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Abstract
Background: The question of how genomic processes, such as gene duplication, give rise to co-
ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of
importance in developmental and evolutionary biology. Herein, we focus on the diversification of
the transforming growth factor-b (TGF-b) pathway – one of the fundamental and versatile
metazoan signal transduction engines.

Results: After an investigation of 33 genomes, we show that the emergence of the TGF-b pathway
coincided with appearance of the first known animal species. The primordial pathway repertoire
consisted of four Smads and four receptors, similar to those observed in the extant genome of the
early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in
ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as
those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the
diversification of the TGF-b pathway can be parsimoniously explained according to the 2R model,
with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed
by accelerated evolution which gave rise to an atypical TGF-b pathway in free-living bacterial
feeding nematodes of the genus Rhabditis.

Conclusion: Our results challenge the view of well-conserved developmental pathways. The TGF-
b signal transduction engine has expanded through gene duplication, continually adopting new
functions, as animals grew in anatomical complexity, colonized new environments, and developed
an active immune system.

Background
Most genes belong to gene families, which have emerged
through consecutive cycles of gene duplications during
evolution [1]. With the availability of entire genome
sequences, much progress has been made towards the

understanding of gene duplication dynamics [2,3] and the
evolutionary forces responsible for the retention of a pro-
portion of duplicate genes, such as neo-functionalization
[4] and sub-functionalization [5], both at the level of gene
expression patterns [6,7] and protein sequence evolution
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[8]. However, further investigation is required to under-
stand how genomic processes, such as gene duplications
and losses, result in higher-level co-ordinated molecular
events, such as the emergence of novel signal transduction
pathways, which in turn give rise to phenotypic innova-
tions, such as novel organs, developmental phases, or
body plans.

To approach this question from a comparative genomics
viewpoint, we focus herein on the emergence and evolu-
tion of the transforming growth factor-b (TGF-b) pathway
within the animal kingdom. This pathway has been recog-
nized as one of the fundamental and versatile metazoan
signal transduction engines, with central roles in develop-
ment, organogenesis, stem-cell control, immunity, and
cancer [9-11]. A concise description of the human path-
way has been deposited by the authors of this article in the
Reactome [12] knowledge base [13].

The cellular core of all TGF-b superfamily pathways con-
sists of cell surface receptors, called type I and type II ser-
ine-threonine kinase receptors, and intracellular Smad
proteins [14]. The latter constitute the actual signal trans-
duction engine of the pathway [15]. There are eight
known Smads in the human genome, classified as: two
TGF-b sensu stricto (Smad2,3) and three bone morphoge-
netic protein (BMP)-type (Smad1,5,8) receptor-activated
Smads (R-Smads), one common mediator Smad (Co-
Smad; Smad4), and two inhibitory Smads (I-Smads;
Smad6,7). These eight genes are highly similar in
sequence and are evidently results of multiple gene dupli-
cations of unknown origins. While the functional differ-
ences between the three biochemical classes of Smads are
well known, their evolutionary history, the characteristics
of the ancestral Smad molecule, and the selection forces
behind the retention of multiple subtypes of R- and I-
Smads are poorly understood.

In humans, we encounter five distinct type II receptors
and seven distinct type I receptors [16]. The functional
receptor unit is a hetero-tetramer of two type II receptors
with two type I receptors, in which upon binding of the
ligand the type II receptors phosphorylate the type I recep-
tors, while the latter phosphorylate and activate R-Smads.
Analysis of the receptor genes, so far has been limited to a
few species, namely humans, rodents, African clawed frog
(Xenopus laevis), fruit fly (Drosophila melanogaster) and the
free-living roundworm Caenorhabditis elegans [17].

Mammalian genomes encode up to 33 TGF-b related lig-
ands, D. Melanogaster seven and C. elegans five (out of
which only two are functionally characterised) [18]. How-
ever, we do not focus on TGF-b related proteins in this
study, as these sequences are rather diverged (and similar-
ity is mostly confined to the carboxyterminal polypeptide

of the much larger precursor proteins) rendering them dif-
ficult to analyse in multiple genomes using a unified com-
putational pipeline. We refer the interested reader to a
review by Herpin et al [19]. The most prevalent mode of
extracellular modulation of TGF-b signalling is by means
of soluble antagonists, called ligand traps, such of those of
the chordin and gremlin family [20]. BAMBI is another
important negative regulator of TGF-b signalling, related
to TGF-b family type I receptors but lacking an intracellu-
lar kinase domain [21].

BMP signalling gradients, modulated by chordin, have
been found to induce dorsoventral axis formation in the
Spemann organizer [22]. Thus, traditionally, the TGF-b
pathway had been thought to have evolved in the context
of dorsoventral patterning, and thus be present only in
Bilateria. This view has been recently challenged by the
discovery of the functional pathway in multiple cnidari-
ans [23-29]. Furthermore, the origin of animals them-
selves is only now being understood (for reviews see
[30,31]). On the basis of mitochondrial DNA sequence
comparison, the choanoflagellates have been identified as
the closest single-celled animal relatives [32,33] while the
Placozoan Trichoplax adhaerens, the so-called tablet ani-
mal [34,35], has been placed at the root of animal phyl-
ogeny [34,36]. However, some authors regard sponges as
earlier diverging than Placozoans [37,38]. Regardless of
the relative position of Placozoans and sponges, the criti-
cal step of transformation to multicellulararity must have
been accompanied by the development of adhesion mol-
ecules, extracellular matrix proteins (such as collagen),
and cell-to-cell communication. It is essential to identify
the critical signalling pathways, in particular those
involved in control of development, cellular differentia-
tion and body plan formation [31]. Such comparisons
will not only shed light on metazoan origins, and advance
the field of evo-devo, but will also help us understand the
fundamental functional motifs that underlie interwoven
signal transduction networks of higher animals, with
impact on human health.

It was reported previously that atypical dauer pathway
Smads could be found in free-living bacterial feeding
nematodes of the genus Rhabditis (Rhabditoid nema-
todes) [39]. The dauer (German for resting) is a survival
and dissemination form, formed by all Rhabditoid nema-
todes, an alternative to the active third stage larvae (L3).
Dauers are induced by environmental stress factors, such
as lack of food, overcrowding, or high temperature. The
dauer pathway (which also includes insulin pathway-like
and guanyl cyclase pathway-like genes) is of high general
interest, as it has been linked with aging [40], biodiversity
[41] and the development of parasitism in nematodes
[42]. However, the origins of the dauer pathway Smads
had been previously unknown.
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Results
TGF-b pathway gene content across taxa
Using the full genome sequences of 33 species (Table 1),
we performed a comparative analysis of the TGF-b path-
way genes, focusing on Smads and receptors. The first

obvious observation is that the TGF-b pathway genes do
not exist in protozoans but are universally present in
metazoans. This leads to the first important conclusion
that the TGF-b pathway genes evolved rapidly and to a
high degree of complexity with the first known animal

Table 1: TGF-b pathway gene content across the animal taxa.

Data source Smad Receptor BAMBI (*) Chordin Family Gremlin family

Homo sapiens E/TF5 8 13W 1 7 5

Pan troglodytes E/TF5 8 12 1 7 4

Macaca mulatta E/TF5 8 13W 1 5 5

Mus musculus E/TF5 8 12 1 7 5

Rattus norvegicus E/TF5 8 13W 1 6 4

Canis domesticus E/TF5 8 9 1 7 5

Gallus gallus E/TF5 7 11 1 6 3

Danio rerio E/TF5 121 18 1 6 6

Oryzias latipes E/TF5 121 15 1 4 5

Takifugu rubripes E/TF5 131 21 1 7 4

Tetraodon nigroviridis E/TF5 14 1 20 1 9 2

Ciona savignyi E/TF5 5‡ 6 -- 2 1

Ciona intestinalis E/TF5 5‡‡ 7 -- 3 1

Drosophila melanogaster FB 4 5 -- 1 1

Apis mellifera E/TF5 4 5 -- 1 1

C. elegans, briggsae and remanei WB 6 3 -- 1 1

Capitella sp. I J 4 5 1 4 1

Helobdella robusta J 4‡‡‡ 5 -- -- 2

Lottia gigantea J 4 5 1 4 1

Trichoplax adhaerens J 4 4 -- 1 1

Protozoans (Monosiga brevicollis, Volvox carteri, Naegleria gruberi) J -- -- -- -- --

1 For details, see Figure 3
(*) Inhibitory co-receptor BAMBI, although probably present in Urbilateria, appears to be frequently lost, such as in Ecdysozoa, tunicates, and 
Helobdella
‡ Species-specific TGF-b-R-Smad duplication (see also Figure S1)
‡‡ Species-specific Co-Smad duplication (see also Figure S1)
‡‡‡ Leech Helobdella has a modified pathway: with an additional Co-Smad (Figure S3, [see Additional file 3]) and a distinct set of ligand traps
W Including a retrogene of BMPR1A of unverified functionality: ENSG00000185932 (H. sapiens, 337 aa, intracellular domains only), 
ENSMMUG00000031530 (M. mulatta, 211 aa, some intracellular domains), ENSRNOG00000011012 (R. norvegicus, 529 aa, all domains)
The table indicates the numbers of genes in each family.
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species. Table 1 provides an overview of the pathway con-
tent in high-coverage genomes under study.

Smads and receptors in Bilateria – point of divergence 
(POD) analysis
As a general rule, three functional classes of Smads (R-,
Co- and I-Smads) are present in all extant species and the
reconstructed ancestral genomes. At least one type II
receptor and multiple type I receptors can be detected, and
the ancestral bilaterian repertoire can be inferred as con-
sisting of two type II receptors and three type I receptors.
Detailed observations are provided below, starting with
the oldest point of divergence (Figure 1, Table 2, Figure S1
[see Additional file 1], Figure S2 [see Additional file 2]).

Ecdysozoan POD
Two R-Smads (one TGF-b and one BMP), one Co-Smad
and one I-Smad are consistently present in 10 Drosophila
species, and Apis mellifera, and thus can be inferred to have
existed in the ancestral genome of the Ecdysozoan POD.
Drosophila species and Apis mellifera also contain two type II
receptors and three type I receptors. Nematode genomes
contain additional diverged Smads (dauer pathway Smads)
but these were excluded from Figure 1 and Figure S1 [see
Additional file 1] and analysed separately, because of the
special evolutionary status of the dauer pathway (Figure 2).

Urochordate PODs
Two sea squirts (Ciona intestinalis, Ciona savignyi) possess
at least two R-Smads (one TGF-b and one BMP), one Co-
Smad and one I-Smad. Additional Smads can be detected,
but these do not cluster with Smads observed in the Ver-
tebrata, and thus represent lineage-specific duplications
absent in the genome of the ancestral vertebrate. The
ancestral bilaterian TGF-b receptor repertoire is expanded
to three type II receptors: this is the first example of a bila-
terian TGF-b receptor duplication, mapping to Chordates
in Figure S2 [see Additional file 2], which is propagated
through vertebrates.

Teleost fish POD
The POD of the teleosts is the first vertebrate POD and
also the first POD which can be inferred to possess all
eight subtypes of Smads present in extant mammalian
genomes (five R-Smads, a Co-Smad and two I-Smads).
Additional lineage-specific R-, Co- and I-Smads could also
be detected in extant teleost fishes. This stimulated further
detailed analysis of teleost fish sequences (see below). All
type II and type I receptors have been duplicated, in many
cases multiple times (Figure S2 [see Additional file 2]).
Some of the progeny genes are common to all vertebrates,
several are unique to teleost fishes, and a few are species-
specific.

Amphibian POD
Amphibians are represented only by one genome – Xeno-
pus tropicalis. Xenopus laevis was not used, as this species is

Table 2: Species codes for Figures S1, S2 (SWcodes).

Species SWcode

Apis mellifera APIME

Danio rerio BRARE

Caenorhabditis briggsae CAEBR

Caenorhabditis elegans CAEEL

Caenorhabditis remanei CAERE

Canis familiaris CANFA

Gallus gallus GALGA

Ciona intestinalis CIOIN

Ciona savignyi CIOSA

Drosophila ananassae DROAN

Drosophila grimshawi DROGR

Drosophila melanogaster DROME

Drosophila mojavensis DROMO

Drosophila persimilis DROPE

Drosophila sechellia DROSE

Drosophila simulans DROSI

Drosophila virilis DROVI

Drosophila willistoni DROWI

Drosophila yakuba DROYA

Fugu rubripes FUGRU

Homo sapiens HOMSA

Macaca mulatta MACMU

Monodelphis domestica MONDO

Mus musculus MUSMU

Ornithorhynchus anatinus ORNAN

Oryzias latipes ORYLA

Pan troglodytes PANTR

Rattus norvegicus RATNO

Tetraodon nigroviridis TETNG

Xenopus tropicalis XENTR
(page number not for citation purposes)
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now widely regarded as tetraploid. Xenopus tropicalis pos-
sesses a distinct set of nine Smads, with two Co-Smads,
two genes for Smad8, and no ortholog of Smad5. The
additional Co-Smad does not appear to be a lineage-spe-
cific duplication, as it groups with added genes in teleost
fishes, suggesting that it may represent a gene deriving
directly from the 2R event, lost in other vertebrates.

Aves POD
Similar to mammals, the single available avian genome
(Gallus gallus) contains genes for all five R-Smads, two I-
Smads, and five type II and seven type I receptors. Curi-
ously, no Co-Smad was detected in the chicken genome
(Figure S1). Manual querying of the ENSEMBL database
annotation of the chicken genome (WASHUC2) con-
firmed that there are no available Co-Smad gene predic-
tions. However, this is a genomic artifact. A representative
chicken Co-Smad cluster, Gga.28805 containing 24 EST
sequences, was found within the NCBI UniGene collec-
tion [43]. Furthermore, examination of synteny with
human revealed a large missing sequence region in the
chicken genome, which includes orthologs of the exten-
sive gene neighbourhood of the human Co-Smad. This
example underlines the need for caution in interpretation
of putative losses suggested by genome sequences from
individual species.

Mammalian PODs (Marsupials, Laurasiatheria, Rodentia, 
Cercopithecidae, Pan, Homo)
All extant placental mammalian genomes consistently
contain a well-characterized set of eight classic mamma-
lian Smads. An additional diverged Co-Smad sequence
(ENSMODT00000007722.2) was also detected in the
marsupial mammal Monodelphis domestica. Interesting
observations can be made regarding alternative splicing of
the TGF-b pathway genes in the mammals. For example,
alternative splicing of Smad2 and Smad8, inferred from
dbEST, can be traced back to the origin of vertebrates, sug-
gesting a profound functional significance (manual
datamining of Ensembl, data not shown). The anti-Mulle-
rian hormone type II receptor (AMHR2) is developed in
placental mammals, expanding the receptor repertoire to
five type II and seven type I receptors. Retroposed copies
of BMPR1A, of unknown functional significance, can also
be detected in primates and rodents (Table 1).

Origin of dauer pathway Smads: duplication, neo-
functionalization and accelerated evolution
The phylogenetic relationship between D. melanogaster,
and C. elegans Smads was investigated in further detail
(Figure 2). In C. elegans, there exist a set of Smads control-
ling the Sma/Mab pathway (sma-2, sma-3, sma-4 – hence-
forth collectively termed spSmads), and a set of Smads of
the dauer pathway (daf-3, daf-8, daf-14 – henceforth col-
lectively termed dpSmads) [44,45] that were all consist-
ently detected. Functionality of one additional gene tag-68

has not been established. Our sequence tree (Figure 2) dif-
fers significantly from previously published trees [17,46]
in which dpSmads cluster together, not allowing for reso-
lution into proper functional classes or reconstruction of
evolutionary origins. Comparison of branch lengths indi-
cates that all dpSmads have been evolving much faster
than their counterparts in the Sma/Mab pathway (Figure
2) – a finding suggestive of positive selection acting upon
dpSmads. Indeed, accelerated protein sequence change is
confirmed by the analysis of Ka/Ks ratios between pairs of
orthologs in C. briggsae and C. elegans (Table 3). Accord-
ingly, all Ka/Ks ratios for known dauer pathway genes in
this comparison are higher than ratios for the remaining
genes. The average values are 0.72 and 0.16, respectively.

TGF-b pathway gene duplication in teleost fishes
We have also analyzed the Smads present in zebrafish
(Danio rerio), medaka (Oryzias latipes), fugu (Takifugu
rubripes) and the green spotted puffer (Tetraodon nigro-
viridis), in comparison with eight human genes represent-
ative of vertebrates (Figure 3, Table 5). It is clear that
Smads underwent duplications early in teleost fishes, fol-
lowed by additional lineage-specific duplications. Inter-
estingly, two of the additional Smad2 genes in
Tetraodontidae possess a non-classic protein domain:
GSTENT00008463001 and SINFRUT00000172868 are
predicted to harbour the haem peroxidase domain
(IPR002016), which might be utilised in signalling
response to oxidative stress. Additional lineage-specific
duplications of TGF-b receptors can also be detected in
these teleost fish species (Figure S2, [see Additional file
2]). What types of novel functions are linked with multi-
ple duplicated Smads and TGF-b pathway receptors in tel-
eost fishes remains to be elucidated.

Phylogenetic analyses in basal metazoans and Lophotrochozoans
The tree in Figure 4 shows the repertoire of Smads in
Nematostella vectensis and Trichoplax adhaerens, in connec-
tion with the reconstruction of ancestral metazoan dupli-
cations which resulted in the formation of a complete
signalling pathway (including two types of R-Smads, the
Co-Smad, and the I-Smad negative feedback loop) in
these early diverging animals. It is also worth noting that
Nematostella and Trichoplax contain genes for both recep-
tor classes: type I and type II (Figure 5). However, Tricho-
plax, unlike Nematostella, does not appear to harbour an
ortholog of wit: TaPut is the only type II receptor found in
Trichoplax and is likely to correspond to the ancestral type
II receptor. Furthermore, while TaSax and TaTkv are clear
orthologs of corresponding fly genes, TaBabo branches
out deeper in the tree and may correspond to the ancestral
type I receptor.

The Bayesian tree in Figure S3 [see Additional file 3] (Dad
displayed as outgroup) demonstrates that the familiar pat-
tern of four Smads grouped into three functional classes
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can be also observed in comparatively poorly investigated
Lophotrochozoans (Capitella sp. I, Helobdella robusta, and
Lottia gigantea). The Bayesian tree in Figure S4 [see Addi-
tional file 4] (Dad displayed as outgroup) shows two
Amphimedon R-Smads (AqSmad1 and AqSmad2) which
are the only Smads we have detected in genomic traces
available for this demosponge. Species codes can be
accessed in Table 2.

Discussion
The growing number of sequenced genomes provides a
relatively wide coverage of the animal genome space. This

makes it possible to reconstruct ancestral developmental
signalling pathways, and to retrace the ancient evolution-
ary events which led to their emergence and modulation,
in particular gene duplications, instances of sub- and neo-
functionalization, and gene losses. Herein, we focus on
the gene set constituting the fundamental building blocks
of a major component of the animal developmental
toolkit – the TGF-b pathway.

We have examined in detail the gene content of the TGF-
b pathway in extant genomes of different metazoan phyla,
where high-coverage genomic data are available (Table 1).

Evolution of Smads and TGF- receptors in BilateriaFigure 1
Evolution of Smads and TGF-b receptors in Bilateria. The species tree, not-to-scale, displays the phylogenetic relation-
ship between humans and the other species, using the monophyletic Ecdysozoa hypothesis. Each point of divergence (POD) 
group joins together species which share the same ancestor with the evolutionary line leading to humans. POD nodes are 
marked by yellow boxes. Please, note that PODs differ in strength of available supporting evidence (shown by the species tree). 
The gene table, at the bottom, describes the relationship between human Smads or receptors (right column of the table, and 
the adjacent gene trees) and orthologs in POD groups. POD groups are described in the top row of the table, and linked by 
discontinuous lines to respective POD nodes on the above-mentioned species tree. Inside the cells of the table: blue lines rep-
resent one to one orthology (all species of the POD group); red lines represent one (human) to two or more orthology (at 
least one species of the POD group). Finally, an empty cell signifies a failure to identify an ortholog within a given POD group.
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Amino-acid Bayesian tree of Smads focusing on worm and fly proteinsFigure 2
Amino-acid Bayesian tree of Smads focusing on worm and fly proteins. The four canonical fly Smads: Mad, dSmad2, 
dSmad4, and Dad (in black) define the three functional classes of Smads: receptor Smads, Co-Smads and inhibitory Smads. 
Worm Smads are shown in pale green. Branch lengths are shown in red. Node probabilities are shown in black. The tree is 
rooted using the N. vectensis I-Smad: EDO39628 (in red).
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Table 3: TGF-b pathways of Rhabditoid nematodes.

Caenorhabditis elegans Caenorhabditis briggsae

Sub-pathway genomic location
exon number

Genomic location
exon number

Ks* Ka Ka/Ks

LIGANDS Axon guidance UNC-129
IV:9005..9003 kbp

5 exons

CBG21741
IV:4144..4151 kbp

5 exons

0.52 0.07 0.13

TIG-2
V:4729..4726 kbp

8 exons

CBG08804
V:1854..1850 kbp

6 exons

0.56 0.12 0.21

Sma/Mab pathway DBL-1
V:6757..6760 kbp

8 exons

CBG19011
V:9985..9986 kbp

8 exons

0.34 0.08 0.24

dauer
pathway

daf-7
III:811..813 kbp

5 exons

CBG24910
unassigned

5 exons

0.57 0.4 0.7

RECEPTORS Sma/Mab
pathway

sma-6 (type I)
II:6324..6327 kbp

12 exons

CBG02627
II:8576..8573 kbp

11 exons

0.57 0.15 0.26

dauer
pathway

daf-4 (type II)
III:5624..5632 kbp

11 exons

CBG08963
III:3144..3152 kbp

10 exons

0.62 0.38 0.61

daf-1 (type I)
IV:132..138 kbp

9 exons

CBG01651
IV:10179..10176 kbp

9 exons

0.63 0.44 0.7

SMADS Sma/Mab
pathway

sma-2
(overlaps with ZK370.8)

III:8749..8756 kbp
10 exons

CBG06922
(overlaps with 2 other genes on the opposite strand)

III:9128..9114 kbp
7 exons

0.47 0.02 0.04

sma-3
III:6863..6860 kbp

12 exons

CBG16541
III:6052..6058 kbp

12 exons

0.51 0.05 0.1

sma-4 (short form present)
III:5816..5820 kbp

12 exons

CBG09090
III:2679..2675 kbp

11 exons

0.52 0.13 0.25

dauer
pathway

daf-8
I:8587..8584 kbp

6 exons

CBG12513
I:7282..7287 kbp

6 exons

0.63 0.42 0.66

daf-14
IV:10253..10255 kbp

5 exons

CBG04415
IV:11282..11277 kbp

7 exons

0.56 0.58 1.04

daf-3
X:825..817 kbp

15 exons

CBG08108
X:222..227 kbp

14 exons

0.63 0.4 0.63

tag-68
I:10501..10505 kbp

9 exons

CBG02231
I:5999..6001 kbp

9 exons

0.42 0.01 0.02

SKI dauer
pathway

daf-5
II:14037..14033 kbp

5 exons

CBG20832
II:10836..10831 kbp

6 exons

0.62 0.44 0.71

Comparison of TGF-b ligands, receptors and Smads in C. elegans and C. briggsae reveals conservation of exon number and chromosomal location for both the Sma/Mab and 
dauer pathways. However, high Ka/Ks ratios for genes of the dauer pathway (underlined) indicate that it evolved faster since the two species diverged. Data retrieved from 
WormBase (v. WS178).
* modified Nei-Gojobori (p-distance) model with pairwise deletion and assuming transition/transversion ratio of 2.
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Smads are of particular interest, as they constitute the core
engine of the TGF-b signal transduction machinery. We
have estimated the origin of different types of Smads by
examining extant genomes and inferring ancestral genes
(Point of Divergence analysis – Figure 1 summarises Fig-
ure S1 [see Additional file 1]). We justify somewhat
anthropocentric approach of the POD analysis by the
high significance of the TGF-b pathway in human health
and disease, which drives substantial proportion of
research in the field. On the lineage of PODs leading to
human, the Smads clearly appear to have gone through a
major wave of duplications, fitting well with the 2R
hypothesis of two-fold genome duplication at the base of
vertebrates [47-50]. Additional duplications occurred
along the teleost fish lineage, in congruence with the
hypothesis of a teleost fish-specific genome duplication –
FSGD [51,52]. Diversification of type I and type II recep-
tors has also followed the course agreeable with the 2R
hypothesis, with multiple additional duplications in tele-
ost fishes (Figure S2, [see Additional file 2]).

POD analysis (Figure 1) shows that the core pathway
(both receptors and Smads) expanded dramatically and
permanently at the base of vertebrates. Table 1 demon-
strates that this expansion correlates well with the increase
of complexity of regulatory networks associated with the
extended pathway, such as ligand traps of the chordin and
gremlin family. The same is true of many transcriptional
co-activators, and target genes – particularly those in the
concurrently developed active immune system, as well as
the endocytic regulators that control Smad signalling,
SARA and endofin, which emerged through the duplica-
tion of a single ancestral gene (data not shown).

Analysis of the C. elegans genome revealed atypical Smads
belonging to Sma/Mab and dauer pathways. Our phyloge-
netic tree indicates that daf-8 is an R-Smad, daf-3 a Co-
Smad and Tag-68 an I-Smad (Figure 2). Sma-2 and sma-3
are likely duplicates of the ancestral BMP R-Smad, as they
both contain the characteristic RQDVTS motif of the L3
loop. Conversely, daf-8 and daf-14 might be duplicates of
the ancestral TGF-b R-Smad, although daf-14 is too diver-
gent to allow firm conclusions. Sma-4 and daf-3 share a
similar pattern of multiple splice variants, which together
with the tree topology suggests that they derive from the
ancestral Co-Smad via a gene duplication event. Compar-
ative analysis revealed that Sma/Mab and dauer pathway
content is identical between C. elegans and C. briggsae,
with strong conservation of the overall gene structure and
synteny (Table 3). This proves that all the relevant genes
already existed in the last common ancestor of the two
Rhabditoid species. Although similar in morphology, C.
briggsae and C. elegans are rather distant relatives in evolu-
tionary time: the two species split roughly 100 million
years ago [53]. Analysis of lengths of protein branches

(Figure 2) is indicative of accelerated evolution of daf-3, 8
and 14. Additionally, analysis of Ka/Ks ratios between
pairs of orthologs in C. briggsae and C. elegans suggests
that the dauer pathway evolved faster since the two species
diverged (Table 3). The average Ka/Ks ratio for dauer path-
way orthologs is 0.72 versus 0.16 for non-dauer TGF-b
pathway genes. Thus, the initial duplications and neo-
functionalization occurred early in nematode evolution,
but have been followed by further change in separate
Rhabditoid lineages, as different species experienced
slightly different selection pressures for entry and persist-
ence in their dauer forms. For example, C. elegans, unlike
C. briggsae, is strongly induced to form dauers at tempera-
tures higher than 26°C [54]. Overall, the dauer pathway
represents an interesting example of rapidly evolving
pathway neo-functionalization, developed as a lineage-
specific adaptation towards the colonization of the envi-
ronmental niche of the soil.

The crucial question about the taxonomic origin of the
TGF-b pathway has not been categorically answered yet.
Herein, we have identified TGF-b pathway components in
T. adhaerens, the representative of the early diverging phy-
lum Placozoa, and the demosponge Amphimedon queens-
landica [55]. Choanoflagellata are the closest unicellular
relatives of animals [32] and possess some genes linked to
metazoan development, for example a receptor tyrosine
kinase – MBRTK1 [56]. However, we have not been able
to detect Smads, TGF-b receptors, ligands, SARA, chordin
or gremlin in the genome of the unicellular choanoflagel-
late M. brevicollis [33], or more distantly related protozo-
ans Volvox carteri and Naegleria gruberi. This indicates that
the appearance of the TGF-b pathway was intrinsically
linked to the emergence of earliest animals, and the path-
way may thus be regarded as a key feature of the metazoan
life forms. It is also rather striking that such an early
diverging animal as Trichoplax already possesses the com-
plete functional pathway, including multiple Smads,
receptors, and ligands, as well as orthologs of chordin,
gremlin and SARA.

We hypothesize that the single primeval common media-
tor/receptor activated Smad functioned as a homo-dimer
(or homo-trimer), and possessed the universal functional-
ity of R-Smads and the Co-Smad; i.e. it could be phospho-
rylated by the receptor/ligand complex, shuttle to the
nucleus, interact with transcriptional co-activators via the
MH2 domain and bind DNA via the MH1 domain. As the
number of ligands and receptors grew, the primeval Smad
duplicated and, through sub-functionalization, gave rise
to two separate R-Smads which from then on interact with
non-overlapping sets of receptors (Figure 4: ancestral
metazoan duplication – AMD 1; Table 4). One of the R-
Smads duplicated again (Figure 4: AMD 2) giving rise to a
Co-Smad which enhanced the set of regulatory protein
Page 9 of 17
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Multiple additional Smads are present in teleost fishesFigure 3
Multiple additional Smads are present in teleost fishes. Letters in brackets signify additional teleost fish Smads (co-
orthologs in relation to human genes). Fly genes are also shown for comparison. Table 5 lists accession numbers for the rele-
vant genes. The tree is produced using TreeBeST and rooted on time. Red boxes signify duplication nodes, while green boxes 
signify speciation nodes (inferred using the speciation and duplication inference algorithm).
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Basal metazoan repertoire of SmadsFigure 4
Basal metazoan repertoire of Smads. Trichoplax adhaerens (prefix Ta – in blue), Nematostella vectensis (prefix Nv – in 
green) and fly proteins (Dad, Medea, dSmad2 and Mad) are shown. The Bayesian tree reveals ancestral metazoan duplications 
(AMD1, 2 and 3) of the hypothetical single primeval common mediator/receptor activated Smad – note high probability values 
for all the nodes. N. vectensis sequences were retrieved from GenBank: NvSMAD1 (EDO47037), NvSMAD2 (EDO39594), 
NvSMAD4 (EDO31382), and NvSMAD6 (EDO39628). The tree is rooted using Dad. Branch lengths are shown in red. Node 
probabilities are shown in black.
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Amino-acid Bayesian tree showing basal metazoan repertoire of type II/I receptorsFigure 5
Amino-acid Bayesian tree showing basal metazoan repertoire of type II/I receptors. Trichoplax adhaerens (prefix Ta 
– in blue), Nematostella vectensis (in green) and fly proteins (Babo, Tkv, Sax, Put, wit) are shown. N. vectensis sequences were 
retrieved from GenBank: type I receptors – EDO30434, EDO41833, EDO49083; type II receptors – EDO41379, and 
EDO49370 (with splice variant AAS77521). The tree is rooted using EDO41379. Branch lengths are shown in red. Node prob-
abilities are shown in black.
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interactions, and possibly provided a way of integrating
the signals from the two R-Smad channels through com-
petition for the available pool of Co-Smad molecules. The
critical role of Co-Smad bioavailability is also suggested
by its low duplicability; in the great majority of species
there is only one Co-Smad (Figure 1). Xenopus laevis is the
notable exception having two genes XSMad4a and
XSmad4b [57,58], but they are differentially expressed
both in embryos and adult tissues. The fast diverging I-
Smad was the last addition to the pathway (Figure 4: AMD
3). It neofunctionalized to create a controlling negative
feedback loop; I-Smad transcription is induced by the
pathway, the protein can bind the activated receptor com-
plex, but lacking a terminal phosphorylation motif it does
not propagate the signal. Since it is not being used, over
time the MH1 of the I-Smad converted to a vestigial
domain. It will be interesting to see if future genome
projects of basal animals and closest extant unicellular rel-
atives of animals [59] will provide a proof of our single
Smad hypothesis.

Conclusion
The emergence of the TGF-b pathway coincided with
appearance of the first animal species, and was most likely

linked with duplications of the single primeval common
mediator/receptor activated Smad. This resulted in the
creation of the ancestral eumetazoan repertoire of four
Smads, forming the basis of the pathway in the Placozoa,
the Cnidaria, the Arthropoda, and in the Lophotrochozoa.
After application of a formal speciation and duplication
inference algorithm, we conclude that the diversification
of Smads and receptors in chordates is parsimoniously
explained according to the 2R model, with additional
rounds of duplications in teleost fishes. The Nematoda
posses a heavily modified pathway which evolution has
been marked by accelerated sequence change.

Our multi-genome comparison and ancestral inference
approach has implications extending beyond the TGF-b
pathway. Origins of other developmental signalling path-
ways, for example Hox and hedgehog, are also being
investigated using phylogenomic approaches [60,61].
Results obtained for all developmental signalling path-
ways should be integrated and compared with paleonto-
logical records and molecular clock data, to identify the
molecular nature and timing of all major changes in the
shared animal developmental toolkit [62], including
those which gave rise to vertebrate innovations [63].

Table 4: Receptor-Smad specificity.

Receptor II Receptor I R-Smad Ligand family

AMHR2 ACVR1 Smad1,5,8 AMH
BMPR1A Smad1,5,8
BMPR1B Smad1,5,8

BMPR2 BMPR1A Smad1,5,8 BMP2/4/6/7/9/10/13/15
BMPR1B Smad1,5,8
ACVR1 Smad1,5,8
ACVRL1 Smad1,5,8

TGFBR1 Smad2,3 GDF9

TGFBR2 TGFBR1 Smad2,3 TGFB1/2/3

ACVR2A ACVR1 Smad1,5,8 BMP4/5/7/9/10/14/15
BMPR1A Smad1,5,8
BMPR1B Smad1,5,8
ACVRL1 Smad1,5,8

ACVR1B Smad2,3 Nodal, GDF1/11, ActA/B/AB, InhA/B/C
ACVR1C Smad2,3

ACVR2B ACVR1 Smad1,5,8 BMP4/7/14
BMPR1A Smad1,5,8
BMPR1B Smad1,5,8

ACVR1B Smad2,3 Nodal, GDF1/3/8/11, ActA/B/AB, InhA/B/C
ACVR1C Smad2,3
TGFBR1 Smad2,3

Mammalian TGF-b type II receptors are listed in the first row. Type I receptors which make functional complexes with each type II receptor are 
then listed, followed by the R-Smads that the type I receptor activates. The ligands activating each receptor-Smad group are then listed in a 
Page 13 of 17
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Methods
TGF-b pathway gene content across the animal taxa
Table 1 presents the number of paralogous genes in meta-
zoan genomes, where high-coverage sequence data and
reliable gene predictions are available.

Reconstructing Smad content in ancestral species
Known human Smads and TGF-b receptor proteins were
used for a BLASTP search against a collection of pro-
teomes predicted for high-coverage sequenced genomes,
providing as wide as possible coverage of the animal king-
dom. BLASTP parameters were first calibrated to yield
searches of optimal sensitivity and specificity using
human and mouse genomes (where the identity of rele-
vant genes is well known) and verified using more dis-
tantly related animal genomes, through manual
inspection of hits and alignments (to avoid, for example,
non-specific hits to the kinase domain of the receptors).
The following E-value cut-offs were used: 10e-30 for
receptors and 10e-20 for Smads.

It is important to notice that searches against the collec-
tion of proteomes were unbiased by the identity of species
used as the starting point. No additional genes can be
identified when searching with D. melanogaster, Nemato-
stella, Trichoplax or Lottia gigantea Smads and receptors. In
fact, these proteins are so well conserved in sequence that
searches starting with genes originating from different
phyla are essentially equivalent. For example, when
Smads and receptors from human, D. melanogaster, Nema-
tostella, Trichoplax or Lottia gigantea were used as queries

against their proteomes as well as those of Xenopus tropica-
lis, Monodelphis domestica, Danio rerio, Ciona savignyi, and
Caenorhabditis elegans, identical lists of hits were obtained
(except that query using Trichoplax receptors did not detect
one gene in human, M. domestica and X. tropicalis).

The lists of homologs were further filtered, in order to
include only those proteins which contained an exem-
plary Pfam domain [64]: MH2 for Smads; and any of the
following for TGF-b receptors: an activin-type I/II receptor
domain, a TGF-b receptor domain, or a TGF-b-GS motif
for type I receptors [see Additional file 5]. Presence of the
terminal phosphorylation motif (SSxS) was also verified
in case of R-Smads. Multiple sequence alignments were
performed using Muscle [65].

Smads and receptors in Bilateria – point of divergence 
(POD) analysis
The ancestral state of the pathway was estimated by ana-
lyzing the orthology relationship between the human pro-
teins and the proteins in the genomes of extant species
within collective POD groups (Figure 1 summarises Fig-
ures S1 and S2). Orthology was deduced from phyloge-
netic trees (through gene/species tree reconciliation).
Table 2 lists species codes used in Figures S1 and S2. POD
analysis is a graphical shortcut equivalent to manually tra-
versing a gene tree according to a species tree, which facil-
itates ancestral gene content reconstruction. Additionally,
gene duplications and losses were inferred using the spe-
ciation and duplication inference algorithm (SDI) [66],
modified to work with non-binary species tree.

Table 5: Accession numbers for Figure 3.

Smad Accession number

Smad7 ENST00000262158, ENSORLT00000007300, SINFRUT00000168711, GSTENT00034726001

Smad6 ENSDART00000075213, ENSDART00000014508, ENSORLT00000002768, SINFRUT00000132241, GSTENT00018098001, 
ENST00000288840, ENSDART00000049006, ENSORLT00000008573, SINFRUT00000171835, GSTENT00016030001

Smad4 ENSDART00000047862, GSTENT00008799001, SINFRUT00000174976, SINFRUT00000173081, SINFRUT00000170229, 
ENST00000342988, ENSORLT00000009648, GSTENT00017220001, ENSORLT00000006329, GSTENT00004746001, 
ENSDART00000048201, ENSDART00000035478

Smad2 ENST00000356825, ENSORLT00000019644, SINFRUT00000167872, GSTENT00021584001, ENSDART00000003587, 
ENSORLT00000014832, SINFRUT00000172868, GSTENT00008463001

Smad3 ENST00000327367, ENSORLT00000008549, SINFRUT00000175526, GSTENT00016035001, ENSDART00000045374, 
ENSDART00000043455, ENSORLT00000002749, SINFRUT00000167684, GSTENT00018100001

Smad8 ENST00000379826, ENSDART00000028618, ENSORLT00000004945, SINFRUT00000183098, GSTENT00018869001, 
GSTENT00002259001

Smad1 ENST00000302085, ENSDART00000033566, ENSORLT00000009248, SINFRUT00000133755, GSTENT00032865001

Smad5 ENST00000231589, ENSDART00000054175, ENSORLT00000011780, SINFRUT00000175729, GSTENT00005726001
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Identification of Smads in the genome of the demosponge 
Amphimedon queenslandica (formerly Reniera sp.)
Amphimedon traces were fetched from the NCBI trace
archive in May 2008. Low stringency Tblastn query (-E
0.01) with a human R-Smad sequence (Smad2) was used
to identify traces with a minimal Smad coding potential.
Resulting 383 traces were clipped to avoid low quality 5'-
and 3'-termini and assembled into 30 contigs using Cap3
with default parameters [67]. Genewisedb [68] (-splice
flat -intron tied -trans -hmmer) invoked with a custom
hmm profile compiled from all bilaterian Smad
sequences was used to predict putative Smad genes on the
30 contigs. Resulting proteins were checked against the
base quality and trace coverage of the underlying contig
sequence and validated against Pfam MH1 and MH2
domain models. Based on tree topology, two putative R-
Smads were identified (Figure S4, [see Additional file 4],
[see Additional file 5]).

Analysis of the evolutionary rates
Ka and Ks calculations were performed using the modified
Nei-Gojobori (p-distance) model [69] with pairwise dele-
tion and assuming transition/transversion ratio of 2 – as
implemented in the phylogenetic analysis package Mega
3.1 [70].

Phylogenetic analyses
We have utilized two approaches to phylogenetic infer-
ence to capitalize on advantages offered by different
methods. Large-scale trees with sequences from many
genomes (termed phylogenomic trees) were produced
using particularly suited TreeBeST. Computationally
intensive Bayesian method was applied to small-scale
trees, including a difficult phylogenetic problem involv-
ing worm Smads.

Phylogenomic trees
Maximum likelihood trees were produced using a fast hill-
climbing algorithm which adjusts tree topology and
branch lengths simultaneously [71]. Smad and receptor
nucleotide sequences were aligned with protein align-
ment as guide using RevTrans-1.4. The maximum likeli-
hood tree was then merged with a Ks neighbor-joining
tree using the TreeBeST [72] phylogenetic engine (to pro-
duce Figure S1 [see Additional file 1] and S2 [see Addi-
tional file 2]). TreeBeST is part of the TreeSoft project [73],
and has been tested extensively against knowledge of biol-
ogists, including manual curation, within the TreeFam
and Ensembl databases. Trees were rooted on time, and
speciation and duplication inference algorithm (SDI),
based on the reconciliation of the gene tree with a trusted
species tree [66], was used to infer orthology, paralogy,
speciation nodes and gene duplication events. However,

inferred duplication events with no species intersection
support (SIS = 0) were attributed to locally incorrect gene
tree topology. ATV was used as a tree viewer [74].

Bayesian phylogenetic inference
MrBayes3 [75] was used to generate trees with node prob-
abilities in Figures 2, 4, 5, S3 and S4. For these analyses,
Metropolis coupling variant of Markov chain Monte Carlo
algorithm [76] was run with a mixture of protein evolu-
tion models with fixed rate matrices [75], and assuming
equal rates, for 100,000 generations, sampling every 100th

generation and discarding initial 25% trees (see manual
[77]).
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Additional material

Additional file 1
Figure S1. Smad phylogenomic tree (rooted on time). View in magnifi-
cation (at least 200%), in a pdf viewer such as Acrobat Reader, Adobe 
Acrobat or kpdf.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-28-S1.pdf]

Additional file 2
Figure S2. Receptor phylogenomic tree (rooted on time). View in magni-
fication (at least 200%), in a pdf viewer such as Acrobat Reader, Adobe 
Acrobat or kpdf.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-28-S2.pdf]

Additional file 3
Figure S3. Bayesian phylogenetic tree demonstrates that the familiar pat-
tern of four Smads grouped into three functional classes can be also 
observed in Lophotrochozoans. The tree is rooted using Dad. Accessions 
given are JGI gene model numbers.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-28-S3.pdf]

Additional file 4
Figure S4. Two R-Smads (AqSmad1 and AqSmad2) have been detected 
in Amphimedon genomic traces. The tree is rooted using Dad.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-28-S4.pdf]
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