) gauge theory with

vectorial fermions we need to gauge a chiral subgroup of the global symmetry so that

the unbroken group contains the SM and a spontaneously broken U(1) symmetry that is

anomalous under QCD. In general we can divide the generators into broken and unbroken

ones that will decompose into representations of the SM symmetry. The gauging explicitly

breaks some of the global symmetries; the broken generators that are gauged correspond

to massive gauge bosons while the GBs whose shift symmetry is explicitly broken by the

gauging acquire a mass.

Since the independent gauging of SU(NF )L and SU(NF )R is chiral only certain sub-

groups can be gauged consistently. For example gauging the full SU(NF )L × SU(NF )R
is anomalous. The effect of anomalies can be encoded in the Wess-Zumino-Witten term

associated to the coset and does not depend on the UV completion. The general condition

for the gauging to be possible is that,

Tr(T 3
L) = Tr(T 3

R) (3.4)

which is automatically satisfied when we gauge the unbroken group as in section 3.1.

Another possibility that we pursue here is to perform a gauging so that left and right

side of eq. (3.4) are individually zero. The simplest choice that produces a composite axion

model is:

(Nc,m, 1)⊕ (N̄c, 1, 3̄)⊕ (Nc, m̄, 1)⊕ (N̄c, 1, 3)⊕ 2(m− 3)(N̄c, 1, 1) . (3.5)

This corresponds to a theory with flavor symmetry SU(2m)L×SU(2m)R/ SU(2m)V where

the gauged SU(m) is embedded in SU(2m)L so that the fundamental representation de-

compose as 2m = m + m̄ which is anomaly free and similarly SU(3) in SU(2m)R. In the

UV the SM quarks are most simply charged under SU(3)R that is spontaneously broken

by the strong dynamics.

The chiral gauging of SU(m) and SU(3) breaks explicitly some of the symmetries

leaving an exact,

SU(m)×U(1)× SU(3)× SU(2m− 6)×U(1)×U(1)×U(1)

SU(3)×U(1)×U(1)
. (3.6)

The unbroken SU(3) can be identified with SU(3)c at low energy. SU(m)L is gauged

and spontaneously broken so that the corresponding GBs are eaten while GBs charged

under the SM acquire mass from gauge interactions. Singlets remain massless and a linear

combination is anomalous under QCD playing the role of the axion.6

6The condensates are (Nc,m, 1)×[(N̄c, 1, 3̄)⊕(m−3)(N̄c, 1, 1)] , (Nc, m̄, 1)⊗[(N̄c, 1, 3)⊕(m−3)(N̄c, 1, 3)]

and the singlets correspond to the U(1) chiral rotations spontaneously broken by the condensate.

– 8 –
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It is interesting to understand how the strong CP problem is solved from the point

of view of the high energy theory. The QCD θ-angle originates from SU(m) and SU(3)

θ-angles. The anomalous U(1)’s allow to remove both of them. Let’s consider the U(1)′s

under which the i-th representation has charge qi. We have the following mixes anomalies,

U(1)× SU(3) : NcqN3 +NcqN3

U(1)× SU(m) : NcqNm +NcqNm̄

U(1)× SU(Nc) : 3qN3 + 3qN3 +mqNm +mqNm̄ +

2m−6∑
i=1

q
N

i .

For m > 3 one can choose combinations that are anomalous under each gauge group

removing all the θ angles in the theory. For m = 3 instead the combination anomalous

under SU(3)c is also anomalous under SU(Nc). Therefore the axion acquires mainly a

potential from SU(Nc) and does not solve the SU(3)c strong CP problem.

We can derive the results above in a slightly different way following ref. [32]. The

gauging of SU(m) on the left reduces the global symmetry to,7

SU(2m)×U(1)

SU(m)×U(1)
. (3.7)

The adjoint representation of SU(2m) decomposes under SU(m) as,

AdjSU(2m) = 1 + + + + + 2AdjSU(m) . (3.8)

The gauging of SU(3) on the right corresponds to a gauging of a subgroup of the unbroken

group so that the corresponding gauge fields remain massless. We can decompose the GBs

in SU(3) reps. For example for m = 4 we find,

GBs = 4× 1⊕ 4× 3⊕ 4× 3̄⊕ 6⊕ 6̄⊕ 8 . (3.9)

The charged GBs acquire mass from color interactions that explicitly break their chiral

symmetry. Singlets instead remain exact GBs up to anomalies. The QCD axion is then

identified as the combination of charges anomalous under SU(3) while the orthogonal com-

binations remain exactly massless. This formulation makes it obvious to compute anoma-

lies. The singlets GBs corresponds to the traceless diagonal generators of SU(2m)R. For

the QCD axion combination the charges are identical to the ones in section 2 leading to

the same anomaly coefficients. Compared to those models we also obtain extra axion-like

particles with no QCD anomalies.

In this model the combination of SM and SU(Nc) gauge symmetries is chiral so that

no mass terms can be written down. We can however write dimension-6 operators that

break the PQ symmetry, namely,

[(Nc,m, 1)(Nc, m̄, 1)][(N̄c, 1, 3̄)(N̄c, 1, 3)] . (3.10)

7An even simpler possibility is to gauge the full anomaly free SO(2m)L leaving a global symmetry

SU(2m)/ SO(2m). The pattern so obtained is identical to the one obtained in SO(N) gauge theories with

vectorial fermions, see appendix.
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Figure 2. Moose diagram for axial models. Left and right arrow correspond to fundamental and

anti-fundamental representations.

Also in this case one can associate the suppression of higher dimensional operators to the

length of the moose diagram. In figure 2 the length of the gauge invariant loop connecting

all the sites is 4 so that mass terms are forbidden while 4-Fermi operators are allowed.

Higher dimension operators can be further eliminated replacing the SU(Nc) gauge theory

with a moose model as in the vectorial models. Another possibility would be to consider a

more complicated chiral gauging of the global symmetries.

Let us discuss the running of gauge couplings. For the confining group,

d

dt

1

αN
=

1

6π
(11Nc − 4m) . (3.11)

Asymptotic freedom of SU(Nc) requires,

m <
11

4
Nc . (3.12)

An important constraint on this type of models arises from the absence of Landau poles

below the Planck scale. This is necessary to justify the suppression of higher dimensional

operators by that scale. For αs one finds,

1

αs(M)
≈ 30 +

7

2π
log

M

1012 GeV
− Nc

3π
log

M

1012 GeV
. (3.13)

Requiring αs(Mp) < 1 implies Nc < 28 which is a mild constraint.

3.2.1 Example: SU(8)/ SO(8)

Consider the gauge theory SU(Nc) × SO(8) × SU(3) × U(1) with the following fermion

representations,

rL=(Nc,8,1), rR3x=(Nc,1,3)x, rR3x
=(Nc,1,3)−x rR1y=(Nc,1,1)y, rR1y

=(Nc,1,1)−y.

(3.14)

The flavor symmetry of the SU(Nc) gauge theory is SU(8)L × SU(8)R. The gauging of

SO(8)L leaves at low energies the pattern of symmetry breaking,

SU(8)

SO(8)
. (3.15)
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The 35 GB decompose under SU(3)c ×U(1)Y contained in the unbroken group as,

GBs = 3× 10 ⊕ 3x+y ⊕ 3̄−x−y ⊕ 3x−y ⊕ 3̄−x+y ⊕ 62x ⊕ 6̄−2x ⊕ 80 . (3.16)

In the low energy theory the singlet anomalous under QCD corresponds to the SU(8)R
generator (Id3, Id3,−3,−3) as in eq. (2.3). The anomalies are then identical to that case.

From the SU(Nc) × SO(8) × SU(3) × U(1) point of view this can be understood as

follows: the condensates are given by,

rLrR3x , rLrR3x
, rLrR3x

, rLrR1y , rLrR1y
. (3.17)

The vacuum is invariant under the rotation,

T1 = (1,−1,−1,−1,−1) (3.18)

whose mixed anomalies with SU(Nc)× SO(8)× SU(3)×U(1) are,

AH = (0, 2Nc,−2Nc) . (3.19)

The orthogonal spontaneously broken symmetries and the corresponding anomalies are,

T2 : (0, 1, 1,−3,−3) , A2 = (0, 0, 2Nc, 4Nc(3x
2 − 3y2))

T3 : (0, 1,−1, 0, 0) , A3 = (0, 0, 0, 0)

T4 : (0, 0, 0, 1,−1) , A4 = (0, 0, 0, 0)

T5 : (1, 1, 1, 1, 1, 1) , A5 = (8, Nc, 2Nc, 2Nc(3x
2 + y2)) (3.20)

where the last generator corresponds to the overall anomalous U(1). The are three indepen-

dent combinations that are anomalous under each gauge group. This allows to remove all

the θ angles from the theory. Note that this requires both broken and unbroken symmetries.

3.3 SM + axial gauging

Yet another generalization is provided by the model in [23]. Consider SU(Nc)× SU(m)×
SU(3) gauge theory. An anomaly free set of fermions is,

(Nc,m, 3) + 3(Nc, m̄, 1) +m(N̄c, 1, 3̄) + 3m(N̄c, 1, 1) . (3.21)

Among the GBs the one corresponding to a rotation of the colored fields and a rotation in

the opposite direction of the SU(3)c singlets remains exact and is anomalous under QCD

providing a composite axion candidate.

From a group theory perspective in this model the SM gauge symmetry is a subgroup

of the unbroken group as in the CK model. A further chiral gauging, analogous to SU(2)L
in the SM, of the broken generators is performed so that the theory is chiral. From the

point of view of the moose this corresponds to introducing fields that are tri-fundamental

as in figure 3.

One interesting feature of this model is that the value of m controls the dimension

of the operators that break the accidental axion global symmetry. The model however
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Figure 3. Moose diagram of composite axion model of [23].

suffer from various constraints discussed in [12]. There are 12Ncm chiral fields charged

under QCD. Asymptotic freedom limits how large m and Nc can be. Indeed requiring

that operators that violate the global symmetry up to dimension 10 are forbidden only the

values m = 4 and Nc = 5 are allowed.

To ameliorate the constraints on this model one could combine the gauge structure

above with moose structure and obtain further suppression of higher dimensional operators.

Also in this case adding more sites to the moose does not change the global structure of

the global symmetries.

4 Phenomenology

In this section we discuss various features typical of composite axion models.

4.1 Coupling to matter

In the composite axion models studied here SM fields are not charged under the PQ symme-

try. As a consequence the couplings to matter are model independent and can be computed

with high precision using chiral Lagrangian methods [26]. In particular this implies the

following couplings to nucleons,

− 0.47(3)
N

2fPQ
∂µa p̄γ

µγ5p− 0.02(3)
N

2fPQ
∂µa n̄γ

µγ5n . (4.1)

Derivative couplings to electrons will be generated at 1-loop in the electro-weak couplings.

4.2 Axion-like particles

In the models under consideration one often obtains extra singlets that are not anomalous

under QCD. Their mass is only generated from explicit breaking effects of SU(NF )L ×
SU(NF )R. Therefore the mass of axion-like particles is expected to be related to the

explicit PQ breaking, i.e. the size of θ̄.
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Adding the PQ breaking interaction Od/Md−4
p with O(1) the effective potential for a

becomes,

V (a) ∼ 1

2
m2
aa

2 +
〈Od〉
Md−4
p

a

fPQ
+
〈Od〉
Md−4
p

a2

f2
PQ

+ · · · , (4.2)

where ma ∼ mπfπ/fPQ is the axion mass from non perturbative QCD contributions. The

term linear in a induces a VEV for a,

θ̄ =
〈a〉
fPQ

∼ 〈Od〉
f2

PQm
2
aM

d−4
p

. (4.3)

that should be smaller than 10−10. The third term of eq. (4.2) gives a contribution to the

axion mass,

δVmass ∼
〈Od〉
Md−4
p

a2

f2
PQ

∼ θ̄m2
aa

2. (4.4)

While this contribution is negligible for the QCD axion a similar contribution is generated

for axion-like particles (ALP), if the structure of the explicit symmetry breaking operators

is generic,

mALP ∼
√
θ̄ma < 10−5ma . (4.5)

ALPs with mass given by eq. (4.5) would give a negligible contribution to the dark

matter density. Indeed the relics abundance is given by [40],

ρALP

ρDM
≈ 1.6

√
mALP

eV

(
fPQ

1011 GeV

)2

〈θ2〉 (4.6)

which is subdominant to the QCD axion density in the entire parameter range.

For masses 10−33 eV < mALP < 4 × 10−28 eV the ALPs could give measurable effects

in the precession of the CMB. Also, for masses 10−18 eV . mALP . 10−10 eV the ALPs

could affect rotation of blackhole, see ref. [41] and references therein.

4.3 Topological defects and the scale of inflation

The composite axion scenario suffers in general from the presence of topological defects.

This seems an unavoidable property of the accidental symmetries required for the axion

solution of the strong CP problem. Beside global strings from the spontaneous U(1)PQ

breaking there are also domain walls and stable hadrons. Presence of such stable objects

during the cosmological history of the universe is strongly constrained.

The SU(Nc) theories considered so far always contain baryon states that are stable

because of accidental symmetries. The quality of the PQ symmetry suggests that the

baryons are cosmologically stable. If the baryon symmetry is broken by dim 12 operators

for example the rate scales as,

τ ∼
8πM16

p

m17
B

∼ 10−40 s×
(
Mp

4πf

)17

(4.7)
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using Mp = 2.4× 1018 GeV and estimating the mass of the baryon as 4πf . The lifetime is

longer than the age of the universe for f < 1013 GeV. If the stable baryons are thermalized

in the early universe they would overclose the universe. This problem could be circumvented

in theories that do not admit stable baryons such as Sp(N) gauge theories with pseudo-real

representations.

The domain wall problem is even more model independent. The existence of domain

walls is associated to the anomaly coefficient that in general break U(1)PQ to ZN . Because

of the multiplicity factor Nc the domain wall number cannot be 1 and therefore some stable

domain walls exist and will be produced in the early universe. This scenario would then be

ruled out unless some explicit breaking of the global symmetry is included, which however

is hard to reconcile with the required quality of the PQ symmetry.

To avoid all the problems with topological defect the simplest possibility is to assume

that PQ symmetry is broken during/before the inflation, and the reheating temperature is

much smaller than fPQ. With this choice the initial displacement of the axion is determined

anthropically by the DM abundance so that the the whole visible patch of the universe

has the same θ0. Note that fPQ can be larger than 1012 GeV in this case which however

exacerbates the issue of accidental symmetries. The main constraint comes in this case

from isocurvature perturbations of CMB [33–38] Using the latest results from the Planck

collaboration gives a constraint on Hinf. as [39],

Hinf. < 0.86× 107 GeV

(
fPQ

1012 GeV

)0.408

(95 % C.L.), (4.8)

where Hinf. is the expansion rate at Hubble radius exit of the scale corresponding to kmid =

0.05 Mpc−1. On the other hand, the energy density V∗ during the inflation can be written

by using tensor-to-scalar ratio r as V∗ = (3.34× 1016 GeV)4 r [39]. Thus,

Hinf. = 2.7× 1014√r GeV. (4.9)

Of course if non-zero tensor-to-scalar ratio were observed in future experiments, composite

axion models would be severely constrained.

4.4 Unification

The accidental axion models discussed in the previous sections can be easily extended to

unified theories. First of all, compatibility with unification requires that the SM represen-

tation are branches of unified representations, the smallest SU(5) multiplets are given in

table 2. This implies some restrictions on the possible charges, for example color triplets

cannot have hypercharge equal to zero.

One possibility is to construct the theory with complete SU(5) multiplets. Let us

consider the vectorial models. The simplest model along these lines is obtained by taking

fermions in the 5 + 1 representation that contains D+L+N states. In this case the axion

can be identified with SU(5) invariant traceless combination of charges,

D + L− 5N . (4.10)
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Note that another SM singlet exists (corresponding to the rotation 2D − 3L) whose shift

symmetry is explicitly broken by unification. Its mass is however very large, of order

f2
PQ/MGUT. For the QCD axion a model independent prediction whenever unified multi-

plets are used is that,
E

N
=

8

3
. (4.11)

In this case the differential of running of SM couplings is not modified so that their unifica-

tion is only approximate as in the SM, though enhanced threshold corrections are expected.

Unification of SM couplings could be improved with incomplete multiplets as in [43].

Above the confinement scale the differential running is modified and unification of couplings

can be achieved. We can build for example a CK model with moose structure based on

the choice of fermions [42],

Ψ = D + L+Q+ U (4.12)

which corresponds to a 5 and an incomplete 10 rep of SU(5). From the point of the

differential running this is equivalent to a shift of β-function coefficients induced by −E
multiplied by the number of colors. One finds that unification of couplings can be achieved

for N = 6 colors with,

αGUT ≈ 0.05 , mGUT ≈ 1017 GeV (4.13)

assuming that the running is modified at a scale around 1012 GeV.

One significant difference compared to [43] is that the relation between unification

and the ratio E/N is model dependent. In that ref. the axion was realised with a single

elementary complex scalar field that spontaneously breaks the PQ symmetry. Because of

renormalizability all the fermions have the same PQ charge so that a model independent

relation between β-function coefficients and E/N is found. In the composite axion models

different fermions have different PQ charge as determined by the combination that couples

to the QCD anomaly. In the model above the axion, assuming that D + L and Q + U

belong to a single 5 and a 10 respectively, corresponds to the combination of charges,

9(D + L)− 5(Q+ U) (4.14)

from which we derive,
E

N
=

6

5
. (4.15)

These results can also be extended to axial models. In this case above the confinement

scale the gauge group becomes SU(m)L×SU(5)R or SO(2m)L×SU(5)R. In order to avoid

exotic states the SM should be a representation of SU(5)R. Unification would proceed in

a similar way as discussed above.

5 Summary

To conclude we wish to cast our results in a model independent way. The starting point

to construct a composite axion model is the spontaneous breaking of G → H. Beside
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SU(NF )×SU(NF )/ SU(NF ), UV complete models can be obtained from QCD-like dynamics

with appropriate gauging of the global symmetries [32].

Among the Goldstone bosons, SM singlets are typically anomalous under QCD and

electromagnetism and thereby provide natural axion candidates. The anomalies are de-

termined by the Wess-Zumino-Witten term of the chiral Lagrangian and in particular the

coupling to photons is fixed by group theory. In order to have anomalies G must contain

SU(N) or U(1) factors.

In order for the axion to solve the strong CP problem QCD should be the dominant

source of breaking of the axion shift symmetry to exquisite precision. This depends on the

UV completion that realizes the spontaneous breaking. For vectorial theories this requires

that the fermions masses are set to zero and moreover higher dimensional operators should

also be eliminated up to dimension at least 11. The axion can arise accidentally if the

gauge theory is chiral. Within the composite axion scenario this can be achieved either

with a chiral gauging of the global symmetry of the coset or introducing a moose structure

with nearest neighbour interactions. The latter case is equivalent to the deconstruction

of a 5-dimensional gauge theory. Suppression of the interactions is then understood from

locality.

Composite axion scenarios most likely require the scale of inflation to be smaller than

fPQ in order to avoid severe constraints from the existence of topological defects. It is of

course extremely difficult if not impossible to determine whether the axion is composite

from its low energy properties. Generic phenomenological features are however additional

axion-like-particles and model independent derivative couplings to matter. The composite

axion demands the existence of new fermions with SM charges that could improve the

unification of SM couplings. Knowledge of the electromagnetic coupling to photons would

provide a precious information to select the relevant models.
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A SO(N) models

The dynamics of SO(Nc) gauge theories with fermions in a vector representation presents

some new features. Due to the reality of the representation the pattern of symmetry

breaking is expected to be,
SU(NF )

SO(NF )
(A.1)

determined by the vacuum condensate,

〈ψiψj〉 = Λ3δij . (A.2)
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Consider an SO(Nc)×SU(M)×SU(M) gauge theory with Weyl fermions in the chiral rep,

(Nc,m, m̄) +m(Nc, m̄, 1) +m(Nc, 1,m) . (A.3)

The global symmetry of SO(Nc) is SU(3m2). The dynamics of the theory depends on

the vacuum alignment since both SU(M) gauge symmetries cannot be preserved simul-

taneously. The largest unbroken group is the diagonal combination of SU(M) so we will

assume that the dynamics does not break it. Consider now the U(1) symmetries that rotate

the representations above with charges q1, q2 and q3. The anomalies read,

U(1)× SO(Nc)
2 : 2m2(q1 + q2 + q3)

U(1)× SU(M)2
1 : 2mNc(q1 + q2)

U(1)× SU(M)2
2 : 2mNc(q1 + q3) . (A.4)

Since these 3 combinations are linearly independent, as in SU(Nc) examples all 3 θ angles

can be removed, independently of the vacuum alignment.

The strong CP problem is solved similarly to section 3.2. The condensates are,

r1r1 , r2r3 . (A.5)

The spontaneously broken U(1) generators and their anomaly coefficients under SO(Nc)×
SU(M)× SU(M) are,

T2 = (0, 1, 1) : A2 = (4m2, 2mNc, 2mNc)

T3 = (1, 0, 0) : A3 = (2m2, 2mNc, 2mNc) . (A.6)

The effective Lagrangian for the axions contains,

Leff ∼
a1

fPQ
(4m2F 2

1 + 2mNcF
2
2 + 2mNcF

2
3 ) +

a2

fPQ
(2m2F 2

1 + 2mNcF
2
2 + 2mNcF

2
3 )

= 2m2 2a1 + a2

fPQ
F 2

1 + 2mNc
a1 + a2

fPQ
F 2
g (A.7)

so that the physical axion can be identified with the combination,

aQCD ∼
a1 − 2a2√

5
(A.8)

that corresponds to the generator TQCD = 1/
√

5(−2, 1, 1).

The constraints on asymptotic freedom are in this case as follows,

bN = −11

3
(Nc − 2) +

2

3
NF → m2 <

11

8
(Nc − 2) . (A.9)

For the running of SU(M) we have,

1

αs(M)
≈ 30 +

7

2π
log

M

1012 GeV
− mNc

3π
log

M

1012 GeV
. (A.10)

This is identical to what one obtains in the model of section 3.3.

In this model PQ symmetry can be violated by dimension 6 operators. This can again

be improved by adding a moose structure to the theory with SU(Nc) gauge fields and

gauging diagonal SU(M) global symmetries.
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