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Abstract Vegetation patterns at the landscape scale

are shaped by myriad processes and historical

events, and understanding the relative importance of

these processes aids in predicting current and future

plant distributions. To quantify the influence of

different environmental and anthropogenic patterns

on observed vegetation patterns, we used simulta-

neous autoregressive modeling to analyze data col-

lected by the Carnegie Airborne Observatory over

Santa Cruz Island (SCI; California, USA). SCI is a

large continental island, and its limited suite of species

and well documented land use history allowed us to

consider many potential determinants of vegetation

patterns, such as topography, substrate, and historical

grazing intensity. As a metric of vegetation heteroge-

neity, we used the normalized difference vegetation

index (NDVI) stratified into three vegetation height

classes using LiDAR (short, medium, and tall). In the

SAR models topography and substrate type were

important controls, together explaining 8–15 % of the

total variation in NDVI, but historical grazing and

spatial autocorrelation were also key components of

the models, together explaining 17–21 % of the

variation in NDVI. Optimal spatial autocorrelation

distances in the short and medium height vegetation

models (600–700 m) were similar to the home range

sizes of two crucial seed dispersers on the island– the

island fox (Urocyon littoralis santacruzae) and the

island scrub-jay (Aphelocoma insularis)—suggesting

that these animals may be important drivers of the

island’s vegetation patterns. This study highlights the

importance of dynamic processes like dispersal lim-

itation and disturbance history in determining present-

day vegetation patterns.

Keywords Airborne remote sensing � AVIRIS �
Carnegie airborne observatory � Ecosystem assembly �
Simultaneous autoregressive modeling � Spatial

autocorrelation

Introduction

Vegetation patterns are determined by a suite of

factors including environmental filtering, disturbance

history, dispersal limitation, and biotic interactions

(Clements 1916; Pickett et al. 2009). Understanding

the relative importance of these processes underpins

habitat restoration (Hobbs and Norton 1996),
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prediction of biotic responses to climate change (Sala

et al. 2000), and assisted colonization (Ricciardi and

Simberloff 2009). Slow rates of change and unknown

site histories make it difficult, however, to attribute

pattern to process in many ecosystems. Local-scale

studies have shown that environmental filtering

(Keddy 1992) is a significant driver of vegetation

patterns (e.g. Cornwell and Ackerly 2009, Kraft et al.

2008), but relationships between environmental gra-

dients and vegetation in these studies are surprisingly

weak given the global-scale correspondence between

temperature, moisture, and vegetation type (Whittaker

1975).

A recent focus in ecology has been on the

distinction between environmentally-driven (‘niche’)

patterns and stochastic (‘neutral’) patterns in vegeta-

tion composition and biophysical traits (Clark 2009,

Hubbell 2001, Rosindell et al. 2012). One implication

of this juxtaposition is that many of the processes

driving ecosystem assembly are simply unknowable

(e.g. undocumented historical events), and therefore

are best represented as random, or near-random (Clark

2009). In a rarely disturbed ecosystem made up of

long-lived plant species, many pattern-generating

processes may indeed be unknowable, yet not all

ecosystems meet these criteria. In a more simple

system with well-understood biotic and abiotic com-

ponents, it may be possible to attribute patterns to

processes beyond simple correlations with environ-

mental conditions.

Island ecosystems have been used in ecology for

decades to address questions of ecosystem assembly

(e.g. Simberloff 1976), in part because of their relative

simplicity and clear boundaries. Mediterranean-type

island ecosystems offer the additional benefit of

supporting a mosaic of dominant plant functional

types (grasses, shrubs, and trees; deciduous and

evergreen), making vegetation patterns readily appar-

ent. Unfortunately, islands in the mediterranean-type

climates of the world tend to be located near dense

human populations, and so much of the scholarship

surrounding mediterranean-type islands has focused

on invasion ecology (e.g. Lloret et al. 2005) or the

conservation of rare or endangered island endemics

(e.g. Morrison et al. 2011). Recent restoration efforts

are changing this paradigm, and now globally there are

several protected, recovering mediterranean-type

islands or parts of islands, including California’s

Channel Islands (Channel Islands National Park,

www.nps.gov/chis) and South Australia’s Investiga-

tor Group archipelago (Investigator Group Conserva-

tion Park, www.environment.sa.gov.au).

Coincident with the recent protection of these

island ecosystems, advances in airborne remote sens-

ing now allow for the collection of spatially-explicit,

high-resolution information on vegetation structure

from light detection and ranging (LiDAR) and func-

tion from imaging spectroscopy (Asner et al. 2007).

When combined with spatial statistical analyses, these

observations can reveal patterns and trends that would

not be feasible to document in the field (Dahlin et al.

2013). Tools from spatial statistics are relatively new

to ecological studies, and their potential uses are still

being explored (Levin 1992; McIntire and Fajardo

2009). Although community assembly studies typi-

cally focus on individual species (e.g. Tilman 1985) at

relatively small scales (Leibold et al. 2004), the same

suite of processes that affect biodiversity can influence

patterns of vegetation structure, quality, or chemical

composition (McGill et al. 2006), which can be

estimated spatially via remote sensing.

Here we address three questions critical to under-

standing ecosystem processes on Santa Cruz Island

(SCI), one of the Channel Islands in California: (1)

Which environmental conditions and geographic

trends correspond most closely to vegetation patterns

on SCI? (2) Is historical grazing intensity a strong

predictor of vegetation patterns? And (3) can the

variation and spatial patterning that remain once

known gradients and impacts have been accounted for

be attributed to other processes (e.g. fire history,

dispersal limitation, other anthropogenic impacts)?

Methods

Study area

SCI is 38 km off the coast of Santa Barbara, California

(Fig. 1a) and is the largest and highest of the Channel

Islands (250 km2, maximum elevation = 753 m).

Today, vegetation on SCI consists of grasslands,

chaparral, coastal wetlands, sage scrub, oak wood-

lands, riparian woodlands, Bishop pine (Pinus muri-

cata) forests, and isolated stands of ironwood

(Lyonothamnus floribundus ssp. asplenifolius). The

island is home to only four terrestrial mammals

(excluding humans and bats): the island fox (Urocyon
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littoralis santacruzae), the island harvest mouse

(Reithrodontomys megalotis santacruzae), the SCI

deer mouse (Peromyscus maniculatus santacruzae),

and the island spotted skunk (Spilogale gracilis

amphiala). Many birds occupy the island, but most

relevant to this study is the island scrub-jay (Aphelo-

coma insularis). The island fox and island scrub-jay

have recently been the focus of major conservation

efforts (Coonan et al. 2010; Morrison et al. 2011).

Human occupation of the Channel Islands began

with Native Americans, with the oldest artifacts dated

[11,000 YBP (Rick et al. 2001). The introduction of

livestock did not take place until 1830 (Ord 1956), but

by the mid-1800s sheep, cattle, horses, goats, and pigs

had all been introduced. Many of the livestock

populations, especially sheep, expanded beyond what

could be managed and many parts of the island were

overgrazed. In the 1960s and 1970s an estimated

180,000 sheep were dispatched from the island (Junak

et al. 1995). Since 1978 The Nature Conservancy

(TNC) has managed the western portion of SCI; the

US National Park Service (NPS) acquired the remain-

der of the island in 1997. Conservation management of

the island has focused on the removal of non-native

species, such as sheep, cattle, and pigs. Today all

introduced mainland vertebrate species have been

eradicated and vegetation has been recovering for the

last few decades (Morrison et al. 2011). While much of

the native vegetation has survived in refugia or

returned with the removal of livestock, parts of the

island have converted to dense stands of fennel

(Foeniculum vulgare), a common California invasive

Fig. 1 a Red dot shows the location of Santa Cruz Island

relative to California, USA. b LiDAR-derived vegetation height

map showing the three height classes used in this study. Areas of

the island in white were masked either due to clouds or to

present-day human influence. c Vegetation classes aggregated

from an existing vegetation map (The Nature Conservancy

2007). (Color figure online)
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plant, many of the grasslands are dominated by

European annuals (e.g. Avena fatua), and some areas

remain unvegetated. Since a large fire in 1931

(4850 ha; Junak et al. 1995), only a few small burns

have occurred.

Airborne remote sensing

We collected high-resolution data over the entirety of

SCI in August 2007 using the Carnegie Airborne

Observatory Beta system (CAO Beta; decommis-

sioned in 2009; http://cao.ciw.edu). CAO Beta com-

bined three instrument sub-systems into a single

airborne package: (1) the Jet Propulsion Laboratory’s

airborne visible/infrared imaging spectrometer (AV-

IRIS; Green et al. 1998), (2) a small-footprint wave-

form LiDAR scanner, and (3) a global positioning

system-inertial measurement unit (GPS-IMU) (Asner

et al. 2007). For this study, the system was operated at

an altitude averaging 3.4 km, providing spectroscopic

measurements at 2.2 m spatial resolution. The LiDAR

sub-system was configured for discrete-return laser

point recording with a laser spot spacing of 1.5 m. In

this semi-arid environment, the August timing of the

flight meant that most annual grasses and forbs had

senesced, while woody plants, most of which are

evergreen, still had their leaves.

The AVIRIS data were converted to at-sensor

radiances by applying radiometric corrections devel-

oped during sensor calibration in the laboratory.

Apparent surface reflectance was derived from the

radiance data using an automated atmospheric correc-

tion model, ACORN 5LiBatch (Imspec, Palmdale,

California, USA). Atmospheric correction algorithm

inputs included ground elevation (from LiDAR),

aircraft altitude (from the GPS-IMU), viewing and

solar geometry, atmosphere type (temperate), and

estimated visibility in kilometers. The code uses a

MODTRAN look-up table to correct for Rayleigh

scattering and aerosols. Water vapor was estimated

from the 940 and 1,140 nm water vapor features in the

radiance data (Asner and Heidebrecht 2003).

To quantify variation in vegetation on a continuous

scale, we calculated the normalized difference vege-

tation index (NDVI; Tucker 1979) across the island.

NDVI was calculated using AVIRIS bands 49

(830 nm) and 33 (674 nm). NDVI is known to

correspond to species differences in structure and

chemical content (e.g. chlorophyll and foliar nitrogen

content) in California vegetation (Gamon et al. 1995).

Due to the late summer flight time, here high NDVI

values ([0.6) primarily correspond to contiguous

areas of large evergreen trees and shrubs with high

leaf area indices, while low NDVI values (0.12–0.2)

likely correspond to senesced grasses, and intermedi-

ate values correspond to subshrubs, shrubs, and pixels

that may contain a mixture of shrubs and grasses.

Based on our knowledge of the island, we determined

that areas with NDVI less than 0.12 were not vegetated

(roads, river beds, and unvegetated slopes, Supple-

mental Fig. S1).

The LiDAR sensor allows for high-resolution

measurements of vegetation height (Asner et al.

2007), but due to the small stature of much of the

vegetation on SCI, LiDAR point-cloud optimization

was adjusted to classify relatively small changes in

‘first returns’ as vegetation, not ground. As a result,

some steep cliffs were misclassified as tall vegetation.

We used a two-step process to remove these areas

from further analysis. First, large areas with NDVI less

than 0.12 were removed from further analysis. Then,

remaining pixels with NDVI less than 0.3 but with a

vegetation height measured as greater than 5 m

(unlikely to be living trees) were masked so that

NDVI and vegetation height equaled zero. Pixels with

a local ground slope (3 pixel kernel) greater than 50�
were also removed from further analysis, as were areas

containing large human-built structures or large stands

of non-native trees. In order to reduce the size of the

data set and to reduce very fine-scale variation, the

remaining NDVI, vegetation height, and ground

digital elevation model (DEM) pixels were then

aggregated to 25 m resolution, resulting in a data set

of 300,772 pixels.

Data distribution

The overall distribution of NDVI values appeared to

be multi-modal (Fig. 2). In lieu of transforming these

data, we stratified the data by LiDAR-derived height

(\0.25 m, 0.25–1.5 m, and[1.5 m), producing near-

normal distributions in NDVI (Fig. 2), and subsequent

analyses were performed separately on three height-

stratified NDVI distributions. Using a detailed vege-

tation classification for SCI (The Nature Conservancy

2007), we found qualitatively that the three height

classes correspond to different plant communities

(Fig. 1b, c). The short height class (\0.25 m) includes
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annual and perennial grasses and patches subshrubs

like of buckwheat (Eriogonum spp.) and California

sagebrush (Artemisia californica). The medium height

class (0.25–1.5 m) is comprised of most of the shrub

species, including lemonadeberry (Rhus integrifolia),

several manzanita species (Arctostaphylos spp.), and

the island scrub oak (Quercus pacifica). The tall height

class ([1.5 m) includes some large Q. pacifica, as well

as several tree species such as Quercus tomentella, L.

floribundus, and P. muricata. For the rest of this study

we will discuss variation in NDVI within these three

height classes. Variation in NDVI within a height class

therefore does not correspond to changes in plant

structural types (grass versus shrubs versus trees), but

within a height class variation in NDVI may corre-

spond to species differences as well as to intraspecific

heterogeneity caused by environmental conditions,

stressors, or other factors. While NDVI is a coarse

metric of vegetation change, it has been used for

decades to assess vegetation heterogeneity at a variety

of scales (e.g. Townshend and Justice 1986; Gamon

et al. 1995; Muratet et al. 2013).

Environmental variables

We mapped 43 potential environmental predictor

variables, which can be divided into topographic and

substrate variables (for a full list of variables see

electronic supplementary Table S1, a subset of maps is

shown in Fig. 3, frequency distributions for all non-

binary variables are in Fig. S2). Topographic variables

are those calculated from the LiDAR-derived DEM

and include slope, aspect, soil wetness index, curva-

ture metrics, and incident solar radiation (insolation).

All variables were generated using IDL ENVI v. 4.8

(ITT, Boulder, Colorado, USA), ArcGIS v. 9.3 (ESRI,

Redlands, California, USA) or a combination of the

two. Slope, aspect, and the curvature metrics were

each calculated using a local kernel (3 9 3 pixel area,

*0.56 ha) and a general kernel (13 9 13 pixel area,

*10.56 ha). Aspect was converted to a linear vari-

able, ‘‘northness’’ [cosine(aspect)]. Soil wetness index

(SWI) was calculated as

SWI ¼ ln AS=tanbð Þ

where AS is the specific catchment area (area upslope

of the pixel), and b is the slope at the pixel (k = 3)

(Moore et al. 1991). The six curvature measures—

profile convexity, plan convexity, longitudinal con-

vexity, cross-sectional convexity, minimum curva-

ture, and maximum curvature—together orthogonally

describe the geomorphology of an area (Wood 1996).

The root mean squared error (RMSE) variable mea-

sures the variation of the data within a given kernel, an

approximation of the surface roughness within a pixel.

Insolation was calculated for the summer and winter

solstices and the equinoxes in ArcGIS (Rich et al.

1994).

Substrate variables were derived from a scanned

and orthorectified geology map of SCI provided by the

Pacific Section of the Society for Sedimentary Geol-

ogy (Weaver and Nolf 1965). Substrate type and sub-

type polygons were hand digitized at 1:15,000 scale,

then aggregated into 20 geologic types and converted

into binary categorical variables (Fig. 3e).

Land use history/grazing intensity

A map of historical grazing intensity was digitized by

Perroy (2009), modified from Schuyler (1993) and

originally developed from Santa Cruz Island Company

records (Fig. 3f). Based on these historical records, the

island was divided into 24 polygons with variable

grazing intensity (low, medium, or high). As with

substrate, these grazing polygons were converted into

categorical variables. While some information was

available about the relative grazing intensity of the

Fig. 2 Frequency distributions of normalized difference veg-

etation index (NDVI) values across the island divided into three

height classes
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zones, we treated each zone as a separate binary

variable. Many other agricultural practices occurred

on the island, including viticulture and growing hay

for livestock (Junak et al. 1995), however spatially

explicit information about the distributions of these

activities was not available.

Fig. 3 A selection of the variables included in the predictive

models. a elevation (ranges from sea level to 753 m),

b northness (kernel (k) = 3 9 3 pixel area; ranges from -1 to

1), c minimum curvature (k = 3; -39.42 to 12.78), d maximum

curvature (k = 13; -1.37 to 5.55), e substrate (see Appendix

Table S1 for full list of substrate types), f grazing intensity,

g (scaled X)2 (0 to 5.55), h (scaled X)2*(scaled Y) (-2.93 to

7.85)
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Geographic trends

Santa Cruz Island’s size, orientation, and coastal

location allow for different weather and climate

patterns to occur across the island. To test the effects

of broad geographic trends, we included the east–west

(x) direction and north–south (y) direction, using the

scaled central coordinates (eastings and northings) for

each pixel (mean = 0, s.d. = 0.5; Gelman 2008), as

well as third-degree polynomial terms (Legendre and

Legendre 1998). The resulting geographic trend

portion of the model took the form:

b1xþ b2yþ b3xyþ b4x2 þ b5y2 þ b6x2yþ b7xy2

þ b8x3 þ b9y3

where the b1–9 values are the estimated model

coefficients. These polynomial terms modify the

centered and scaled eastings and northings so that,

for example, X2 is a surface where the eastern and

western ends of the island are numerically similar.

Fig. 3g, h are examples of these geographic trends,

which could correspond to variation in weather

patterns across the island, temperature gradients, or

other unmapped environmental gradients.

Statistical modeling

To understand the separate and combined effects of

different environmental conditions and geographic

trends, along with the influence of spatial autocorre-

lation, we took a multi-step approach. All statistical

analyses were performed in R (R Development Core

Team 2011). First, we combined all data sets, resulting

in a stack of 76 possible explanatory variables, plus

vegetation height and NDVI. To reduce processing

time in statistical analyses we took an even 5 %

subsample of the 300,772 pixels, leaving 15,039 pixels

across the island. Because the island is not a rectangle,

and since many pixels were masked due to clouds, lack

of vegetation, or human impacts, this did not result in a

perfectly uniform sampling across the island, but

sampling was still very dense, with an average

minimum distance between subsampled pixels of

68 m (s.d. = 31 m). The subsampled data were then

divided into the three height classes: short (\0.25 m,

n = 8,783), medium height (0.25–1.5 m, n = 4,241)

and tall ([1.5 m, n = 2,015). Average distances

between points in different height classes were slightly

longer than the overall average distance, with an

average minimum distance between points of 81 m

for the short height class (s.d. = 45 m), 108 m

(s.d. = 74 m) in the medium height class, and

113 m (s.d. = 115 m) in the tall height class. The

large standard deviation in the tall height class is due

to a right-skewed distribution of minimum distances,

with 29 points (1.4 % of the data in the tall height

class) located more than 500 m from a neighbor in the

same height class. After subsetting and splitting the

data set, all non-binary data were scaled (mean = 0,

s.d. = 0.5; Gelman 2008).

For each of the three NDVI data sets (short,

medium, and tall), to minimize multicollinearity, if

two of the independent variables were found to have

an absolute correlation coefficient greater than 0.5, the

independent variable that was less correlated to NDVI

was removed from further analysis. With the reduced

set of independent variables, ordinary least squares

regression (OLS) was used to develop an initial model,

and models were further reduced using a reverse

stepwise algorithm based on the Akaike Information

Criterion (AIC: Akaike 1974; stepAIC: Venables and

Ripley 2002). This algorithm calculates the AIC for a

model with all possible variables, then re-calculates

the model with each variable removed, choosing the

model with the largest drop in AIC. This continues

until the model AIC no longer decreases. Since this is a

somewhat permissive algorithm (Venables and Ripley

2002), in some cases the OLS model still contained

some non-significant predictors (p [ 0.05) and which

were removed in the final OLS model.

We used Moran’s I computed over all directions

(isotropic) to test for spatial autocorrelation (Hain-

ing 2003). In all three height classes we found

significant spatial autocorrelation in the OLS model

residuals (p � 0.001), and so we computed isotro-

pic correlograms for each dataset. To account for

this spatial autocorrelation in the regression models

we used simultaneous autoregression (SAR; Hain-

ing 2003). Recent reviews have shown this

approach to be successful when used on simulated

ecological data, in comparison to other methods

(Dormann 2007; Kissling and Carl 2008; Beale

et al. 2010).

From the correlograms of the OLS models’

residuals we estimated the distance where Moran’s

I was near zero and used these as the maximum

neighborhoods in the SAR models with a spatial
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error model (spdep: Bivand et al. 2012). Our

original neighborhood estimates still produced mod-

els with spatially autocorrelated residuals and so we

iteratively tested distances and distance functions in

a range around the initial estimates until the global

Moran’s I was apparently minimized. Ideally this

process would be automated to test every possible

distance function and distance within some threshold

distance of the initial estimate, but since each model

took several hours to run, this process was per-

formed manually. We then removed any non-

significant predictor variables from the model

(p \ 0.05), recalculated, tested for spatial autocor-

relation, and produced a model that included all

significant environmental, geographic, and land-use

variables and the final neighborhood distance that

minimized spatial autocorrelation of the residuals.

To compare the explanatory power of different

types of factors, we used partial regression analysis

(Legendre and Legendre 1998; Lichstein et al. 2002;

Dahlin et al. 2012). We separated out sets of the

remaining significant variables to calculate the relative

importance of environmental conditions, grazing

intensity, geographic trends, and spatial autocorrela-

tion in explaining variation in NDVI in the three height

classes.

Results

Environmental condition correlations

The NDVI models all began with a total of 76 possible

explanatory variables. The strongest individual corre-

lations were with variables relating to incident solar

radiation (insolation and northness) and substrate type.

Table 1 shows the 20 strongest relationships, and all of

the correlations are reported in electronic supplemen-

tary Table S1. Northness has a positive relationship

with NDVI (north-facing slopes are greener) and

insolation correlations are negative (sunnier places

have less green vegetation). Several substrate types

also had strong correlations—for example, the SCI

Volcanics had a negative relationship with NDVI in all

three height classes, while the Monterey Formation

had a positive relationship with all three. In nearly all

cases grazing polygons classified as having high

grazing intensity had a negative correlation with

NDVI.

OLS–SAR modeling

From the original set of 76 explanatory variables,

removal based on multicollinearity resulted in a total of

47 variables being included in the short NDVI model,

51 in the medium height NDVI model, and 46 in the tall

NDVI model. Following the AIC-based model selec-

tion procedure, the models contained 34, 30, and 19

variables, respectively. The short NDVI OLS model

explained the most variation, with a coefficient of

determination of 0.36. The medium NDVI model

explained less (r2 = 0.30), while the tall NDVI model

explained the least variation (r2 = 0.22). All three

models had significant spatial autocorrelation in the

Table 1 Correlations between vegetation patterns and envi-

ronmental conditions and geographic gradients for 20 strongest

relationships

Correlations (Pearson’s R)

NDVI,

short

NDVI,

medium

NDVI,

tall

Slope (k = 3) -0.086 -0.235 -0.090

RMSE (k = 3) -0.064 -0.207 -0.083

Northness (k = 3) 0.263 0.113 0.078

RMSE (k = 13) -0.089 -0.232 -0.132

Northness (k = 13) 0.253 0.086 0.078

Summer insolation -0.004 0.224 0.106

Winter insolation -0.287 -0.073 -0.032

LUH5 (low) 0.041 0.151 0.249

LUH7 (high) -0.127 -0.145 -0.088

LUH21 (mid) 0.247 0.102 0.116

LUH24 (high) -0.083 -0.179 -0.115

GEO1–Quaternary

alluvium

0.106 0.157 0.064

GEO3—Quaternary

landslides

0.301 0.015 0.021

GEO9—Blanca

Volcaniclastics

-0.078 -0.084 -0.145

GEO14 –Monterey

formation

0.134 0.073 0.173

GEO17—SCI Volcanics -0.195 -0.212 -0.157

GEO20—SCI Schist -0.001 0.176 0.135

Y2 -0.190 -0.086 -0.186

X2Y -0.161 -0.145 -0.182

XY2 0.166 0.136 0.134

X and Y refer to scaled easting and northing values (mean = 0,

s.d. = 0.5)

LUH land use history, GEO geologic type/substrate
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residuals (Moran’s I p � 0.001) and so we computed

correlograms for the residuals to estimate neighbor-

hood distances for the SAR models.

The final SAR models improved explanatory power

over the OLS models by an average of 8 %. Including

spatial autocorrelation also decreased the number of

significant predictor variables in all three models—the

final SAR models contained 28, 18, and 14 predictor

variables, respectively. The short NDVI SAR model

explained the most variation (r2 = 0.48, an increase of

12 % from the OLS model), the medium height NDVI

model explained 38 % of the variation (an increase of

8 %), and the tall NDVI model explained 27 % of the

variation (an increase of 5 %). Figure 4 shows the

coefficient values for all of the variables that appeared

in two or more of the final models (all values reported

in electronic supplementary Table S1). High elevation

was associated with lower NDVI values in the short

and medium NDVI classes, but was not a significant

predictor of tall NDVI. Maximum curvature (ridges)

and surface RMSE were associated with lower NDVI

values across all three height classes. Sunnier areas

were associated with less green vegetation in the short

height class, while NDVI in the tall class had a slight

positive relationship with summer insolation. The

strongest substrate predictors that appeared in multiple

models were the Quaternary alluvium (GEO1; posi-

tive), Blanca Volcaniclastics group (GEO9; negative),

and the Monterey formation (GEO14; positive). Broad

geographic trends were minor components of all of the

models, mostly in the north–south direction (Y2 and

Y3), but east–west in the short height class (X2Y).

Many of the grazing intensity zones were important

predictors, with low and mid-level grazing intensity

always associated with higher NDVI values, while

high intensity grazing led to lower NDVI values in the

medium and tall height classes.

We used correlogram range distance estimates to

approximate neighborhood distances for the SAR

models, then adjusted them as necessary to minimize

Moran’s I in the residuals. We weighted the distance

matrices using a diminishing function of 1/distance. In

addition, we tested an even distance function (all

distance weights = 1) but found that these models had

reduced performance compared to the diminishing

distance function (data not shown). The tall NDVI

model had the longest optimal spatial autocorrelation

distance, with a 1,200 m radius (*452 ha), while the

short and medium height models had similar distances

of 600 m (113 ha) and 700 m (154 ha), respectively

(Fig. 5). In contrast, the vegetation classification map

(TNC 2007) delineated much smaller vegetation

patches, averaging 2.3 ha in size (s.d. = 8.8), with

only five of the 10,649 classified vegetation patches

having an area greater than 100 ha.

To compare the different model components we

calculated OLS coefficients of determination with

different sets of variables removed (Fig. 6). When we

compared explained variation between the models,

25 % of the variation in the short vegetation model

Fig. 4 Simultaneous

autoregressive model

coefficient values for the 14

variables that were

significant in at least two of

the models. LUH land use

history, low, mid, and high

refer to relative grazing

intensity, GEO Substrate.

See Appendix Table S1 for

all coefficient values
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was linked to environmental conditions, whereas

measured environmental conditions explained 18 %

of the variation in the medium height model, and only

8 % of the variation in the tall model. In all three

models spatial autocorrelation explained 7.5–13 % of

the total variation, while historical grazing intensity

explained 7.7–10 % of the variation across the three

models.

Discussion

We used airborne remotely sensed data and spatial

statistics to show how patterns in vegetation greenness

(NDVI) vary with environmental conditions, known

land use history (historical grazing), geographic

trends, and spatial autocorrelation. This analysis

allowed us to demonstrate that environmental condi-

tions like topography and substrate type do play a role

in plant patterns on SCI, but that land use history and

spatial patterning were also important drivers of

current vegetation patterns.

The importance of environmental conditions

Of the three NDVI models considered in this study,

patterns in the short vegetation were most closely

linked to environmental conditions. Given the August

flight time (near the end of the dry season in

California), this is likely a reflection of environmental

Fig. 5 Neighborhood distances from simultaneous autoregres-

sive models on Santa Cruz Island (SCI), overlaying a map of

normalized difference vegetation index (NDVI) with cloud-

covered, water, and human dominated areas masked in white.

A neighborhood size for short vegetation NDVI model.

B neighborhood size for medium height NDVI model. C average

home range of island fox (Roemer et al. 2001). D maximum

documented foraging distance of island scrub-jay (Atwood

1980). E neighborhood distance in tall NDVI model. F average

home range of feral pigs on SCI (Parkes et al. 2010)

Fig. 6 Bars proportional to the fraction of the variation explained by the final simultaneous autoregressive model components. All

numerical values in Appendix Table S2
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controls on the variability of grass and forb senes-

cence, where some herbaceous plants had senesced

completely, while others, perhaps in more shaded

areas or with more access to water, were still green. As

expected, high insolation was associated with lower

NDVI values and alluvial areas (Quaternary alluvium,

GEO1) were associated with higher NDVI values.

Variation in greenness of the shrubs and subshrubs of

the medium height class was most closely tied to local

(kernel (k) = 3) slope and northness, with steep,

south-facing slopes having lower NDVI values in this

height class than other areas. Much of the dense shrub

vegetation on SCI is concentrated on the interior

north-facing slope, which is also a different substrate,

SCI schist (GEO20), a comparatively high-nutrient

substrate on the island. A photo from 1993 in Junak

et al. (1995, p. 20) shows dense woody vegetation in

this area which suggests that this plant community

persisted through times of heavy grazing pressure.

This persistence could be due to a positive feedback

whereby the substrate type and aspect allowed dense

woody vegetation to thrive, and then the combination

of steep slopes and thick vegetation prevented over-

grazing, allowing vegetation to persist, thus further

stabilizing the soil, allowing plants to grow larger, and

so on.

NDVI patterns in the tallest vegetation on SCI were

the least well explained by environmental conditions,

with substrate types being the strongest environmental

drivers. The Monterey formation (GEO14) had higher

than otherwise expected NDVI (e.g. a positive coef-

ficient value in the SAR model), while areas of Blanca

volcaniclastics (GEO9) had lower than expected

NDVI values in the tall height class. While the Blanca

substrate may inherently support more sparse vegeta-

tion and is known to be landslide-prone, there are

some patches of oaks and pines growing within it,

suggesting another explanation: it is located on steep,

south-facing slopes in one of the most heavily grazed

areas of the island (Junak et al. 1995; Perroy 2009), so

this association is likely another positive feedback

where soil erosion due to intense grazing is exacer-

bated by substrate instability and aspect.

Land use history

Grazing zones were important predictors of NDVI—in

all cases areas with intense grazing had lower than

otherwise expected NDVI values, while low and

medium intensity grazing led to higher NDVI values.

In particular grazing zones 23 and 24 (Fig. 3f) were

significant predictors of low NDVI for shrub and tree

vegetation, where sheep were removed approximately

10 years after they were dispatched from the rest of the

island. NDVI patterns in the tallest vegetation on SCI

had the strongest link to grazing intensity. This result

was largely driven by a few low- and mid-intensity

grazing areas (LUH3, 5, and 12), where tall vegetation

appears to be more dense and green than in other areas.

This result corresponds well with the conclusions of

Perroy (2009) who showed that mapped grazing

intensity was the strongest determinant of post-grazing

recovery across SCI. Actual grazing intensity was

undoubtedly more heterogeneous than the map sug-

gests (Fig. 3f), but this gives us a coarse approxima-

tion of the major human-driven impact on the island.

While the finding that high grazing intensity led to less

green vegetation is not surprising, it is noteworthy that

our modeling approach was able to identify which

areas had high grazing impacts without this informa-

tion being provided a priori.

Geographic trends

We expected to find a significant east–west trend due

to the movement of fog to and from the California

coast, but in the short NDVI model the importance of

the scaled X2Y geographic gradient (Fig. 3h) suggests

that the two ends of the island are actually similar in a

way that is not captured in the other environmental

conditions. This unexpected trend is possibly a signal

from past land-use: both of these areas were histori-

cally hayed (Symes and Associates 1922 cited in

Junak et al. 1995) and are now dominated by European

annual grasses (The Nature Conservancy 2007). This

similarity could also be due to persistent weather

patterns acting on the extreme ends of the island, or

due to some other unmapped environmental condition

or historical event.

The medium and tall NDVI models had negative

relationships with trends in the north–south direc-

tion (Y2 and Y3, respectively). In the case of the

medium height NDVI model this suggests that the

center of the island’s shrubs are greener than

otherwise expected (i.e. if this variable were not

included in the model), while among tall vegetation

the southern part of the island is greener than

otherwise expected.
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Spatial autocorrelation

All of the models included a substantial spatial

autocorrelation component, although interpreting

these patterns is challenging. Neighborhood distances

in spatial autocorrelation analysis are not necessarily

equivalent to patches, nor do they have clear causal

relationships to processes (Legendre and Legendre

1998). We can, however, look for possible explana-

tions for these patterns through reviews of the

literature and other sources of information.

The medium height class is largely comprised of

fruit and acorn bearing shrubs, and the short height

class may be in the process of being colonized by these

woody plants, making these two height classes likely

candidates for dispersal limitation by animals. The

relatively short neighborhood distances for the short

and medium height NDVI models (600 and 700 m,

respectively, Fig. 5a, b) suggest that dispersal limita-

tion may be a key driver of vegetation patterns on the

island. Two of the main dispersers of woody plant

seeds are the island fox and the island scrub-jay. The

average home range of the island fox has been reported

as 55 ha (or a circle with radius 418 m; Fig. 5c), but it

varies from 15 to 87 ha (219–526 m radius; Roemer

et al. 2001). Berries are a common part of its diet

(Crooks and Van Vuren 1995), and like other fox

species, it marks its territory with scat, making the

island fox an important dispersal agent for fruiting

plants. Island scrub-jays have been observed travelling

up to 650 m (Fig. 5d) to obtain acorns (Atwood 1980).

These acorns are then scatter-cached, often buried in

bare patches of soil. While many birds visit SCI, few

are permanent residents or large enough to consume

acorns, though many likely consume berries (Collins

2011). Given the large size of the island and therefore

range of potential scales of spatial autocorrelation, the

correspondence between the neighborhood distances

that emerged in the short and medium height models

and these two animals’ home ranges suggest that 13

and 11 % of the variation in the short and medium

height NDVI models, respectively, could be related to

dispersal limitation. This correspondence is notable

because the link between spatial autocorrelation and

dispersal limitation is often suggested (e.g. Beale et al.

2010), but it is very difficult to quantify at the

landscape scale. Other possible explanations for these

scales of spatial autocorrelation could relate to past

land use or fire history, though we were unable to find

records of other possible impacts with a similar spatial

scale.

In contrast, the shrubs and trees that comprise the

tall height class appear to be survivors. The majority of

these plants likely established during the era before the

1990s when the island was heavily occupied by sheep,

cattle, and pigs. While there are no clear links between

the neighborhood distance (1200 m, *450 ha;

Fig. 5e) and known processes, this scale is in the same

realm as the approximate home ranges of the island’s

now eradicated feral pigs (290 ± 125 ha; unpublished

data, cited in Parkes et al. 2010) and at the lower end of

the range of published feral pig home range sizes

globally (Saunders and McLeod 1999). Feral pigs can

have major impacts on ecosystem assembly, both

through seed predation and through rooting (Parkes

et al. 2010), which could potentially have an impact on

the quality and structure of the vegetation in this height

class. Other possible explanations for this scale of

spatial autocorrelation could include patchy fog mov-

ing across the island, historical fires, or human impacts

not documented in the grazing intensity map.

Sources of uncertainty

Overall the SAR models were able to explain less than

half of the variation in greenness within the three

height classes. We expect that the remaining variation

is due to a combination of factors. Though our

substrate map was highly detailed, it still undoubtedly

left out subtle variations in geology and outcrops. We

elected not to include a soils map in this analysis as

soils maps are often derived from aerial photographs

and are therefore based on vegetation cover, however

differences in soil type likely do influence vegetation

patterns. In addition, we have no information about the

spatial patterns of past fires across SCI or human

impacts other than grazing intensity. Given that SCI

appears to be in a state of post-disturbance recovery, it

is likely that much of the variation is due to

heterogeneous recovery—small differences in envi-

ronmental gradients, where seeds germinate, and how

fast they grow will add to the uncertainty in this

analysis.

It is also possible that our methods, including

subsampling, added to the uncertainty in our models.

As computing power becomes more readily available

we hope to test these methods on larger, denser data

sets. While NDVI appeared to effectively capture the
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heterogeneity across the system, and has been shown

to be a good measure of diversity in California

ecosystems (Gamon et al. 1995), it is also possible

that, especially in the tall height class, NDVI was

saturated, inhibiting our ability to map variation.

However, as Fig. 2 shows, the vast majority of the

vegetation on SCI falls below an NDVI of 0.6, where

relationships between NDVI and vegetation properties

tend to break down (Gamon et al. 1995).

Conservation implications

Despite the remaining uncertainty in the models,

understanding the relative importance of the different

factors driving ecosystem assembly can have direct

impacts on conservation management decisions. In

California’s Channel Islands, one proposed strategy to

reduce the extinction risk of the island scrub-jay is to

establish a population of jays on neighboring Santa

Rosa Island (SRI; Morrison et al. 2011). In 2011 the

last of the introduced herbivores were dispatched from

SRI, and it has been suggested that the introduction of

scrub-jays could hasten re-establishment of native

oaks and pines across that island (Morrison et al.

2011). Our study suggests that scrub-jays likely do act

as ‘ecosystem engineers’ (Byers et al. 2006) in these

systems by transporting acorns long distances. We

also show, however, that other processes are at work as

the island’s vegetation recovers, many of which are

poorly understood. In planning restoration projects,

particularly in highly eroded areas, other more inten-

sive approaches may be necessary, including starting

seeds in a favorable environment, watering out-

plantings, inoculating soil with appropriate mycorrhi-

zal fungi, or preventing herbivory. These actions may

be critical to plant survivorship, especially in severely

disturbed, semi-arid ecosystems. This study highlights

areas that could benefit from more intensive interven-

tions, and shows that some relatively intact areas of

vegetation do still remain on SCI.

Conclusions

Our study showed that environmental conditions like

topography and substrate type do play a role in

determining the distribution of vegetation on SCI. We

also found that heterogeneity in grazing intensity was

a significant predictor of vegetation patterns, and

interestingly, we found that our relatively simple

approach allowed us to distinguish between high and

low intensity grazing areas. We also found that

geographic trends were significant predictors, and in

particular trends that showed the east and west ends of

the island to be similar, despite different substrates,

possibly indicating similar outcomes from past land

use. Finally, we found that the scale of spatial

autocorrelation emerging from the models corre-

sponded closely to the home range sizes of animals

living on the island. While this correspondence does

not demonstrate a direct link, it does suggest that seed

dispersal by animals may be a significant factor

determining the current vegetation patterns across the

island.
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