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We present the general framework for mean-square performance analysis of the selective partial update affine projection algorithm
(SPU-APA) and the family of SPU normalized least mean-squares (SPU-NLMS) adaptive filter algorithms in nonstationary
environment. Based on this the tracking performance of Max-NLMS, N-Max NLMS and the various types of SPU-NLMS and
SPU-APA can be analyzed in a unified way. The analysis is based on energy conservation arguments and does not need to assume
a Gaussian or white distribution for the regressors. We demonstrate through simulations that the derived expressions are useful in
predicting the performances of this family of adaptive filters in nonstationary environment.

1. Introduction

Mean-square performance analysis of adaptive filtering algo-
rithms in nonstationary environments has been, and still is,
an area of active research [1–3]. When the input signal
properties vary with time, the adaptive filters are able to track
these variations. The aim of tracking performance analysis
is to characterize this tracking ability in nonstationary
environments. In this area, many contributions focus on
a particular algorithm, making more or less restrictive
assumptions on the input signal. For example, in [4, 5],
the transient performance of the LMS was presented in the
nonstationary environments. The former uses a random-
walk model for the variations in the optimal weight vector,
while the latter assumes deterministic variations in the
optimal weight vector. The steady-state performance of this
algorithm in the nonstationary environment for the white
input is presented in [6]. The tracking performance analysis
of the signed regressor LMS algorithm can be found in [7–9].
Also, the steady-state and tracking analysis of this algorithm
without the explicit use of the independence assumptions are
presented in [10].

Obviously, a more general analysis encompassing as
many different algorithms as possible as special cases, while
at the same time making as few restrictive assumptions as
possible, is highly desirable. In [11], a unified approach for
steady-state and tracking analysis of LMS, NLMS, and some
adaptive filters with the nonlinearity property in the error
is presented. The tracking analysis of the family of Affine
Projection Algorithms (APAs) was presented in [12]. Their
approach was based on energy-conservation relation which
was originally derived in [13, 14]. The tracking performance
analysis of LMS, NLMS, APA, and RLS based on energy
conservation arguments can be found in [3], but the analysis
of the mentioned algorithms has been presented separately.
Also, the transient and steady-state analysis of data-reusing
adaptive algorithms in the stationary environment were
presented in [15] based on the weighted energy relation.

In contrast to full update adaptive algorithms, the con-
vergence analysis of adaptive filters with selective partial
updates (SPU) in nonstationary environments has not been
widely studied. Many contributions focus on a particular
algorithm and also on stationary environment. For example
in [16], the convergence analysis of the N-Max NLMS
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(N is the number of filter coefficients to update) for zero
mean independent Gaussian input signal and for N = 1 is
presented. In [17], the theoretical mean square performance
of the SPU-NLMS algorithms was studied with the same
assumption in [16]. The results in [18] present mean square
convergence analysis of the SPU-NLMS for the case of white
input signals. The more general performance analysis for the
family of SPU-NLMS algorithms in the stationary environ-
ment can be found in [19, 20]. The steady-state MSE analysis
of SPU-NLMS in [19] was based on transient analysis. Also
this paper has not presented the theoretical performance of
SPU-APA. In [21], the tracking performance of some SPU
adaptive filter algorithms was studied. But the analysis was
presented for the white Gaussian input signal.

What we propose here is a general formalism for tracking
performance analysis of the family of SPU-NLMS and SPU
affine projection algorithms. Based on this, the performance
of Max-NLMS [22], N-Max NLMS [16, 23], the variants
of the selective partial update normalized least mean square
(SPU-NLMS) [17, 18, 24], and SPU-APA [17] can be studied
in nonstationary environment. The strategy of our analysis
is based on energy conservation arguments and does not
need to assume the Gaussian or white distribution for the
regressors [25].

This paper is organized as follows. In the next section
we introduce a generic update equation for the family SPU-
NLMS algorithms. In the next section, the general mean
square performance analysis in nonstationary environment
is presented. We conclude the paper by showing a com-
prehensive set of simulations supporting the validity of our
results.

Throughout the paper, the following notations are used:

‖ · ‖2: squared Euclidean norm of a vector.

(·)T : transpose of a vector or a matrix,

Tr(·): trace of a matrix,

E{·}: expectation operator.

2. Data Model and the Generic Filter
Update Equation

Figure 1 shows a typical adaptive filter setup, where x(n),
d(n), and e(n) are the input, the desired and the output error
signals, respectively. Here, h(n) is the M × 1 column vector
of filter coefficients at iteration n.

The generic filter vector update equation at the center of
our analysis is introduced as

h(n + 1) = h(n) + μC(n)X(n)W(n)e(n), (1)

where

e(n) = d(n)−XT(n)h(n) (2)

is the output error vector. The matrix X(n) is theM×P input
signal matrix (The parameter P is a positive integer (usually,
but not necessarily P ≤M)),

h(n) +−
y(n) e(n)x(n)

d(n)

Figure 1: Prototypical adaptive filter setup.

X(n) = [x(n),x(n− 1), . . . ,x(n− (P − 1))], (3)

where x(n) = [x(n), x(n− 1), . . . , x(n−M +1)]T is the input
signal vector, and d(n) is a P × 1 vector of desired signal

d(n) = [d(n),d(n− 1), . . . ,d(n− (P − 1))]T. (4)

The desired signal is assumed to be generated from the
following linear model:

d(n) = XT(n)ht(n) + v(n), (5)

where v(n) = [v(n), v(n − 1), . . . , v(n − (P − 1))]T is the
measurement noise vector and assumed to be zero mean,
white, Gaussian, and independent of the input signal, and
ht(n) is the unknown filter vector which is time-variant. We
assume that the variation of ht(n) is according to the random
walk model [1, 2, 25]

ht(n + 1) = ht(n) + q(n), (6)

where the sequence of q(n) is an independent and identically
distributed sequence with autocorrelation matrix Q =
E{q(n)qT(n)} and independent of the x(k) for all k and of
the d(k) for k < n.

3. Derivation of SPUAdaptive Filter Algorithms

Different adaptive filter algorithms are established through
the specific choices for the matrices C(n) andW(n) as well as
for the parameter P.

3.1. The Family of SPU-NLMS Algorithms. From (1), the
generic filter coefficients update equation for P = 1 can be
stated as

h(n + 1) = h(n) + μC(n)x(n)W(n)e(n). (7)

In the adaptive filter algorithms with selective partial
updates, the M × 1 vector of filter coefficients is partitioned
into K blocks each of length L and in each iteration a
subset of these blocks is updated. For this family of adaptive
filters, the matrices C(n) and W(n) can be obtained from
Table 1, where the A(n) matrix is theM×M diagonal matrix
with the 1 and 0 blocks each of length L on the diagonal
and the positions of 1’s on the diagonal determine which
coefficients should be updated in each iteration. In Table 1,
the parameter L is the length of the block, K is the number
of blocks (K = (M/L) and is an integer) and N is the number
of blocks to update. Through the specific choices for L, N ,
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Table 1: Family of adaptive filters with selective partial updates.

Algorithm P L K N C(n) W(n)

Max-NLMS [22] 1 1 M 1 A(n)
1

‖A(n)x(n)‖2

N-Max NLMS [16, 23] 1 1 M N ≤M A(n)
1

‖x(n)‖2

SPU-NLMS [24] 1 L M/L N ≤ K A(n)
1

‖x(n)‖2

SPU-NLMS [17, 18] 1 1 M N ≤M A(n)
1

‖A(n)x(n)‖2

SPU-NLMS [17] 1 L M/L 1 A(n)
1

‖A(n)x(n)‖2

SPU-NLMS [17] 1 L M/L N ≤ K A(n)
1

‖A(n)x(n)‖2

SPU-APA [17] P ≤M L M/L N ≤ K A(n) (XT(n)A(n)X(n))−1

the matrices C(n) and W(n), different SPU-NLMS adaptive
filter algorithms are established.

By partitioning the regressor vector x(n) into K blocks
each of length L as

x(n) =
[
xT1 (n),x

T
2 (n), . . . ,x

T
K (n)

]T
, (8)

the positions of 1 blocks (N blocks and N ≤ K) on the
diagonal of A(n) matrix for each iteration in the family
of SPU-NLMS adaptive algorithms are determined by the
following procedure:

(1) the ‖xi(n)‖2 values are sorted for 1 ≤ i ≤ K ;

(2) the i values that determine the positions of 1 blocks
correspond to the N largest values of ‖xi(n)‖2.

3.2. The SPU-APA. The filter vector update equation for
SPU-APA is given by [17]

hF(n + 1) = hF(n) + μXF(n)
(
XT
F (n)XF(n)

)−1
e(n), (9)

where F = { j1, j2, . . . , jN} denote the indices of the N blocks
out of K blocks that should be updated at every adaptation,
and

XF(n) =
[
XT

j1 (n),X
T
j2 (n), . . . ,X

T
jN (n)

]T
(10)

is the NL× P matrix and

Xi(n) = [xi(n),xi(n− 1), . . . ,xi(n− (P − 1))] (11)

is the L × P matrix. The indices of F are obtained by the
following procedure:

(1) compute the following values for 1 ≤ i ≤ K

Tr
(
XT
i (n)Xi(n)

)
; (12)

(2) the indices of F are correspond to N largest values of
(12).

From (9), the SPU-PRA can also be established when the
adaptation of the filter coefficients is performed only once
every P iterations. Equation (9) can be represented in the
form of full update equation as

h(n + 1) = h(n) + μA(n)X(n)
(
XT(n)A(n)X(n)

)−1
e(n),

(13)

where the A(n) matrix is the M × M diagonal matrix with
the 1 and 0 blocks each of length L on the diagonal and the
positions of 1’s on the diagonal determine which coefficients
should be updated in each iteration. The positions of 1 blocks
(N blocks and N ≤ K) on the diagonal of A(n) matrix for
each iteration in the SPU-APA is determined by the indices
of F. Table 1 summarizes the parameters selection for the
establishment of SPU-APA.

4. Tracking Performance Analysis of the Family
of SPU-NLMS and SPU-APA

The steady-state mean square error (MSE) performance of
adaptive filter algorithms can be evaluated from (14):

MSE = lim
n→∞E

{
e2(n)

}
. (14)

In this section, we apply the energy conservation arguments
approach to find the steady-state MSE of the family of SPU-
NLMS and SPU-AP adaptive filter algorithms. By defining
the weight error vector as

h̃(n) = ht(n)− h(n), (15)

equation (1) can be stated as

ht(n + 1)− h(n + 1) = ht(n + 1)− h(n)

− μC(n)X(n)W(n)e(n).
(16)

Substituting (6) into (16) yields

ht(n + 1)− h(n + 1) = ht(n)− h(n) + q(n)

− μC(n)X(n)W(n)e(n).
(17)
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Therefore, (17) can be written as

h̃(n + 1) = h̃(n) + q(n)− μC(n)X(n)W(n)e(n). (18)

By multiplying both sides of (18) from the left by XT(n), we
obtain

ep(n) = ea(n)− μXT(n)C(n)X(n)W(n)e(n), (19)

where ea(n) and ep(n) are a priori and posteriori error
vectors which are defined as

ea(n) = XT(n)(ht(n + 1)− h(n))

= XT(n)
(
ht(n) + q(n)− h(n)

)

= XT(n)
(
h̃(n) + q(n)

)
,

ep(n) = XT(n)(ht(n + 1)− h(n + 1))

= XT(n)h̃(n + 1).

(20)

Finding e(n) from (19) and substitute it into (18), the
following equality will be established:

h̃(n + 1) + (C(n)X(n)W(n))
(
XT(n)C(n)X(n)W(n)

)−1
ea(n)

= h̃(n) + q(n) + (C(n)X(n)W(n))

×
(
XT(n)C(n)X(n)W(n)

)−1
ep(n).

(21)

Taking the Euclidean norm and then expectation from both
sides of (21) and using the random walk model (6), we
obtain after some calculations, that in the nonstationary
environment the following energy equality holds:

E
{∥∥∥h̃(n + 1)

∥∥∥2
}
+ E
{
eTa (n)W(n)Z−1(n)ea(n)

}

= E
{∥∥∥h̃(n)

∥∥∥2
}
+ E
{∥∥q(n)

∥∥2}

+ E
{
eTp (n)W(n)Z−1(n)ep(n)

}
,

(22)

where Z(n) = XT(n)C(n)X(n)W(n). Using the following

steady-state condition, E{‖h̃(n+1)‖2} = E{‖h̃(n)‖2}, yields

E
{
eTa (n)W(n)Z−1(n)ea(n)

}

= E
{∥∥q(n)

∥∥2} + E
{
eTp (n)W(n)Z−1(n)ep(n)

}
.

(23)

Focusing on the second term of the right-hand side (RHS) of
(23) and using (19), we obtain

E
{
eTp (n)W(n)Z−1(n)ep(n)

}

= E
{
eTa (n)W(n)Z−1(n)ea(n)

}

− μE
{
eTa (n)W(n)e(n)

}

− μE
{
eT(n)ZT(n)W(n)Z−1(n)ea(n)

}

+ μ2E
{
eT(n)ZT(n)W(n)Z−1(n)e(n)

}
.

(24)

By substituting (24) into the second term of RHS of (23) and
eliminating the equal terms from both sides, we have

− μE
{
eTa (n)W(n)e(n)

}

− μE
{
eT(n)ZT(n)W(n)Z−1(n)ea(n)

}

+ μ2E
{
eT(n)ZT(n)W(n)Z−1(n)e(n)

}

+ E
{∥∥q(n)

∥∥2} = 0.

(25)

From (2) and (5), the relation between the output estimation
error and a priori estimation error vectors is given by

e(n) = ea(n) + v(n). (26)

Using (26), we obtain

− μE
{
eTa (n)W(n)ea(n)

}

− μE
{
eTa (n)Z

T(n)W(n)Z−1(n)ea(n)
}

+ μ2E
{
eTa (n)Z

T(n)W(n)ea(n)
}

+ μ2E
{
vT(n)ZT(n)W(n)v(n)

}
+ Tr(Q) = 0.

(27)

The steady-state excess MSE (EMSE) is defined as

EMSE = lim
n→∞E

{
e2a(n)

}
, (28)

where ea(n) is the a priori error signal. To obtain the steady-
state EMSE, we need the following assumption from [12].
At steady-state the input signal and therefore Z(n) and
W(n) are statistically independent of ea(n) and moreover
E{ea(n)eTa (n)} = E{e2a(n)} · S where S ≈ IP×P for small μ
and S ≈ (1 · 1T) for large μ where 1T = [1, 0, . . . , 0]1×P .

Based on this, we analyze four parts of (27),

Part I:

E
{
eTa (n)W(n)ea(n)

}
= E

{
e2a(n)

}
Tr(SE{W(n)}). (29)

Part II:

E
{
eTa (n)Z

T(n)W(n)Z−1(n)ea(n)
}

= E
{
e2a(n)

}
Tr
(
SE
{
ZT(n)W(n)Z−1(n)

})
.

(30)
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Part III:

E
{
eTa (n)Z

T(n)W(n)ea(n)
}

= E
{
e2a(n)

}
Tr
(
SE
{
ZT(n)W(n)

})
.

(31)

Part IV:

E
{
vT(n)ZT(n)W(n)v(n)

}
= σ2

v Tr
(
E
{
ZT(n)W(n)

})
. (32)

Therefore from (27), the EMSE is given by

E
{
e2a(n)

} = EMSE = μσ2
v Tr

(
E
{
ZT(n)W(n)

})
+ μ−1 Tr(Q)

Tr(SE{W(n)}) + Tr(SE{ZT(n)W(n)Z−1(n)})− μTr(SE{ZT(n)W(n)}) . (33)

Also from (26), the steady-state MSE can be obtained by

MSE = EMSE + σ2
v . (34)

From the general expression (33), we will be able to predict
the steady-state MSE of the family of SPU-NLMS, and SPU-
AP adaptive filter algorithms in the nonstationary environ-
ment. Selecting A(n) = I and the parameters selection
according to Table 1, the tracking performance of NLMS and
APA can also be analyzed.

5. Simulation Results

The theoretical results presented in this paper are confirmed
by several computer simulations for a system identification
setup. The unknown systems have 8 and 16, where the taps
are randomly selected. The input signal x(n) is a first-order
autoregressive (AR) signal generated by

x(n) = ρx(n− 1) + w(n) (35)

where w(n) is either a zero mean white Gaussian signal or a
zero mean uniformly distributed random sequence between
−1 and 1. For the Gaussian case, the value of ρ is set to
0.9, generating a highly colored Gaussian signal. For the
uniform distribution case, the value of ρ is set to 0.5. The
measurement noise v(n) with σ2

v = 10−3 is added to the noise
free desired signal d(n) = hTt (n)x(n). The adaptive filter and
the unknown channel are assumed to have the same number
of taps. In all simulations, the simulated learning curves are
obtained by ensemble averaging over 200 independent trials.
Also, the steady-state MSE is obtained by averaging over 500
steady-state samples from 500 independent realizations for
each value of μ for a given algorithm. Also, we assume an
independent and identically distributed sequence for q(n)
with autocorrelation matrix Q = σ2

q · I where σ2
q = 0.0025σ2

v .
Figures 2–5 show the steady-state MSE of the N-Max

NLMS adaptive algorithm forM = 8, and different values for
N as a function of step size in a nonstationary environment.
The step size changes in the stability bound for both colored
Gaussian and uniform distribution input signals. Figure 2
shows the results for N = 4, and for diffrent input signals.
The theoretical results are from (33). As we can see, the
theoretical values are in good agreement with simulation
results. This agreement is better for uniform input signal.
Figure 3 presents the results for N = 5. Again, the agreement
is good, specially for uniform input signal. In Figures 4 and
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−20

(a) N-max NLMS, K = 8,N = 4, simulation

(b) N-max NLMS, K = 8,N = 4, theory
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Input: Guassian AR(1), ρ = 0.9

M
SE

(d
B
)

Step-size (μ)
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(a) N-max NLMS, K = 8,N = 4, simulation

(b) N-max NLMS, K = 8,N = 4, theory

−30
−29
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−27
−26
−25
−24
−23

(a) (b)

M
SE

(d
B
)

Step-size (μ)

Input: Uniform AR(1), ρ = 0.5

Figure 2: Steady-state MSE of N-Max NLMS withM = 8 and N =
4 as a function of the step size in nonstationary environment for
different input signals.

5, we presented the results forN = 6, andN = 7 respectively.
This figure shows that the derived theoretical expression is
suitable to predict the steady-state MSE of N-Max NLMS
adaptive filter algorithm in nonstationary environment.

Figures 6–8 show the steady-state MSE of SPU-NLMS
adaptive algorithm with M = 8 as a function of step size
in a nonstationary environment for colored Gaussian and
uniform input signals. We set the number of block (K) to 4
and different values for N is chosen in simulations. Figure 6
presents the results for N = 2 and for different input signals.
The good agreement between the theoretical steady-state
MSE and the simulated steady-state MSE is observed. This
fact can be seen in Figures 7 and 8 for N = 3, and N = 4
respectively.
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Input: Uniform AR(1), ρ = 0.5

Figure 3: Steady-state MSE of N-Max NLMS withM = 8 and N =
5 as a function of the step size in nonstationary environment for
different input signals.
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Figure 4: Steady-state MSE of N-Max NLMS withM = 8 and N =
6 as a function of the step size in nonstationary environment for
different input signals.
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Figure 5: Steady-state MSE of N-Max NLMS withM = 8 and N =
7 as a function of the step size in nonstationary environment for
different input signals.
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Figure 6: Steady-state MSE of SPU-NLMS withM = 8, K = 4 and
N = 2 as a function of the step size in nonstationary environment
for different input signals.
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Figure 7: Steady-state MSE of SPU-NLMS withM = 8, K = 4 and
N = 3 as a function of the step size in nonstationary environment
for different input signals.
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Figure 8: Steady-state MSE of SPU-NLMS withM = 8, K = 4 and
N = 4 as a function of the step size in nonstationary environment
for different input signals.
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Figure 9: Steady-state MSE of SPU-APA with M = 8, P = 4,
K = 4 and N = 2 as a function of the step size in nonstationary
environment for different input signals.
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Figure 11: Steady-state MSE of SPU-APA with M = 8, P = 4,
K = 4 and N = 4 as a function of the step size in nonstationary
environment for different input signals.
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Figure 12: Learning curves of N-Max NLMS withM = 8 and N =
4 and different values of the step size for colored Gaussian input
signal.
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Figure 13: Learning curves of SPU-NLMS withM = 8, K = 4, and
N = 2, 3, 4 for colored Gaussian input signal.
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Gaussian input signal.
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Figure 15: Steady-state MSE of SPU-NLMS with M = 16, K =
4 and N = 2 as a function of the step size in nonstationary
environment for different input signals.
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Figure 16: Steady-state MSE of SPU-NLMS with M = 16, K =
4, and N = 3 as a function of the step size in nonstationary
environment for different input signals.
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Figure 17: Steady-state MSE of SPU-NLMS with M = 16, K =
4, and N = 4 as a function of the step size in nonstationary
environment for different input signals.

Figures 9–11 show the steady-state MSE of SPU-APA as a
function of step size for M = 8, and different input signals.
The parameters K , and P were set to 4, and the step size
changes from 0.05 to 1. Different values for N have been
used in simulations. Figure 9 shows the results for N = 2.
Simulation results show good agreement for both colored
and uniform input signals. In Figure 10, we set the parameter
N to 3. Again good agreement can be seen especially for
uniform input signal. Finally, Figure 11 shows the results for
N = 4. As we can see, the presented theoretical relation is
suitable to predict the steady-state MSE.

Figures 12–14 show the simulated learning curves of
SPU adaptive filter algorithms for different parameters values
and for colored Gaussian input signal. Figure 12 presents
the learning curves for N-Max NLMS algorithm with M =
8, N = 4 and different values for the step size. Also,
the theoretical steady-state MSE was calculated based on
(33) and compared with simulated steady-state MSE. As we
can see the theoretical values are in good agreement with
simulation results. Figure 13 shows the learning curves of
SPU-NLMS algorithm with M = 8, K = 4, and N = 2, 3, 4.
Also, the step size was set to 0.1. Again the theoretical values
of the steady-state MSE has been shown in this figure. Again
good agreement is observed. In Figure 14, the learning curves
of SPU-NLMS with M = 8, K = 4, and N = 3, have
been presented for different values of σ2

q . The degree of
nonstationary changes by selecting different values for σ2

q . As
we can see, for the large values of σ2

q , the agreement between
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Figure 18: Steady-state MSE of SPU-APA withM = 16, P = 4, K = 4, andN = 3 as a function of the step size in nonstationary environment
for different input signals.
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Figure 19: Steady-state MSE of SPU-APA withM = 16, P = 4, K = 4, andN = 4 as a function of the step size in nonstationary environment
for different input signals.

simulated steady-state MSE and theoretical steady-state MSE
is deviated.

Figures 15–17 show the steady-state MSE of SPU-NLMS
adaptive algorithm with M = 16 as a function of step size
in a nonstationary environment for colored Gaussian and
uniform input signals. We set the number of blocks (K)
to 4 and different values for N are chosen in simulations.
Figure 15 presents the results for N = 2 and for different
input signals. The good agreement between the theoretical
steady-state MSE and the simulated steady-state MSE is
observed. In Figures 16 and 17, we presented the results for
N = 3, and 4. Simulation results show good agreement for
both colored and uniform input signals.

Figures 18 and 19 show the steady-state MSE of SPU-
APA as a function of step size for M = 16, and different
input signals. The parameters K , and P were set to 4, and
the step size changes from 0.04 to 1. Different values for N
have been used in simulations. Figure 18 shows the results
for N = 3. In Figure 19, the parameter N was set to 4.
Again good agreement can be seen for both input signals.

The simulation results show that the agreement is deviated
forM = 16.

6. Summary and Conclusions

We presented a general framework for tracking performance
analysis of the family of SPU-NLMS adaptive filter algo-
rithms in nonstationary environment. Using the general
expression and for the parameter values in Table 1, the mean
square performances of Max-NLMS, N-Max NLMS, the
various types of SPU-NLMS, and SPU-APA can be analyzed
in a unified way. We demonstrated the usefulness of the
presented analysis through several simulation results.
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