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Abstract Success in small molecule screening relies heav-
ily on the preselection of compounds. Here, we present a
strategy for the enrichment of chemical libraries with poten-
tially bioactive compounds integrating the collected knowl-
edge of medicinal chemistry. Employing a genetic algorithm,
substructures typically occurring in bioactive compounds
were identified using the World Drug Index. Availability of
compounds containing the selected substructures was ana-
lysed in vendor libraries, and the substructure-specific sub-
libraries were assembled. Compounds containing reactive,
undesired functional groups were omitted. Using a diver-
sity filter for both physico-chemical properties and the sub-
structure composition, the compounds of all the sublibraries
were ranked. Accordingly, a screening collection of 16,671
compounds was selected. Diversity and chemical space cov-
erage of the collection indicate that it is highly diverse and
well-placed in the chemical space spanned by bioactive com-
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pounds. Furthermore, secondary assay-validated hits
presented in this study show the practical relevance of our
library design strategy.

Keywords Bio informatics · Drug design · High throughput
screening · Library design · Molecular diversity

Introduction

Over the recent years, screening of chemical libraries has
developed into a broadly used methodology to identify and
optimise small molecules as research tools in chemical biol-
ogy. Efficient screening requires the use of compound
libraries reflecting the biologically relevant chemical space.
Since the number of chemically accessible low molecular
weight compounds is vast [1], every screening collection can
represent only a selection of the enormous number of stable,
potentially bioactive compounds. Therefore, the rational pre-
selection of compounds to be screened is of utmost impor-
tance, especially if a ‘general purpose’ library for a broad
range of targets is to be designed and the number of com-
pounds in the final screening collection has to be limited for
reasons of costs.

In recent years, protein-family-focused libraries have
been increasingly described as libraries of choice to pro-
duce better hit rates in high throughput screening [2]. How-
ever, in our case, the task was to compose a library not
restricted to certain target families, but rather a ‘general pur-
pose’ library serving the academic community through the
screening centres of the ChemBioNet (ChemBioNet, http://
www.chembionet.de, is an interdisciplinary consortium of
chemists and biologists who exploit small molecules to study
biological systems). Such a library should fulfill the follow-
ing basic requirements: (a) it should be enriched with puta-
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tive bioactive compounds, (b) it should exhibit a high degree
of chemical diversity, (c) it should permit the extraction of
structurally related hit clusters, (d) it must be free of artefact-
causing reactive or unstable compounds [3], and (e) it must
be physically available. Traditionally, screening collections
are based on analysis of a descriptor space spanned by sets
of physicochemical and topological descriptors to evaluate
the diversity and similarity within the compound collection
[4,5]. The main disadvantage of these descriptor-based strat-
egies is their abstract formulations of molecular structures
and properties. Thus, applications of such strategies are often
disappointing because a single class of compounds defined by
their similarity within a descriptor space can contain different
substructures and does not integrate the collected experience
of medicinal chemists. The occurrence of defined substruc-
ture elements, however, is crucial not only for the biological
activities of drugs but even more for their pharmacokinetic
or absorption, distribution, metabolism and excretion prop-
erties. Recently, fragment-based screening approaches have
been applied successfully [6]. However, the binding of small
fragments is weak and needs highly sensitive methods such
as X-ray crystallography [7], NMR spectroscopy [8] or the
amplification of binding, e.g. by dynamic ligation screening
[9].

Thus, identification of biologically relevant substructures
is an important prerequisite of all the screening libraries.
Different methods to search and identify substructures in
compound databases have been developed previously [10–
16]. Analysis of substructure contents of ligands for a target
family led to the formulation of the privileged substructure
concept by Evans et al. and Patchett et al. [17,18]. These sub-
structures are often used to build up target family-
selective screening libraries. Schnur et al. performed a sub-
structure analysis of ligand sets from five different target
families and examined the occurrence of potential privileged
substructures [19]. They found a remarkable promiscuity of
the substructures and concluded that most of these substruc-
tures might be better described as drug-like and not as target
family specific. In other words, the use of substructures is
suitable for both the design of general purpose screening
libraries and focused libraries.

Here, we present a concept for library design that com-
bines substructures derived from bioactive compounds with
a diversity-driven compound selection. This concept con-
sists of the following steps: (a) identification of the bio-
active substructures from the Derwent World Drug Index
(WDI) [20], (b) assembly of sublibraries for every com-
mercially available substructure, and (c) sublibrary-specific
diversity calculations considering physicochemical proper-
ties and combinations with other identified substructures.
The main advantage of the use of substructures derived from a
bioactive database compared to the use of molecular descrip-
tors is that it simulates an experienced chemist’s reason-

Fig. 1 Graphical representation of the MCS concept using the soft-
ware ClassPharmer. Given, for example, the three molecules A, B and
C, the genetic algorithm of this software identifies the maximum com-
mon substructure of these three molecules shown in the middle on the
basis of their two-dimensional structure

ing when classifying and considering the molecules. As a
result, more structurally homogeneous classes are obtained
which are preselected by a track record of reported bioactiv-
ities.

Results and discussion

Identification of bioactive substructures

The basis for the composition of the screening collection
was the identification of substructures frequently occurring in
bioactive, non-peptidic organic molecules extracted form the
WDI [20]. In order to identify substructures, the maximum
common substructure (MCS) algorithm of ClassPharmer ver-
sion 3.2 was applied (ClassPharmer, Simulations Plus Inc.,
Santa Fe, New Mexico, USA). The MCS algorithm is based
on a genetic approach published by Gasteiger [16]. It per-
forms a graph-based analysis of compounds from a database
to classify them topologically and to place them into classes
based on large, significant substructures learned on the fly.
The principle of the MCS approach is illustrated in Fig. 1.
Using the parameters described in computational methods,
1305 classes of substructures were identified using the 35,000
small molecules of the WDI as input. Since the most prom-
ising substructures were desired, only those that occurred in
at least five different compounds within the WDI were con-
sidered. This restriction was introduced to reduce the redun-
dancy in the substructures and to avoid singletons. As a result,
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Fig. 2 Overview of the 100
substructure classes with the
highest number of compounds.
The classes were derived by
ClassPharmer using the WDI
and are ordered by increasing
complexity. A complete list of
the 561 identified biologically
active substructure classes is
contained in the supplemental
material

a list of 561 substructures was established. We found that at
least one of the 561 selected substructures is present in almost
97% of all the small molecules in the WDI. An overview of
the 100 most frequently occurring MCSs derived from the
WDI is presented in Fig. 2. A complete list of all the 561
substructures is provided in the supplemental material.

Relevance of the maximum common substructure concept

In order to demonstrate the relevance of our substructure-
based concept, we analysed the substructure composition of
some available target-focused libraries [21]. These libraries
are focused on GPCR targets (10,605 compounds), protein

kinases (7,129 compounds), ion channels (5,026 compounds),
antibacterial (3,703 compounds) and antiviral activities (1,735
compounds). We found that only one out of these 28,198
compounds did not contain at least one of our 561 WDI-
derived substructures. The average number of substructures
per compound in the focused libraries is 3.8.

Analysis of commercially available compound libraries

More than 2.1 million compounds from approximately 20
vendors were gathered and analysed. First, in order to exclude
covalent binders from the screening collection, a self-written
filter program was used, which identifies and removes
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Fig. 3 Graphical representation
of reactive and unstable
functional groups that should
not be contained in a screening
collection. Compounds
exhibiting these functional
groups were excluded from the
final library

compounds containing reactive or hydrolytically unstable
functional groups from the vendor libraries (Sybyl 7.0, Tri-
pos Inc., 1699 South Hanley Rd., St. Louis, MO, 63144,
USA). The whole list of functional groups that were elimi-
nated during this step is shown in Fig. 3.

Afterwards, the vendor libraries were inspected for their
content of the WDI-derived 561 substructures. As a maxi-
mum, 366 out of the 561 requested substructures were identi-
fied in a vendor library of approximately 550,000 compounds
[21], corresponding to a substructure coverage of 66% of the
WDI-derived bioactive substructures.

Substructure-based molecular diversity

Next, if it was possible, a set of the 100 most diverse com-
pounds that belong to each of the 366 commercially avail-
able substructure classes were calculated and selected. The
quantity of 100 compounds per series was chosen to obtain a
final library size of approximately 20,000 compounds. This
step was performed using the MOE subroutine ‘Diverse Sub-
set’ and the descriptors described in computational methods
[22]. One important parameter used in the calculation of the
diversity set is the number of the WDI-derived substructures
found in the compound. This parameter, used as a numeri-
cal descriptor, ensures that the compounds within the subli-

braries selected for each of the available substructure clas-
ses contain not only the substructure by itself but also the
substructure in combination with an increasing number of
other identified substructures. Thus, each sublibrary is com-
posed out of compounds containing a certain substructure,
and they are, therefore, structurally related, but only the com-
pounds with the most possible diverse decoration within the
sublibraries are chosen for the final library. We think that
this approach is optimal for extracting hit clusters after a
successful screening.

During the selection, the Lipinski’s ‘Rule-of-five’ [23]
was considered. In the context of the ChemBioNet library,
this rule was used as a simple tool to select molecules which
are capable of passing through biological membranes and
thus are suitable for cellular assays. Finally, all the com-
pounds from each diverse sublibrary of all the substruc-
tures were combined, checked for double occurrences and
all the duplicates were deleted. As a result, we ended up
with a screening collection for the ChemBioNet consisting
of 16,671 compounds.

Properties of the ChemBioNet screening collection

The final screening collection was examined according to
the distribution of physicochemical properties. The average
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molecular weight of a compound in the screening collection
is 388 g/mol, and 80% of all the compounds have a molecular
weight between 300 and 500 g/mol. There is no compound
with more than five hydrogen bond donors, and none of the
compounds contains more than ten hydrogen bond acceptor.
The average logP of the compounds is 3.2, and only a very
small fraction of compounds with a logP greater than five is
present in the newly assorted screening collection. In addi-
tion, 90% of the compounds contain ten or fewer rotatable
bonds. Thus, the screening library fulfils all the criteria that
are usually applied to roughly estimate the bioavailability
potential of small molecules.

In order to represent the chemical space of the screen-
ing collection, we calculated 32 P_VSA descriptors [24] for
the compounds of the ChemBioNet library, the ChemDiv
stock collection, the WDI and the ChemACX. These descrip-
tors capture hydrophobic and hydrophilic effects, polariz-
ability and electrostatic interactions, and therefore represent
a meaningful chemical space and pay attention on as many
properties of the molecules as possible. Moreover, these des-
criptors are independent of our substructure approach. In
order to reduce the dimensionality and to avoid collinear-
ity, a principal component analysis was performed on the
basis of these descriptors. Figure 4a represents the chemical
space spanned by the ChemBioNet collection in comparison
to the vendor stock collection. It can be observed that the
16,671 compounds occupy almost the same chemical space
as the 550,000 compounds of the ChemDiv stock collection,
although they constitute only 3% of the compounds. There-
fore, our strategy for compiling a screening collection did
not lead to a major loss of chemical diversity compared to
the vendor stock collection. Furthermore, the chemical space
of our screening collection was compared to the chemical
space of the annotated drug molecules from the WDI [20]
and an available chemical database of 237,046 compounds
(ChemACX) [25]. The ChemACX library was chosen as an
example of a typical database with commercially available
chemical compounds. Although, of course, it also contains
bioactive molecules, this is not the emphasis of this data-
base. The result can be seen in Fig. 4b. Comparison of the
ChemBioNet compounds with those of the WDI shows that
both libraries occupy a similar region of the chemical space
represented by the first ten principal components. Further-
more, it can be seen that this region of the chemical space
is only a small portion of the chemical space spanned by
the ChemACX compounds. Though normalized, the chemi-
cal space of the 237,046 compounds of the ChemACX spans
a much larger space than that of the ChemDiv stock com-
pounds, despite the fact that these are only roughly half the
number of compounds contained in the ChemDiv stock col-
lection. Assuming that the selected drug molecules from the
WDI represent the biologically relevant chemical space, the

Fig. 4 Representation of the chemical space of our screening collec-
tion in comparison to the ChemDiv stock collection, the WDI and the
ChemACX 32 P_VSA descriptors were calculated, and then principal
component analysis was performed [24]. The figure shows the scatter
plot of the first ten principal components, which are plotted against each
other. The principal components are scaled from −1 to 1. The diago-
nal shows the Gaussian shape histogram of the principal components.
a Principal component analysis of the ChemDiv library (531,770 com-
pounds, black) and the ChemBioNet collection (16,671 compounds,
green). The first ten principal components explain 75% of the vari-
ance. The chemical space of the ChemBioNet collection is almost the
same as that of the stock collection, although it contains only 3% of
the compounds of the stock collection. b Principal component analysis
of the ChemBioNet screening collection (16,671 compounds, green),
the bioactive small molecules from the WDI (35,345 compounds, red)
and the compounds from an available chemical database ChemACX
(CambridgeSoft) (214,232 compounds, blue). The first ten principal
components explain 80% of the variance. It can be seen clearly, that
the chemical space of the ChemBioNet collection is roughly the same
as that of the WDI, whereas the chemical space of the ChemACX
compounds containing many non-bioactive molecules is much larger

comparison of the ChemBioNet chemical space with that of
the WDI shows that the ChemBioNet library is well situated
in the bioactive chemical space.
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Conclusion

The novelty of our strategy consists in a combination of the
identification of frequently occurring putative bioactive sub-
structures in annotated bioactive compounds with a chem-
ical diversity approach of substructure-specific sublibraries
using both physicochemical descriptors and an MCS based
parameter.

The calculation of MCSs was done using the compounds
contained in the WDI [20]. Since this database contains com-
pounds with known biological activity which are either
available as drugs or have been submitted for clinical devel-
opment, it enabled the identification of frequently occurring
substructures that are characteristic for bioactive molecules.
This approach resembles a medicinal chemist’s reasoning
and should increase the probability of selecting bioactive
compounds from vendor libraries. A subset of 561 frequently
occurring substructures was derived using the MCS
algorithm.

As can be seen in Fig. 2, the smaller substructures repre-
sent the classical carbocyclic and heterocyclic ring chemis-
try. A complete list of the 561 identified biologically active
substructure classes is contained in the supplemental mate-
rial. It is remarkable that when the substructures grow larger,
they are usually a combination of the smaller substructures.
For example, adamantane, one of our WDI-derived substruc-
tures, may be interpreted as a combination of several cyclo-
hexane rings or a combination of the decaline ring with
another cyclohexane ring. Of course, one might argue that
there is a certain risk in only identifying substructures from
the WDI which contains no new chemical entities and there-
fore no novel ones can be found using our strategy. It should
be noted, however, that novel drugs are usually combina-
tions of known bioactive substructures. Moreover, the men-
tioned risk was further minimized by using the content of
substructures as a numerical descriptor for the diversity set
of 100 compounds per substructure. As a result, it is possible
that combinations of substructures are provided in the final
library, which have not been found before in bioactive dat-
abases. Using this approach, we selected the compounds with
our WDI-derived substructure alone (though with differing
side chains) and also in combination with other substructures,
where both the number and the combinations with the other
substructures varied heavily. For example, two or more small
substructures may be condensed, connected linearly by vari-
ous linkers or linked with each other via another substructure.

Our identified substructures may also be valuable for the
design of novel compounds and compound libraries in the
future. Since it can be expected that only few new small
building blocks will be synthesized, it will primarily be the
varying combinations of known substructures which will lead
to new chemical entities with new biological activities. The
predominant combinations of two or more substructures are:

(a) condensed, (b) linked by a single bond, (c) linked by a
methylene or ethylene group, (d) linked via an amine group,
an ether group or a peptide-, ester- or sulfonamide bond,
(e) linked via other substructures, such as 5-, 6-, or 7-mem-
bered rings, and finally, (f) two substructures may also be
linked via a spiro bond.

The 35,000 small molecules of the WDI consist of up
to 28 of our 561 substructures per molecule. Only 3.3% of
the compounds in the WDI subset are not composed of any
of them. In other words, although we have used only sub-
structures that are present in at least five WDI compounds,
the resulting substructures represent almost 97% of the WDI
subset. The average number of substructures of a typical com-
pound in the WDI is 4.5. By far the most prominent substruc-
ture class derived from the WDI is the benzene ring (9,052
compounds out of 35,345), followed by the piperidine ring
(1,008 compounds within this class) and the pyridine ring
(924 compounds). The 100 most abundant substructures con-
stitute 25,762 out of the 35,345 small molecules of the WDI
(73%). The compounds of the ChemBioNet library contain
up to 21 substructures per molecule. The average number of
substructures is 4.7 per compound. It is also interesting to
compare our WDI-derived substructures with substructures
derived from the CRC Dictionary of Natural Products [26].
Although a completely different approach was used [16],
their substructures closely resemble the ones derived by our
strategy applying the MCS algorithm to the WDI [20].

While we were analysing the compound libraries of vari-
ous vendors, it turned out that at most 66% of these substruc-
tures were available in one vendor stock library. Presumably
the reason why not all of the WDI-derived substructures can
be obtained commercially might be that some of the substruc-
tures are protected by patents or are too costly to synthesize.
In other words, with the use of our MCS-based strategy, it
is easy to identify and to fill these gaps within the screen-
ing collection by adding compounds from different sources.
Another advantage of the concept of building diverse subsets
around substructures is that it generates a high probability of
finding a congeneric series around a hit compound, thus mak-
ing the subsequent hit-to-lead process more straightforward.

In summary, in this contribution, we have described and
evaluated an approach for the composition of a screening
collection based on a MCS concept. The approach has been
validated by comparing the chemical space of this library
with the chemical space of an available chemical database
(ChemACX) [25] and the WDI [20] (Fig. 4). It could clearly
be shown that the chemical space of the ChemBioNet collec-
tion resembles the chemical space of the biologically active
small molecules from the WDI.

The successful experimental verification of the designed
library showed that it may contain potent and selective lig-
ands for a range of targets. In addition, due to the design
concept of this library, usually small congeneric series around
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Table 1 Results of various exemplarily in vitro high throughput screens
using the ChemBioNet library

Target Hit type Assay Validation
screen

TPH1 Activator Fluorescence-based 18
kinetics

Inhibitor 7
TPH2 Activator Fluorescence-based 14

kinetics
Inhibitor 21

STAT5 Inhibitor Fluorescence 2
polarization

Shank PDZ Inhibitor Fluorescence 2
polarization

HGFSF Inhibitor Light 48
absorption

B-catenin Inhibitor Light 45
absorption

SARS CoV Mpro Inhibitor Mobility shift 57
(Labchip)

TPH1/2: tryptophan hydroxylase isoform 1 and 2; STAT5: signal trans-
ducer and activator of transcription 5; the Shank PDZ belongs to the
proline-rich synapse-associated protein family of multidomain proteins
known to play an important role in the organization of synaptic mul-
tiprotein complexes; HGFSF is a hepatocyte growth factor/scatter fac-
tor (a pleiotropic effector of cells expressing the Met tyrosine kinase
receptor); B-catenin is a subunit of the cadherin protein complex; SARS
CoV Mpro is the severe acute respiratory syndrome coronavirus main
protease

each hit are obtained that help to decide what to synthesize
next in an early step of drug development. Since the Chem-
BioNet is an open resource network supporting academic
chemical and biological research, the mission is to provide
a real link between biologists, chemists and other scientific
disciplines required for high throughput screening, and data
documentation and analysis in Europe to explore biological
functions.

The ChemBioNet library was purchased and is format-
ted in 384-well microtiter plates. This collection is open for
screening by the academic public in several screening centres
in Germany and also in other European countries.

So far, numerous screens of the ChemBioNet collection
for a broad range of targets have been conducted. They usu-
ally resulted in the identification of chemically diverse hits
and, even more promising, whole congeneric hit series.
Numerous exemplary screening results of the ChemBioNet
library are given in Table 1. The validated hit rates in these
examples were 0.01 up to 0.34%.

Experimental section

Cheminformatics

As the source database for bioactive compounds, the WDI
was obtained as part of the Catalyst Software package (Cat-

alyst 10, Accelrys Inc., San Diego, CA, 92121, USA) [20].
The MCSs of the compounds within the WDI were calculated
using the genetic algorithm contained in the Software Class-
Pharmer version 3.2 from Simulations Plus Inc [22]. The
parameters were set to minimal homogeneity, high redun-
dancy and only exact atom and ring matches. For our list of
bioactive substructures, only those substructures were con-
sidered, which occurred at least five times within the WDI.
The SD-files of approximately 20 vendor compound collec-
tions were downloaded or received from the suppliers and
stored in a MOE database or Sybyl [22]. In total, more than
2.1 million compounds were surveyed. The substructures and
the occurrences of undesired functional groups contained in
the vendor libraries were identified using self-written filter
programs running in Sybyl.

The diverse subsets were calculated with MOE using the
molecular weight, the number of hydrogen bond donors and
acceptors, the number of N- and O-heteroatoms, the num-
ber of rotatable bonds and the physicochemical parameters
logP, logS and logD as descriptors. In addition, the content
of substructures contained in each compound (a single num-
ber, calculated by the self-written Sybyl filter) was used as a
descriptor. Other descriptors were provided by the supplier
or calculated using MOE [22].

The 16,671 compounds were purchased from ChemDiv
[21] and solubilized in 10-mM stock concentrations in
dimethyl sulfoxide.

The set of 32 P_VSA descriptors was calculated for all the
compounds [24]. Then, a principal component analysis was
performed on this data set in order to compare the chemical
space of the selected screening collection, the ChemACX
and the bioactive molecules of the WDI [20,25]. The calcu-
lation was performed using MOE [22]. The chemical space
is represented by the first ten principal components projected
against each other in two-dimensional space.

The analysis of the screening results has been done using
the SciTegic Pipeline Pilot package (Pipeline Pilot V7.0.1.0.,
SciTegic Inc., San Diego, CA, 92121, USA).
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