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1 Introduction

Restrictions imposed by causality and unitarity on the S-matrix were understood a long

time ago [1]. Similarly, in conformal field theories unitarity is known to impose constraints

on scaling dimensions of operators and their two-point functions [2] traditionally derived

from reflection positivity. Alternatively, unitarity bounds arise from the positivity of the

total cross section [3] which is defined through the Fourier transform of the Wightman

two-point function.

The notions of a scattering amplitude and differential cross section do not exist in a

generic CFT. In accordance with this, there is no analog of the differential cross section

positivity. However, close relatives of differential cross sections that do exist in any CFT

are known. These are so-called weighted cross sections [4] which are more inclusive than

the differential cross section but less inclusive than the total one.
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Figure 1. The experimental setup. The red region corresponds to a vacuum excitation produced

in our case by an insertion of a local operator. Blue points stand for detectors that collect energy

at infinity.

Energy correlators are a famous exemplar of the weighted cross section type of ob-

servable that is positively definite. They first appeared in the study of electron-positron

annihilation in QCD [5, 6].

The following (see figure 1) is a physical picture behind these observables. We hit the

vacuum with a local operator, let the excitations evolve and study the energy distribution

at infinity. We repeat the experiment many times and compute the mean. The result

of such experiment provides the experimentalist with many hints about the underlying

physical dynamics. Probably, the most famous energy distributions are the QCD jets [7]

and Hawking radiation [8]. The n-point energy correlator corresponds to probing the state

with n calorimeters. In theories with massless particles energy correlators are known to be

infrared safe or finite. Positivity of the differential cross section together with stability of

the vacuum imply positivity of energy correlators in theories with the S-matrix.

Another important property of energy correlators is that they could be reformulated

in terms of correlation functions [9–12] so that the notion of the S-matrix is not necessary

to define them. IR-safety and existence of the operator formulation suggest that energy

correlators should be well-defined in CFTs as well, indeed, it is the case [13]. The n-point

energy correlator is defined starting from the (n + 2)-point Wightman function with n

insertions of the stress tensor corresponding to calorimeters and two Hermitian conjugate

operators corresponding to the nontrivial state under consideration. As in theories with a

unitary S-matrix one can expect that energy correlators in unitary CFTs should be positive.

There are some plausible arguments supporting this claim in the literature [13–15]; however,

a general proof is still lacking.

A Euclidean analog of energy correlators positivity is not known. It is similar to many

instances when it is not clear how to reproduce positivity constraints that are trivial in

Minkowski space from Euclidean correlation functions (for recent examples see [16–19]).

Interestingly, through AdS/CFT [20–22] the positivity of energy correlators is related to

causality in AdS space [14, 23, 24].1

By assuming energy correlators to be positive what kind of constraints do we get?

The case of a one-point energy correlator was analyzed before [13, 28]. We will review this

1See also [25–27].
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constraint below but for now let us write its consequence

1

3
≤

a

c
≤

31

18
(1.1)

where a and c are the Weyl anomaly coefficients.

In this note we analyze the positivity constraint for higher point energy correlators in

parity invariant 4d CFTs. In particular, we show that for a
c
= 1

3 and a
c
= 31

18 the positivity

of energy correlators imply their triviality. Namely they are the ones of the free boson and

free vector field correspondingly.

The energy correlators in free theories are not functions but distributions since they

contain terms like2 δ(θ − π) that come from two free particles propagating in opposite

directions. In interacting theories such singular terms are believed to be absent due to the

copious production of soft particles so that energy correlators are finite at non-coincident

points. We show that under the additional assumption of finiteness of energy correlators

at non-coincident points it is possible to show that the three-point function of the stress

tensor in a CFT cannot be proportional to the one in the theory of free boson, free fermion

or free vector field. The assumption of finiteness is consistent with all known results for

energy correlators in interacting CFTs.

Let us emphasize that in this note we do not assume anything about the spectrum of

operators in the theory apart from the existence of the stress-energy tensor. All arguments

are based solely on the positivity of energy correlators and conformal symmetry and, thus,

are non-perturbative and applicable to all known CFTs.

2 Basics of energy correlators

In this section we explicate the definition and basic properties of energy correlators. Besides

kinematics these include positivity, a total flux bound and a zero flux constraint.

2.1 Three-point function of the stress tensor

Before discussing energy correlators let us review some basic facts about the stress tensor

correlation functions in CFTs. Conformal symmetry fixes the three-point function of the

stress tensor in terms of three real numbers [29, 30].3 It is convenient to choose these

numbers as follows. Consider two and three-point functions in the theory of free boson,

free Dirac fermion and free vector fields. Let us denote them 〈TT 〉b,〈TTT 〉b and similarly

for the fermion and vector structures. The stress tensor two- and three- point functions

take the form

〈TT 〉 = nb〈TT 〉b + nf 〈TT 〉f + nv〈TT 〉v,

〈TTT 〉 = nb〈TTT 〉b + nf 〈TTT 〉f + nv〈TTT 〉v. (2.1)

In this way for every CFT we can talk about an effective number of bosons, fermions

and vectors. We would like to stress that this labeling has nothing to do with the theory

2θ stands for the angle between detectors.
3The two-point function is fixed up to one number.
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Figure 2. Penrose diagrams of Minkowski space. a) The definition (2.3) states that we first collect

energy at all times for fixed distance and then take the distance to infinity. b) Definition (2.4) is

designed for CFTs. From the very beginning we sent the detector to the future null infinity I+ and

the integrate over the null working time of the detector.

content and is a purely bookkeeping tool. Reflection positivity of the two-point function

of the stress tensor enforces
1

3
nb + 2nf + 4nv > 0. (2.2)

Starting from four points correlation functions depend on arbitrary functions of conformal

cross ratios [31, 32].

2.2 Definition of energy correlators

Energy correlators can be defined using a detector operator built out of the stress

tensor [9–13]

E(~n) = lim
r→∞

r2
∫

∞

−∞

dtT0in
i(t, r~n). (2.3)

The integral above is the detector working time integral, a period of time during which the

detector is collecting energy. The limit appears because we place the detector at infinity far

away from the “collision” region. Thanks to the insertion point being r~n the calorimeter

collects only the radiation propagating in the ~n direction.

In this note we define a detector operator in a slightly different manner (see also [33])

E(n) =

∫
∞

−∞

d(x.n) lim
x.n→∞

(x.n)2

16
T.n.n(x.n, x.n,~0⊥) (2.4)

where n = (1, ~n), n = (1,−~n) so that x.n = t−r, x.n = t+r and ~0⊥ stands for coordinates

perpendicular to n and n.4

Notice that in general two definitions are not equivalent. Indeed, the defini-

tion (2.3) corresponds to the detector that collects all sorts of excitations, massive (propa-

gating to the future and from the past time-like infinity i±) as well as massless (propagating

to and from the null infinity I±). A usual physical setup corresponds to the choice of the

state |Ψ〉 with a compact support, such that the detector triggers only the outgoing par-

ticles propagating to i+ and I+. At the very end of the calculation we can take the limit

4Notations here come from the Sudakov decomposition of the four momentum q = αn+βn+~q⊥ common

in the QCD literature [34].
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in which the wave function can become a simple plane wave as we consider below. If we

instead start from the wave function which is nowhere zero we will detect the ingoing par-

ticles that hit the detector from the outside. In CFTs for the simple states created by the

primary operator with momentum q it is easy to check that energy flux at i+ is zero.

The definition (2.4) is designed to collect only radiation at I+ from the very beginning.

We first send the detector to the future null infinity and then integrate over the null

working time. We can use simple plane wave states since it is impossible to hit the detector

inserted along the null line from the outside. Another advantage of (2.4) is that it is

manifestly Lorentz invariant. Thus, qualitatively we see that in CFTs the two definitions

are equivalent but the second one is a bit more convenient to handle in practice. The

quantitative equivalence of the two definitions as well as the existence of the limit could

be seen using the global conformal transformations explained in [13]. We review it in

appendix A.

Energy correlators are defined as follows

〈E(n1) . . . E(nk)〉Ψ =
〈Ψ|E(n1) . . . E(nk)|Ψ〉

〈Ψ|Ψ〉
. (2.5)

In (2.5) all correlation functions are Wightman or non-ordered functions. Non-ordered

correlation functions are typical to the in-in type of computations that we discuss here [35].

A universal5 state we would like to consider is obtained by acting with the stress tensor

carrying momentum q on the vacuum6

|T.ǫ.ǫ(q)〉 =

∫
d4xe−iqxTµν(x)ǫ

µǫν |0〉, (2.6)

where ǫµ is the polarization tensor.7 Since the stress tensor is conserved, symmetric and

traceless we choose ǫ2 = 0, ǫ.q = 0. The momentum q is always assumed to be time-like

with positive energy q0 > 0.

Throughout the paper we freely switch between the polarization tensor being ǫµǫν

with ǫ2 = 0, ǫ.q = 0 and ǫµν with ǫ
µ
µ = 0, qµǫ

µν = 0. We found it more convenient to use

the first choice when writing the most general structures allowed by symmetries while the

second is more convenient when thinking about the positivity of energy correlators in the

reference frame where q = (q0,~0) as will be explained below.

2.3 Symmetries

Let us discuss symmetries of energy correlators with the state (2.6). They are

a) Lorentz invariance

〈E(Λn1) . . . E(Λnk)〉T.Λǫ.Λǫ(Λq) = 〈E(n1) . . . E(nk)〉T.ǫ.ǫ(q). (2.7)

This is manifest in the way we defined energy correlators above (2.4).

5This state always exists.
6Our sign convention is (+−−−).
7As it is written 〈Ψ|Ψ〉 is infinite. This is not a problem. We can consider Gaussian wave packets instead

to make the norm of the state finite or, more conveniently, put the in- stress tensor at the origin in the

coordinate space so that 〈Ψ|Ψ〉 =
∫
d4xeiqx〈0|T.ǫ∗.ǫ∗(x)T.ǫ.ǫ(0)|0〉 < ∞. This is what we do in this note.
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b) Projective covariance

〈E(λn1) . . . E(nk)〉T.ǫ.ǫ(q) = λ−3〈E(n1) . . . E(nk)〉T.ǫ.ǫ(q). (2.8)

In the formula above we relaxed the condition n = (1, ~n) and considered n to be

a light-like vector n2 = 0. The property (2.8) could be easily checked to follow

from conformal properties of the stress tensor. Qualitatively, one can understand

it as follows. The leading contribution from the spin part of T (x).n.n behaves like

(x.n)2. Combined with the limiting prefactor this forms (x.n)4 that picks up the cor-

responding term in the large (x.n) expansion of the correlator. By Lorentz invariance

the expansion takes the schematic form 1
(x−y.n)4(x−y.n)4

which scales like λ−4 under

rescaling of n. The additional factor of λ comes from the measure
∫
∞

−∞
d(x.n).

c) Momentum rescaling

〈E(n1) . . . E(nk)〉T.ǫ.ǫ(λq) = λk〈E(n1) . . . E(nk)〉T.ǫ.ǫ(q). (2.9)

This follows from the fact that each detector measures energy. Equivalently, it could

be seen using dilatation symmetry.

d) Permutation symmetry ni ↔ nj . Detectors are space-like separated and therefore

commute.

e) Reality. Reality of energy correlators follows from Hermiticity of the stress-energy

tensor.

More details and concrete examples of energy correlator computations can be found

in [33]. It is clear that we can think about energy correlators as correlation functions of

scalar primary operators in 2d CFT with a vacuum that breaks conformal symmetry [13].

If we choose the state to be given by a scalar operator instead of a tensor then kinematics

of energy correlators is identical to that of BCFT [36] where the role of the boundary is

played by the momentum of the operator. This analogy could be useful when thinking

about the small angle OPE for detector operators since instead of thinking about the light-

cone OPE of light-ray operators we are dealing with the usual OPE in 2d Euclidean CFT

even though the structure of spectrum in this case is different.

2.4 One- and two-point energy correlators

The one-point energy correlator originates from the three-point function of the stress tensor

which itself depends on three real numbers as was reviewed above. This fact together with∫
dΩn〈E(n)〉T.ǫ.ǫ(q) = 〈H〉T.ǫ.ǫ(q) = q0 where H stands for the Hamiltonian operator fix the

energy correlator up to two numbers [13, 28]

〈E(n)〉T.ǫ.ǫ(q) =
q4

4π(q.n)3

(
1 + t2

[
q2ǫ.nǫ∗.n

(q.n)2ǫ.ǫ∗
−

1

3

]
+ t4

[
q4ǫ.n2ǫ∗.n2

(q.n)4(ǫ.ǫ∗)2
−

2

15

])
. (2.10)

The relation between t2,4 and nb,f,v defined in section 2.1 can be found in appendix C

of [13].8

8nhere
f = 1

2
nthere
wf .
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The two-point energy correlator is built out of the four-point function of the stress

tensor. Its most general form is very complicated [32]. Fortunately, the two-point energy

correlator built out of it is much simpler. The freedom that we have in this case is still

functional because we can have arbitrary functions of the cross ratio ξ = q2n1.n2

2q.n1q.n2
.9 After

imposing symmetry constraints we get for parity invariant theories

〈E(n1)E(n2)〉T.ǫ.ǫ(q) =
q2

(n1.n2)3

7∑

i=1

Tifi(ξ), (2.11)

where Ti(ǫ, ǫ
∗, ni, q) stand for possible tensor structures. Their precise form can be found in

appendix B. In principle there are also parity violating structures that contain the epsilon

tensor. We do not consider them in this note. The n-point function will depend on the

cross ratios ξij =
q2ni.nj

2q.niq.nj
.

2.5 Finiteness

At this point we should ask ourselves, what type of functions fi(ξ) we are allowed to have

in (2.11) ? As we mentioned in the introduction, already in free theories energy correlators

contain terms of the type δ(1 − ξ). Thus, in general we expect energy correlators to be

functionals rather than functions. This becomes relevant starting from the two-point energy

correlator since the one-point energy correlator is fixed by symmetries and is finite (2.10).

In this section we summarize our assumptions about energy correlators.

First, we imagine that real physical detectors have a finite angular resolution, thus,

what we really measure is the integrated version of the energy correlator. So after smearing

over angles we expect to get a finite result

〈E(n1)E(n2)〉T.ǫ.ǫ(q)[g] =

∫

δΩ
dΩn2g(n2)〈E(n1)E(n2)〉T.ǫ.ǫ(q) < ∞ (2.12)

where we integrated over an arbitrary region on the sphere δΩ that does not contain the

point n1 and the measurement function g ∈ C∞(S2). We assume that energy correlators

are linear functionals. Physically, it means that increasing the detector sensitivity by a

factor of two at each point g → 2g results the measurement to be twice as large as well.

For the linear functionals we also assume the smoothness condition [37] that enters in the

standard definition of a distribution.

More importantly, we assume that energy correlators are finite (regular) for non-

coincident detector positions up to a set of isolated points {ξ∗i } for which we can have

singularities (irregularities) that integrate to a finite number (2.12). In other words, we

think about energy correlators as if they are regular functions up to a set of isolated points

{ξ∗i } where they are defined only in the functional sense.

Even though the terms like δ(1 − ξ) do appear in free theories and in perturbation

theory, available strong coupling data [13] as well as resummed perturbation theory analysis

9Notice that 0 < ξ ≤ 1 for time-like q. By excluding zero we avoid the situation when detectors are

on top of each other. From (2.3) and (2.4) it is clear that when this happens the stress tensor operators

become light-like separated and it requires extra care to define energy correlators.
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in QCD [6, 38] show that delta functions disappear when all orders are included. So, it is

reasonable to assume that in interacting CFTs energy correlators are finite when detectors

are at non-coincident points. This is an assumption of finiteness. We will not use it unless

stated otherwise.

2.6 Positivity

There is good evidence [13–15] that energy correlators in unitary CFTs are non-negative

〈E(n1) . . . E(nk)〉Ψ ≥ 0 (2.13)

for any Ψ.10 This condition looks physically reasonable and holds in all known examples,

though we are not aware of its general proof.

In light of the previous section we need to specify what do we exactly mean by (2.13).

Indeed, for the configuration of detectors such that the energy correlator is finite or under

assumption of finiteness we can use (2.13); however, in the case when the energy correlator

is not regular we need to impose the positivity of the integrated energy correlator (2.12)

with g(δΩ) ≥ 0.

In [13, 28] it was shown that the positivity of the one-point function

〈E(n)〉T.ǫ.ǫ(q) ≥ 0 (2.15)

implies the following inequalities for nb,f,v,
11

nb ≥ 0, nf ≥ 0, nv ≥ 0. (2.16)

A weaker version of this constraint was quoted in the introduction (1.1), where the

value a
c
= 1

3 corresponds to nb 6= 0,nf = nv = 0; the case a
c
= 31

18 , on the other hand, is

given by nv 6= 0,nb = nf = 0. One can ask if it is possible to derive more constraints from

the positivity of higher point energy correlators?

Let us consider, for example, the two-point energy correlator. We can fix the position

of one detector and vary the position of the second detector and the polarization tensor

10We could have thought about the following argument. Let us assume that the CFT admits a deformation

by a relevant operator δL = md−∆O∆(x) that drives it to the gapped phase. Since the theory is free at

large distances the insertion of the stress tensor at infinity acts on the space of free particles producing the

usual energy correlators defined in terms of scattering amplitudes [39]. The fact that all particles carry

positive energy together with the positivity of the cross section imply that 〈E(n1) . . . E(nk)〉Ψ(m) ≥ 0 for

any m. Energy correlators are known to be IR-safe or, in other words, this function is known to have a

smooth limit m → 0 which implies (2.13) if the following condition holds

lim
m→0

〈E(n1) . . . E(nk)〉Ψ(m) = 〈E(n1) . . . E(nk)〉
CFT
Ψ . (2.14)

While the equalities of the type (2.14) are trivially true for local correlation functions when dealing with

integrated correlation functions and their limits an issue of the order of limits can possibly arise. A trivial

example is limm→0 limr→∞ e−mr = 0, limr→∞ limm→0 e
−mr = 1. It will be interesting to understand

when (2.14) holds.
11Another solution is that all constants are non-positive. This contradicts the positivity of the two-point

function (2.2).
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such that the cross ratio ξ is fixed. In this way the problem is identical to the one of the

one-point function. Indeed, fi(ξ) are just constants and we are interested in conditions

that the quadratic form ǫ∗ijM
ijklǫkl is non-negative for arbitrary ǫ and n2 such that n1.n2

is fixed. M ijkl is a Hermitian matrix due to reality of energy correlators. A Hermitian

matrix is non-negative if and only if all its eigenvalues are non-negative. In practice it

is also useful to use another criterion (see e.g. [40]): a Hermitian matrix is non-negative

if and only if all its principal minors are non-negative. If we choose the reference frame

q = (q0,~0) and n1 = (1, 0, 0, 1) the positivity constraint takes the form

λM ≥ 0, any (n1
2)

2 + (n2
2)

2 ≤ 1− (n3
2)

2 = 4ξ(1− ξ) (2.17)

where λM are eigenvalues of M . Below we use the positivity constraint (2.17) only in

particular cases when it is especially simple.

2.7 Total flux bound and zero flux constraint

The fact that we consider a state with energy q0 implies the following inequality12

∫

δΩ
dΩ~ni

〈E(n1) . . . E(ni) . . . E(nk)〉Ψ ≤ q0〈E(n1) . . . E(nk)〉Ψ, (2.18)

for any region on the sphere δΩ that does not include other detectors insertions. Physically,

this condition is trivial. It states that the energy calorimeter cannot detect energy larger

than the total energy of the state. However, to prove it from the first principles is more

tricky. One way to proceed is to define energy correlators at coincident points. For example,

one can think of taking the limits (2.3), (2.4) for different detectors one after another such

that detectors are always very far from each other. In this way the operator identity∫
dΩ~ni

E(ni) = q0 holds and imply (2.18). We call (2.18) the total flux bound.

One can check that something special happens when nbnfnv = 0. In this case, for any

direction n it is possible to find a polarization tensor ǫµν such that

〈E(n)〉Tµνǫµν(q) = 0. (2.19)

This is not possible if nbnfnv > 0. More generally, consider a situation when there exists

n̂ such that

〈E(n̂)〉Ψ = 0. (2.20)

It is clear that (2.13), (2.20) and (2.18) together imply that

〈E(n1) . . . E(nk)E(n̂)〉Ψ = 0. (2.21)

Below we use this assertion to further constrain energy correlators and we call it the zero

flux constraint.

12In this formula we implicitly assumed that n0
i = 1. The only place in the paper where we relax this

assumption is when we analyze symmetries and possible structures.

– 9 –



J
H
E
P
0
4
(
2
0
1
4
)
0
3
8

3 Argument

In this section we use the positivity constraint (2.13) to fix energy correlators completely

in the case of extremal values of a
c
. We also show that an additional assumption of energy

correlators finiteness is not consistent with the three-point function of the stress tensor

being proportional to that of the free boson, free fermion or free vector field.

First, we use the zero flux constraint (2.21) to reduce the number of possible functions

in (2.11). Second, we use the positivity constraint (2.13) to fix energy correlators com-

pletely. The positivity constraint is used in two steps as well. We start by imposing the

positivity constraint at the points where the energy correlator is finite. We then impose

the integrated positivity constraint in the isolated singular points.

It is absolutely crucial for the argument that the stress tensor has nonzero spin.13

Imagine a state created by a scalar operator. The two-point energy correlator takes the form

〈E(n1)E(n2)〉O(q) =
q2

(n1.n2)3
f(ξ). (3.1)

The positivity constraint states that f(ξ) ≥ 0 and clearly is not strong enough to fix the

energy correlator.

3.1 Purely bosonic structure or a

c
= 1

3

Let us assume that the three-point function of the stress tensor is given by the purely

bosonic structure nb 6= 0, nf = 0, nv = 0. A priori nothing prevents us from thinking that

there are interacting CFTs of this type. The one-point energy correlator takes the form

〈E(n̂)〉T.ǫ.ǫ(q) =
15

8π

(q2)4

(q.n̂)7
ǫ.n̂2ǫ∗.n̂2

(ǫ.ǫ∗)2
. (3.2)

Henceforth it is more convenient to choose the reference frame q = (q0,~0) and n̂ = (1, 0, 0, 1)

so we align the detector along the z-axis. We also switch to the state Tijǫ
ij where ǫii = 0

and Latin indices run from 1 to 3.

As a first step we find polarization tensors such that the one-point function (3.2) is zero.

This condition imposes ǫ33 = 0. Other than this the polarization tensor is arbitrary. We

can use this polarization tensor to impose the zero flux constraint (2.21) on the two-point

energy correlator

〈E(n)E(n̂)〉Tijǫij(q0) = 0, any n. (3.3)

Let us explain how we impose the zero flux constraint. We choose n̂ along the z-axis and

ǫ33 = 0. The cross ratio becomes ξ = 1−n3

2 and we keep it fixed. This allows us to think

of f(ξ) as constant numbers. We consider then all possible polarization tensors and n1,2

components. One can check that the solution to (3.3) is given by

f1,2,3,4,6,7 = 0. (3.4)

13The famous example of an argument for which spin of the state is crucial was provided by Weinberg

and Witten [41].
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We are left with one functional degree of freedom given by f5. Indeed, the special thing

about T5 is that it is identically zero when ǫ33 = 0. To further constrain the energy

correlator we relax the condition that ǫ33 = 0 and again by keeping ξ fixed impose the

positivity condition

〈E(n)E(n̂)〉Tijǫij(q0) ≥ 0. (3.5)

We first imagine that the energy correlator is finite for all values 0 < ξ ≤ 1. For example,

we can choose the following polarization tensor ǫ11 = −ǫ13 = 1, ǫ12 = ǫ21 = α where α is

real. It produces the following form that should be sign-definite for any n1 and n2

(n3)2 − (n1)2 − 2αn1n2. (3.6)

The only way to make this form sign-definite for arbitrary α,n1 and n2 such that (n1)2 +

(n2)2 ≤ 1 − (n3)2 is to set n3 = ±1. One can check that the same is true for the most

general polarization tensor. Since we are not considering the case when detectors are on

top of each other we are left with the only solution, n3 = −1, when detectors are triggering

particles propagating in the opposite directions. In the covariant language it corresponds

to ξ = 1.

At this moment it is clear that if we assume the finiteness we have to conclude that the

two-point energy correlator is identically zero. Indeed, we cannot have a smooth function

that is zero everywhere but a single point. As we explain below it is not consistent with

the momentum conservation and the fact that the one-point energy correlator is nonzero.

In any CFT a flow of energy is accompanied by a flow of momentum as if it was carried

by massless particles [13]

~P (n) = ~nE(n). (3.7)

Consider again the reference frame where ~q = 0. If one detector triggers an energy flow

and, therefore, a momentum flow, by momentum conservation there should be a nonzero

flow of energy in other directions as well so that the two-point energy correlator cannot

be identically zero at non-coincident points. Thus, we have a contradiction and we are

compelled to conclude that in CFTs with finite energy correlators the three-point function

of the stress tensor cannot be purely bosonic.

Let us now relax the finiteness condition and allow for integrable singularities of the

type described above. Our analysis of positivity above is valid only for the points where

the energy correlator is finite. We concluded that at those points the energy correlator is

necessarily zero. Thus, the energy correlator is possibly nonzero only in the set of isolated

points where it is singular.14 Combined with our assumption that energy correlators are

distributions it implies that at each of those points the functions of the cross ratio fj(ξ) are

given by
∑N

n=0 c
n
j δ

(n)(ξ − ξ∗i ) with some finite N (see e.g. [42]).15 In appendix C we show

that only the δ(1− ξ) term is consistent with the positivity of energy correlators. Thus, in

14We freely use the term singular for the cases when the energy correlator is not regular, for instance,

when it is equal to δ(0).
15δ(n)(x) stands for the n-th derivative of the delta function.
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the ~q = 0 reference frame the two-point energy correlator takes the form

〈E(n1)E(n2)〉Tijǫij(q0) = (q0)2
(
a+ b

ǫijǫ
∗

ikn
j
1n

k
1

ǫijǫ
∗
ij

+ c
ǫijǫ

∗

kln
i
1n

j
1n

k
1n

l
1

ǫijǫ
∗
ij

)
δ(1 + ~n1.~n2). (3.8)

Due to momentum conservation both detectors trigger the same momentum at each

event and, thus, the same energy (3.7). We conclude that the following should be true

∫

δΩ
dΩn2〈E(n1)E(n2)〉Tijǫij(q0) =

q0

2
〈E(n1)〉Tijǫij(q0) (3.9)

where q0

2 is the energy measured by each detector in every event and we integrate over a

small region δΩ around the point ~n1~n2 = −1. Together with the previous constraints it

fixes the two-point energy correlator to be the one of the free boson theory16

〈E(n1)E(n2)〉Tijǫij(q0) =
q0δ(1 + ~n1.~n2)

2π
〈E(n1)〉Tijǫij(q0). (3.10)

In the covariant language ξ = 1 corresponds to n
µ
2 ∝ qµ − q2

2q.n1
n
µ
1 .

We can proceed and fix higher point energy correlators using the total flux bound.

Notice that for any ~n1 6= ~n2 6= ~n3 we always have a pair of detectors for which ~ni.~nj 6= −1.

Without a loss of generality we can think of them as being ~n2 and ~n3. But then we have

0 ≤

∫

δΩ
dΩ~n1

〈E(n1)E(n2)E(n3)〉Tijǫij(q0) ≤ q0〈E(n2)E(n3)〉Tijǫij(q0) = 0 (3.11)

for any δΩ and the only solution for this condition is that the three-point energy correlator

is identically zero.17 Analogously, we can proceed to higher point functions and conclude

that all of them are zero at non-coincident points

〈E(n1)E(n2) . . . E(nk)〉T.ǫ.ǫ(q) = 0, k > 2. (3.12)

This is exactly what we get in the theory of free boson. Thus, we conclude that all energy

correlators in a CFT with the three-point function being purely bosonic are identical to

the ones in the theory of free boson.

In the case of free theories all energy correlators with more than two detectors are

zero because there is no particle production in the theory. In an abstract CFT the lack of

particle production could be defined in this way. The two-point energy correlator is given

by the delta function in free theories because the state created by the stress tensor is a state

of two freely propagating particles. In an abstract CFT the fact that the two-point energy

correlator is given by the delta function is, hence, the analog of the S-matrix triviality.

16At this point we used
∫
0
dxδ(x) = 1

2
.

17To eliminate exotic terms like derivatives of the delta function one can consider (3.11) with a nontrivial

measurement function.
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3.2 Purely vector structure and a

c
= 31

18

Now we switch to the maximum value of a
c
and assume that the three-point function of the

stress tensor is given by the purely vector structure nv 6= 0, nb = 0, nf = 0. The one-point

energy correlator takes the form

〈E(n̂)〉T.ǫ.ǫ(q) =
5

16π

(q2)4

(q.n̂)3

(
2− 4

q2ǫ.n̂ǫ∗.n̂

q.n̂2ǫ.ǫ∗
+

q4ǫ.n̂2ǫ∗.n̂2

q.n̂4(ǫ.ǫ∗)2

)
. (3.13)

And we repeat exactly the same type of analysis as described above for the case of boson.

Namely we choose q = (q0,~0) and n̂ = (1, 0, 0, 1). The condition that the one-point

function (3.2) is zero becomes ǫ12 = 0, ǫ11 = ǫ22.

The zero flux constraint (2.21) allows us to fix five out of seven functions

f7 = 0,

ξf1 = −4ξ(1− 2ξ)2(ξ2 − ξ − 1)f4 + (4ξ3 − 6ξ2 + 1)f6,

f2 = 24ξ2(1− ξ)(2ξ − 1)f4 + 2(6ξ2 − 6ξ + 1)f6,

ξf3 = −4ξ(2ξ − 1)2f4 + 2(2ξ − 1)f6,

f5 = 20ξ3(1− ξ)f4 + 3ξ(2ξ − 1)f6. (3.14)

We are left with two functional degrees of freedom given by f4 and f6. In addition to

this there is another solution localized at ξ = 1. We can relax ǫ12 = 0, ǫ11 = ǫ22 and

impose the positivity of the energy correlator. The solution exists only when detectors are

at the opposite points of the celestial sphere and the energy correlators are distributions

and not functions.

The final result is that the energy correlators take the form

〈E(n1)E(n2)〉Tijǫij(q0) =
q0δ(1 + ~n1.~n2)

2π
〈E(n1)〉Tijǫij(q0),

〈E(n1)E(n2) . . . E(nk)〉T.ǫ.ǫ(q) = 0, k > 2. (3.15)

Again the CFT with the extremal value of a
c
happens to have trivial scattering observables.

3.3 Purely fermionic structure and a

c
= 11

18

It is curious that for the intermediate a
c
the argument is not powerful enough to fix energy

correlators completely. To use the zero flux constraint we have to set nbnfnv = 0. Here

we consider the case when nf 6= 0 and nb = nv = 0 which corresponds to a
c
= 11

18 . The

one-point function takes the form

〈E(n̂)〉T.ǫ.ǫ(q) =
5

4π

(q2)4

(q.n̂)3

(
q2ǫ.n̂ǫ∗.n̂

q.n̂2ǫ.ǫ∗
−

q4ǫ.n̂2ǫ∗.n̂2

q.n̂4(ǫ.ǫ∗)2

)
. (3.16)

In the ~q = 0 reference frame it is zero if ǫ13 = ǫ23 = 0. The zero flux constraint eliminates

five out of seven functions

f4 = f7 = 0,

f1 = −2ξ(1− ξ)f3,

f2 = −f6 + 3ξ(2ξ − 1)f3,

f5 = 2ξ([2ξ − 1]f6 + ξf3). (3.17)
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Figure 3. In the case of purely fermionic structure the zero flux constraint, positivity and the total

flux bound are consistent with nonzero energy flux at blue points in every event and for arbitrary

polarization tensor. For each pair of blue points ~ni.~nj = 0,−1. For any seven points on S2 there is

a pair of points such that the angle between them is neither π
2
, nor π.

There are two additional solutions localized at ξ = 1
2 and ξ = 1.

The positivity constraint again does not have solutions in the space of functions. How-

ever, if we admit distributions then we found two solutions to the positivity condition:

ξ∗ = 1
2 and ξ∗ = 1.

Using the total flux bound we see that energy correlators with more than 6 detectors

have to be identically zero (see figure 3). Indeed, starting from 7 detectors on the sphere

there always exists a pair of points such that ~ni~nj 6= 0,−1. Nevertheless, solely from the

general arguments we are not able to restrict energy correlators to the free fermion value.

4 Conclusions and summary of results

In all known examples of interacting CFTs all possible structures (2.1) are generated in

the three-point function of the stress-energy tensor. A simple way to understand this is to

think about the one-point energy correlator. The presence of all structures is translated

to the statement that energy flux on the sphere at infinity is never zero. The intuitive

picture behind this is that in an interacting theory we have production of excitations that

propagate in all possible directions. Thus, the fact that energy flux is somewhere zero

suggests that there is no particle production in the theory or that it is free.

In this note we analyzed this idea using energy correlators in parity invariant four-

dimensional CFTs. We showed that the positivity and finiteness of energy correlators

imply that there are no CFTs with the three-point function of the stress tensor (2.1),

which is purely bosonic, purely fermionic or purely vector.

Relaxing the finiteness as described in section 2.6 we showed that when a
c
= 1

3 (purely

bosonic structure) and a
c
= 31

18 (purely vector structure) energy correlators are those of free

theories. In the case of purely fermionic structure energy correlators are very constrained

as well but the positivity constraint by itself is not enough to fix them to those of the free

fermion theory.

If the qualitative picture drawn above is correct it should be possible to prove a stronger

statement: any CFT with nbnfnv = 0 is necessarily free. We are not aware of any coun-

terexample to this claim. In this form the idea can be tested in odd dimensions as well
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where there is no notion of a and c but the notion of bosonic, fermionic and vector structures

are well-defined [43].

To prove this stronger claim (as well as to improve the constraint for the purely

fermionic structure) it would be probably necessary to understand the relation between

energy correlators and correlation functions of stress tensors better.18 In particular, having

a proof of the energy correlator positivity can shed some light on the type of problems that

theories with negative energy correlators suffer from. At present the proof is not known

and it is not clear how other available methods (like numerical or analytical bootstrap)

can be useful for the problem at hand. The basic reason for this is that known bootstrap

methods probe very particular corners of the spectrum19 whereas it is not clear how to

relate energy correlators for generic configuration of points to the particular parts of the

spectrum. Of course, it would be fascinating to find the bridge between two approaches.

The situation here is reminiscent of the one with local operators. When the scaling

dimension of an operator with spin saturates the unitarity bound the operator becomes a

conserved current. Here we observe that when a
c
saturates the unitarity bound something

special happens as well. In our case the form of energy correlators suggests that higher

spin symmetry emerges for extremal a
c
[45].

Another example of a similar phenomenon appeared recently in the studies of cross-

ing symmetry [44] where interesting bounds in the space of conformal dimensions were

observed [46, 47]. Moreover, theories that saturate these bounds were found to be very

special. In [46] it was observed that the 3d Ising model is located on the boundary of the

allowed parameter space of conformal dimensions. In [47] 4d N = 4 SCFTs were studied

and it was conjectured that the extremal spectrum is realized by N = 4 SYM at the S-

duality invariant value of the complexified gauge coupling. In the case of N = 4 SYM the

theory is known to be integrable. It is not known if the same is true about the 3d Ising

model [48–50].

It would be interesting to extend the present analysis in the following ways:

- include parity-violating structures,

- consider arbitrary spacetime dimensionalities,

- analyze the constraints from the positivity of the two-point energy correlators without

any additional assumptions,

- understand if it is possible to have nontrivial correlation functions but trivial energy

correlators in CFTs.

From our analysis it is clear that in higher dimensions the positivity constraint works in

a similar fashion. Indeed, the functional freedom is bounded to eight functions of one cross

ratio, while the parameter space of possible polarization tensors and detector positions

18For example, one can try to understand if it is possible to compute the contribution of a particular

operator from the OPE of stress tensors to the given energy correlator.
19Low scaling dimension and low spin in the case of Euclidean bootstrap approach [44] and low twist

large spin operators in the case of Lorentzian bootstrap approach [18, 19].
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for which the cross ratio ξ is fixed is growing. On the other hand, it is clear that there

are tensor structures that are manifestly positive-definite, thus, positivity by itself is not

powerful enough to rule out nontrivial CFTs in higher dimensions.

Our analysis could be useful to extend the argument of [51] to higher dimensions. At

the level of energy correlators the problem is reduced to showing that higher spin symmetry

entails the stress tensor three-point function to be purely bosonic, fermionic or vector.

Imagine for a moment that trivial energy correlators imply trivial correlation functions.

It would mean something very unusual for higher dimensional theories: the three-point

function of the stress tensor fixes the theory completely. In AdS it means that the three-

point amplitude of gravitons fix the whole S-matrix! It would be interesting to understand

if analogous statements exist in flat space. The more general question along these lines

would be what are the allowed three-point amplitudes and what do they say about the

underlying theory? At the level of the on-shell amplitude bootstrap there seems to be

no problem; however, it could be that there are additional subtle causality and unitarity

constraints [25].

We hope that further analysis of energy correlators can lead to additional interesting

insights about the higher-dimensional conformal field theories as well as their gravita-

tional duals.
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A Different choices of detectors

Here we explain equivalence of the detector definitions (2.3) and (2.4) using conformal

transformation considered in [13, 52]. The transformation goes as follows

y+ = −
1

x+
, y− = x− −

x21 + x22
x+

,

y1 =
x1

x+
, y2 =

x2

x+
, (A.1)

where y± = y0±y3 and x± = x0±x3. Both large r and (x.n) limits correspond to x+ → ∞

so that after the conformal transformation detectors are inserted at the null plane y+ = 0.

If we consider the contraction Tµνζ
µν then after the transformation the polarization tensor

takes the form

ζ̂ µ̂ν̂ = ζµν
∂yµ̂

∂xµ
∂yν̂

xν
. (A.2)

The crucial point is that ∂y+,1,2

∂xµ |y+=0 = 0, so that after taking the limit arbitrary choice of

the polarization tensor ζµν is related to the expectation value of T−−(y
+ = 0, y−, y1, y2).
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One can use this fact to argue that the energy and momentum flows in CFTs are related to

each other as in theories with massless particles. The nonzero components take the form

∂y−

∂x0
=

2

1 + n3
,

∂y−

xi
= −

2ni

1 + n3
. (A.3)

Thus, different choices of polarization tensors for detectors produce

lim
r→∞

r2Tµν(x)ζ
µν →

1

(1 + n3)2
4ζ.n.n

(1 + n3)2
T−−(y

+ = 0, y−, y1, y2), (A.4)

where we separated limr→∞ r2(y+)2 = 1
(1+n3)2

coming from the Jacobian (y+)2 which

appears in addition to the change of polarization when we apply a conformal transformation

to the primary field.

The detector choice of Hofman and Maldacena T0in
i produces

ζHM.n.n = 1, (A.5)

if we consider instead Tµνn
µnν we get the factor (n.n)2 = 4 which explains an extra factor of

1
4 in (2.4) relative to (2.3). Another 1

4 factor comes from lim(x.n)→∞(x.n)2(y+)2 = 4 1
(1+n3)2

.

B Tensor structures for the two-point energy correlator

The tensor structures that appear in the two-point energy correlator take the following form

T1 = 1, T2 =
ǫ.n2ǫ

∗.n1 + ǫ.n1ǫ
∗.n2

n1.n2ǫ.ǫ∗
,

T3 =
q2

ǫ.ǫ∗

(
ǫ.n2ǫ

∗.n2

q.n2
2

+
ǫ.n1ǫ

∗.n1

q.n2
1

)
,

T8 =
|ǫ.n2ǫ.n1|

2

(ǫ.ǫ∗)2(n1.n2)2
, T4 =

q4

(ǫ.ǫ∗)2

(
|ǫ.n2|

4

q.n4
2

+
|ǫ.n1|

4

q.n4
1

)
,

T5 =
(ǫ.n2ǫ

∗.n1)
2 + (ǫ.n1ǫ

∗.n2)
2

(ǫ.ǫ∗)2(n1.n2)2
,

T6 = q2
ǫ.n2ǫ

∗.n1 + ǫ.n1ǫ
∗.n2

(ǫ.ǫ∗)2n1.n2

(
|ǫ.n2|

2

q.n2
2

+
|ǫ.n1|

2

q.n2
1

)
,

T7 = iq2
ǫ.n2ǫ

∗.n1 − ǫ.n1ǫ
∗.n2

(ǫ.ǫ∗)2n1.n2

(
|ǫ.n2|

2

q.n2
2

−
|ǫ.n1|

2

q.n2
1

)
. (B.1)

Curiously, not all of them are linearly independent in d = 4. We found that

1− ξ

2ξ
T1 +

1− 2ξ

2ξ
T2 −

1

4ξ2
T3 −

1

2
T5 +T8 = 0. (B.2)

This relation is special to four dimensions and can be equivalently written as det(αi.αj) = 0

where α = {q, n1, n2, ǫ, ǫ
∗}. We use (B.2) to eliminate T8.

It is also trivial to go from the polarization tensor ǫµǫν to ǫµν used sometimes in the

bulk of the paper. Indeed, each structure above could be rewritten in terms of ǫµν and

(ǫ∗)µν in a unique way. The opposite is also true.
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Imagine the above is not correct and there are two different ǫµν structures that produce

the same ǫµǫν structure. It means that there exists a tensor Mµνρσ such that

Mµνρσǫ
µν(ǫ∗)ρσ 6= 0,

Mµνρσǫ
µǫν(ǫ∗)ρ(ǫ∗)σ = 0. (B.3)

The building blocks for Mµνρσ are δµν , nµ
1 , n

µ
2 . It is clear that such a tensor does not exist.

C Constraints on the possible Delta-function terms

In the bulk of the paper we concluded that the two-point energy correlator is nonzero at

isolated points {ξ∗i } where it is given by a finite sum of the delta function and its derivatives∑N
n=0 cnδ

(n)(ξ − ξ∗). Here we demonstrate that only the δ(1 − ξ) term is allowed by the

integrated version of the positivity constraint.

We consider the integrated version of positivity over a small region around ξ∗i

lim
δξ→0

∫ ξ∗j+δξ

ξ∗j−δξ

dξ g(ξ)
q2

(n1.n2)3

7∑

i=1

Tifi(ξ) ≥ 0, (C.1)

where g stands for some non-negative measurement function. We choose measurement

functions to be gn(ξ) = (δξ − (ξ − ξ∗))n. First, we consider gN . Notice that in the small

δξ limit only the term δ(N)(ξ − ξ∗i ) contributes with all derivatives acting on gN . Hence,

the positivity condition takes the form

(−1)N
q2

(n1.n2)3

7∑

i=1

Tic
N
i ≥ 0, (C.2)

and analysis is identical to the one we had before when we assumed energy correlators to

be regular. In this manner for all ξ∗ 6= 1 we set cNi = 0. We can repeat the procedure

for gN−1 until we eliminate all n ≥ 0 and conclude that the energy correlator is zero away

from ξ = 1.

We end up with the detector two-point function having the following form∑N
n=0 cnδ

(n)(1− ξ). In the ~q = 0 reference frame it becomes

〈E(n1)E(n2)〉Tijǫij(q0) = (q0)2
7∑

i=1

N∑

n=0

Tic
n
i δ

(n)(1 + ~n1.~n2) (C.3)

Let us check positivity of (C.3) by integrating it limǫ→0

∫
−1+ǫ

−1 d~n1.~n2 with non-negative

measurement functions chosen as follows gn = (ǫ± (1 + ~n1.~n2)) (ǫ+ (1 + ~n1.~n2))
n−1. We

start with gN and the positivity problem is identical to the one for the one-point func-

tion since the only term that contributes comes from δ(N) term that acts solely on the

measurement function. By choosing + or − in the measurement function we effectively

change the sign of constants cNi . It is easy to show that the only solution that is consistent

with positivity for both signs is cNi = 0. We then repeat the same procedure for all gn
with n ≥ 1. It is clear that n = 0 is special and we do not have the plus-minus choice in

the measurement function. In this way the two-point energy correlator is proportional to

δ(1 + ~n1.~n2).
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