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Abstract A topological inevitability of early developmental events through the

use of classical topological concepts is discussed. Topological dynamics of forms

and maps in embryo development are presented. Forms of a developing organism

such as cell sets and closed surfaces are topological objects. Maps (or mathematical

functions) are additional topological constructions in these objects and include

polarization, singularities and curvature. Topological visualization allows us to

analyze relationships that link local morphogenetic processes and integral devel-

opmental structures and also to find stable spatio-temporal topological character-

istics that are invariant for a taxonomic group. The application of topological

principles reveals a topological imperative: certain topological rules define and

direct embryogenesis. A topological stability of embryonic morphogenesis is pro-

posed and a topological scenario of developmental and evolutionary transformations

is presented.
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1 Introduction: Local and Global Order

The term topology was first introduced by Johann Listing (1848), who gave the

following definition of topology: ‘‘By topology we mean the doctrine of the modal

features of objects, or of the laws of connection, of relative position and of

succession of points, lines, surfaces, bodies and their parts, or aggregates in space,

always without regard to matters of measure or quantity’’. It is well known that

topology deals with the most general properties of spaces as mathematical objects

(Bourbaki 1948) which concern, first and foremost, local–to–global transitions. The

classical description of natural forms does not contain topological elements (Rossi

2006). Obviously, biological processes during embryonic development have stable

spatial features and stable temporal dynamics (global order). It is also clear that

living organisms inhabit and develop in the real physical space and are organized

according to the global topology of this space (Gromov 2011). Nicolas Rashevsky

(1958) was the first to apply a topological approach to biology which he named

biological topology or shortly—biotopology.

René Thom (1969, 1996 ) put forward a topological description of embryogenesis

and argued that quality cannot be reduced to quantity, as the discrete character of

biological morphogenesis entails qualitative discontinuities: ‘‘there have indeed

been qualitative innovations in evolution’’. The topological approach to the

description of biological morphogenesis has become a more common practice

(Presnov 1982; Maresin and Presnov 1985; Allaerts 1999; Jockusch and Dress 2003;

Baas and Seeman 2012; Honda 2012; Isaeva et al. 2012; Shimizu 2012; Morozova

and Shubin 2013). We follow below the topological perspective ‘‘Life without

metric’’ by Mikhail Gromov (2010) using elementary topology to describe

structural dynamics of biological forms and morphogenetic processes in ontogeny

and evolution.

We consider well-known mathematical axiomatics for an extended topological

description of biological development. As early as the 18th century, Leonhard Euler

had proposed that all geometric figures consist of three fundamental elements: lines

(or trajectories), vertexes (or crossings) and areas (or openings). A polyhedron is a

geometric figure, which is the 3D version of the plane polygon. It is a finite

connected set of polygons joined together, bounding a volume in such a way that

each side of every polygon is tangent to (connected to) a side of exactly one other

polygon.

Now we introduce other fundamental definitions that will be useful below.

Topological equivalence = homeomorphism. A map f : X ! Y between two

topological spaces is called a homeomorphism if it has the following properties: (1)

f is one–to–one and onto (bijection), (2) f is continuous, (3) the inverse map f-1 is

continuous (f is an open map).

Homotopy = continuous deformation. A homotopy between two continuous maps

f and g from a topological space X to a topological space Y is defined to be a

continuous map H : X � ½0; 1� ! Y from the product of the space X with the unit

interval [0,1] to Y such that, if x 2 X then H(x,0) = f(x) and H(x,1) = g(x).

Given two spaces X and Y, we say they are homotopy equivalent (the same

homotopy type) if we can find continuous maps f : X ! Y and g : Y ! X such that
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g � f is homotopic to the identity map X ! X and f � g is homotopic to the identity

map Y ! Y . Shrinking, stretching and bending are possiblē (angles and distances

are not preserved). Cutting and pasting are impossible. So we can note that, for

instance, the number of holes in a 2D surface is a homotopy invariant. Clearly,

every homeomorphism is a homotopy equivalence, but the converse is not true: for

example, a solid ball is not homeomorphic to a single point, although the same ball

and the point are homotopy equivalent. We will also use the term simply connected

manifolds (any closed curve drawn within the manifold can be shrunk to a point,

where the shrinking stays within the manifold).

Let X be a topological space homotopy equivalent to some cell complex (CW–

complex). Then a homotopy dimension of X is the minimal number k such that X is

homotopy equivalent to a cell complex of dimension k.

Initial local–global keys in animal development are oogenesis and fertilization

(Presnov and Isaeva 1990; Isaeva et al. 2012) (Sects. 2 and 3). The spatial

arrangement of blastomeres of an early embryo is a stable feature of taxonomic

value, which is evolutionarily and genetically determined (Sect. 5) During early

development, form creation involves varying arrays of polyhedrons. Since the

present work focuses on the morphological structuring of early pattern formation,

we shall review some of the basic assumptions. Early cell communities sequentially

replacing one another are structurally stable (global order) throughout intervals

between special local modifications—ruptures and gluings (local order). Topology

of cell connections inside an embryo will be described (Sect. 6), since interactions

between neighboring cells play a crucial role during embryogenesis (Isaeva et al.

2006; Chuong et al. 2006).

During development, the topological constituent of embryo architecture

decreases, and detailed elaboration of geometrical form takes place. A blastula

has an inner cavity, blastocoel, surrounded with primary germ monolayer, so it is an

epithelial sphere, formed with embryonic cells joined by specialized contact

junctions (Sect. 7). Since a sphere (topologically) has an inside and outside, blastula

formation results in cell polarization (Sect. 2). The process of making a set of

oriented epithelial cell layers (and transferring from 0 to 2 homotopy dimension) is

called gastrulation (Sect. 5). This process represents the first morphogenetic

movement in the developing embryo: shaping the archenteron, a primary gut (Sects.

8 and 9).

Various scalar and vector fields at all levels of biological organization are

revealed as heterogeneous distribution of structural components, functional

activities, and biochemical gradients. Trans-cellular and -epithelial ion currents

generate electric fields as signals and effectors of cell polarity. It is known that the

distribution of certain sets of mRNAs in the egg ooplasm determines the spatial

pattern of the future embryo (Nuccitelli 1984; Nüsslein–Volhard 1991; Gilbert

2010); spatial anisotropy in distribution of gene products creates a morphogenetic

field (scalar concentration field and resulting vector polarity field) specifying the

polarity of future organism (Sect. 2) Spatial images of the biological fields are

analyzable by topological zoom; singularities inevitably emerge and transform

during the period of embryo development. It is the topological approach that is

capable of providing a correct and adequate description of developmental dynamic
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architecture. A vector field is a section of a corresponding tangent bundle (see

Dubrovin et al. 1990, 1992, 1995). So we need to find a suitable section of a tangent

bundle to fix a real topological criterion of early development. Animal development

is serial topological rearrangements of 2D closed surfaces (Sect. 10) This

conceptual accent allows us to indicate topological simulations of onto- and

phylogenesis (Sect. 11)

2 Polarization: Singular Point

The boundary of the ball We shall begin ab ovo. In most metazoans, the animal–

vegetal/anterior–posterior axis of an egg and a future embryo is established during

oogenesis and usually depends on the position of an oocyte in relation to its cellular

and non-cellular surrounding. A polarized cellular architecture is fundamental to the

establishment of anterior–posterior polarity. Both the actin and microtubule

cytoskeletal elements work together to convert an initial asymmetry into a global

cell polarity (Li and Bowerman 2010; Mullins 2010). Egg cytoskeleton functions as

a global morphogenetic determinant, which directs and maintains the anisotropic

distribution of ooplasmic molecular information, which determines the axial

polarity of an egg and a future organism (Isaeva et al. 2008). It has been

experimentally shown that the main carrier of molecular morphogenetic information

in an oocyte/unfertilized egg is its cortical layer, a thin peripheral layer of ooplasm.

There is a vector morphogenetic field on the egg surface (2-sphere). The cortical

egg field is visualized, in particular, by polarized distribution of membrane and

cytoskeletal components and by the electric field. For example, the axial polarity of

oocytes in some animals is manifested in transcellular ion flows, which generate the

extracellular electric field (Fig. 1a). The oocyte/egg cortical field is the morpho-

genetic one, since it determines the polar axis (or axes) of future organism; the

polarized cortical layer is the carrier and indicator of the vector field on the egg

surface (Presnov et al. 1988; Presnov and Isaeva 1990).

Topological singularity arises as a consequence of a symmetry breaking process,

when a system goes through the phase transition from the spherical symmetry to a

broken symmetry. Then, according to the well-known Poincaré–Hopf theorem

(Milnor 1965):

Fig. 1 Egg polarization: a the electric field of the frog oocyte (after Nuccitelli, 1984); b animal pole
singularity; c second singularity at site of sperm penetration
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For any continuous tangent vector field given on a 2-sphere, a singular point of

the field exists.

The occurrence of a vector field singularity (or singularities) on the sphere is/are

inevitable. This singularity breaks the topological symmetry of the egg, polarizing

the egg sphere. This theorem is also called Hairy ball theorem: ‘‘you can not comb a

hairy ball flat without creating a cowlick’’. It means a 2-sphere has none trivial

tangent bundle and therefore a 2-sphere is not parallelizable.

This general remark about vector fields is possible given concrete expression. We

suggest a topological explanation for any polarization on a single cell like an egg.

Patently, the boundary surface of this cell is homeomorphic to a standard 2-sphere

(Sect. 5). First of all, any scalar function (for example, the concentration of any

substance) on the sphere produces a gradient of this function. This gradient gives a

polarization on the sphere. We must talk about a vector field on the spherical surface

of this cell. In this case we use a decomposition of vector field into gradient

component and another nongradient one. For this purpose, there is the theorem

(Presnov 2008), which is most interesting here in cases (3D ball B3 � R
3 and

2-sphere S2 = qB3):

For any smooth vector field v(x), there exists a unique global decomposition:

v ¼ graduþ u}: ð1Þ

The potential uðxÞ of the gradient vector field has direct computation. The addi-

tional field u}ðxÞis the concentric vector field preserving the foliation of spheres

into ball B3 (or circles on S2). In other words, we have the dissipative-free vector

field u}ðxÞ with concentric structure. See also another Helmholtz–Hodge decom-

position of vector fields (Fuselier and Wright 2009).

3 Sperm Penetration: Another Singular Point

In most metazoans, the first singular point(s) (egg poles) appears during oogenesis

(Fig. 1b). In some animals, at least in chordates, in addition to preexisting animal

and vegetal egg poles, a new singularity emerges at the site of sperm penetration.

This new singular point determines the dorsal–ventral axis of the egg and future

organism (Fig. 1c). So, in chordates, the second symmetry breakdown takes place

following gamete contact and fusion. For example, in an oocyte of the frog

Xenopus, the anisotropic distribution of specific maternal mRNAs and proteins

along an animal–vegetal axis underlies the anterior–posterior patterning of the

future embryo; a cortical rotation after insemination produces an additional

symmetry breaking that creates the dorsal–ventral axis (Newport and Kirschner

1982).

Different organisms use various biological mechanisms and time schedules to

establish anterior–posterior and dorsal–ventral polarity. In Drosophila, both polar

axes are determined during oogenesis, while in most animals only animal–vegetal

axis is determined before egg fertilization. In the nematode Caenorhabditis elegans,

anterior–posterior polarity is specificated by sperm entry. During sperm penetration
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in echinoderm and mouse eggs, the fertilization cone arises by polymerization of

actin filaments. As it was shown in frogs and sea urchins, the plasma membrane of a

spermatozoon is inserted into the egg plasma membrane, and the sperm surface

remains localized at the site of the penetration; this spot is visible during early

cleavage. Following gamete fusion in mice, polar body emerges; in egg/polar body

contact zone, the accumulation of actin and spectrin was observed (Shapiro et al.

1981; Johnson and Maro 1985; Kirschner et al. 1985; Reima and Lehtonen 1985;

Kyozuka 1993; Goldstein and Hird 1996).

So the local order of sperm penetration is connected to the integral order of the

egg, zygote and developing organism. The inevitable breaking of the preexisting

symmetry pattern is programmed both genetically and epigenetically and plays a

critical role in embryogenesis.

4 Ooplasmic Segregation: Fixed Point

The rearrangement of the egg cortex organization following sperm penetration

involves ooplasmic segregation. Ooplasmic segregation was studied in eggs of

ascidians and the annelid Tubifex as the flow of cortical actin networks triggered by

the sperm penetration and generating the spatial–temporal vector field of the cortical

displacement. In ascidians, the yellow cortical pigment moves to the vegetal pole

after sperm penetration and at the following stage forms a yellow crescent-like

region somewhat lower the egg equator. In amphibia, the cortex of inseminated egg

is restructured with displacement of the pigment in animal area and rotates in

relation to the inner ooplasm with formation of so-called gray crescent (Sawada and

Osanai 1985; Sawada 1988; Shimizu 1988, 1989; Kirscher and Gerhart 2005).

So the symmetry breaking process in chordates involves the flow of the cortical

actin network. The rearrangement of ooplasm and emergence of both ascidian

yellow crescent and the amphibian gray crescent is involved in the establishment of

the dorsal–ventral axis of future animal. Thus, the local order of ooplasmic

segregation is connected to the integral order of the developing organism.

Ooplasmic segregation results in a spatial–temporal vector field of the displacement

of cortical components. During cortical reorganization, subcellular, mainly cortical

components of an egg are moving with respect to a fixed, stationary point in the

course of continuous deformation. This is the fixed point of the ooplasmic flow. The

fertilized egg, zygote is topologically equivalent to the ball. During cytoplasmic

segregation as well as in similar processes of integral cell polarization such as

chemotaxis, capping or attachment to a substrate, we may assume a mapping a ball

into itself. According to Brouwer’s theorem:

Any continuous map of the closed ball into itself has a fixed point.

This fixed point is an egg pole or additional singular point, which serves as a

source or sink during ooplasmic segregation. This point breaks the spherical

symmetry of the egg. Thus, the order of ooplasmic localization is connected to

integral order of the egg.

Note that, in normal development, there is a single fixed point during the period

of ooplasmic rearrangement; at the same time some experimental influences can
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cause the appearance of additional singularity. For example, in amphibian eggs,

abnormal gravitation vector imposed immediately after insemination can produce

two-headed embryos. Fundamental symmetry transformations at the cell level

provide the most important morphogenetic information determining axial coordi-

nates of future animal. Thus, ooplasm possesses irreversible epigenetic memory of

an imprinting kind.

5 Early Cleavage: Cell Complex

A cleaving zygote is a set of connected blastomeres defining the embryo geometry.

Each blastomere has a spherical surface. This closed spherical surface of a

blastomere fragments into cell contact domains. Let us mentally expand all these

contact areas; we blow up each this face in such a manner that it will border with

other domains on the surface of a given blastomere. These regions can be

considered as curved faces of generalized polyhedron. As a consequence each

blastomere is not a geometrical polyhedron but a spherical one. The result of this

technical procedure is very similar to the Voronoi structure. These polyhedra are

topological ones: a space homeomorphic to a geometrical polyhedron is called a

topological polyhedron (t-polyhedron). We are obligated to talk about cell complex

as a topological approximation of biological tissues (Hoffman 1973).

Here we examine the building of an early embryo during an egg cleavage (cell

division). Each blastomere is modeled as a topological cell, and a whole embryo—

as a cell packing. The egg cleavage results in the emergence of a net of cellular

contacts on the surface of an embryo, a discrete morphogenetic field (Sect. 6).

Zygote cleavage is cell mitotic reproduction and results in 2, 4, 8 and so on

blastomeres. Dense packing of early 8–16 blastomeres is the morula (so named

because it is similar to mulberry, a berry of Morus). The morula is a cellular close

packing, which is topological equivalent to a ball (3D object). But any ball is

homotopy equivalent to the point. The dimension of any point is zero. Morpho-

genetic modifications of this spatial object without topological motivation looks like

a fresco on a wall. In mammalian embryogenesis, 8-cell morula undergoes a process

called compactization: individual cells are joined by tight junctions and form a ball.

To summarize, we asked which topological change of an early cleaving embryo

inevitably happens with the increasing number of its cells. To answer this question,

we used polyhedral tessellations. However, this model is insufficient to describe the

developmental stages beyond the morula.

6 Axis Formation: Discrete Gradient

The problem of axis formation has a long story and it raises numerous questions

(Allaerts 1991). We want to discuss the natural topological structure of the morula

that can determinate a certain morphogenetic field on the boundary of the morula.

Alexander Gurwitsch (1922) was the first to introduce the concept of

‘‘anisotropic cellular field’’ into biology. The presence of such a field is related to
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the vector character of the subcellular organization with the oriented mutual

positioning of molecules and ordering of molecular ‘‘constellations’’. He assumed

that the field has a radial structure with a center localized in the cell nucleus; the

cellular field is continuous and divides during cellular divisions. The fields of

neighbouring interacting cells unite into one ‘‘actual’’ field which is the vector sum

of its cellular field components. The theory of Gurwitsch, specified and illustrated

geometrically as a vector system, was accepted by contemporaries and is considered

by numerous biologists nowadays to be a scholastic, purely abstract one and as a

formalism which has nothing to do with real life. But Gurwitsch’s concept is

strengthened by the fact that the morphological polarization of cells provides a set

of vectors in embryonic tissue, which can be considered as a predicting factor of the

future tissue formation possessing a status of cause–effect mechanism (Beloussov

1998). It can have a support from the following point.

Specially, here we want to think about another conception for simulation of those

fields. So we modeled any morula as a finite cell complex. On the combinatorial

surface K of this 3D cell complex, a discrete vector field could exist (Forman 1998).

For our application, let us assume that K is a combinatorial surface and K—the set

of cells. The cell r is a face of s, denoted by r\ s, if r is contained in the boundary

of s. Facets are the faces of codimension 1.

A discrete vector field V on the combinatorial surface K is a set of pairs of cells

ðr; sÞ 2 K � K, with r a facet of s, such that each cell of K belongs to at most one

pair of V (local order).

A V-path C of a discrete vector field V from a cell r0 to a cell rr is a sequence

r0s0r1s1. . .sr�1rr of cells such that for every 0 B i B r - 1:

ri is a facet of si and ðri; siÞ 2 V ;
riþ1 is a facet of si and ðriþ1; siÞ 62 V:

ð2Þ

A V-path is a nontrivial closed path if r0 = rr and r [ 0.

A discrete gradient vector field is a discrete vector field V that does not admit any

nontrivial closed V-path (global order). A discrete gradient vector field might be

understood as the gradient of some function in the following sense.

A discrete Morse function is a function f : K ! R
1 on the cells of a regular

combinatorial surface K if there is a gradient vector field V such that for all pairs of

cells (r, s) is true

f ðrÞ\f ðsÞ ifðr; sÞ 62 V ;
f ðrÞ� f ðsÞ ifðr; sÞ 2 V ;

�
ð3Þ

here r is a facet of s.

Accordingly, if the combinatorial spherical surface of the early embryo (morula)

has a discrete Morse function, then it means that polarization of this surface follows

in accordance with a corresponding discrete gradient vector field. Otherwise, every

discrete vector field on the combinatorial spherical surface has a closed V-path. This

closed V-path divides the closed spherical surface in two different parts and

therefore it can be concluded that polarization takes place in this case too.
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7 Blastulation: Orientable Surface

After cleavage, the epithelization of the primary germ layer and the progressive

switch from a maternal to a zygotic control of embryo patterning—‘‘mid-blastula

transition’’—takes place at different stages according to a species. The mid-blastula

transition was studied mainly in echinoderms and vertebrates, first and foremost, in

amphibia. In echinoderms, the switching of cell interactions occurs when the

embryo consists of 128–256 cells. In amphibians, this switch is also carried out at

the mid-blastula consisting of about 4,000 cells (Newport and Kirschner 1982;

Kirschner and Gerhart 2005; Gilbert 2010). In mammalian embryos, the first

epithelized cell layer (trophectoderm) is the extraembryonic one, which is required

for implantation and development of the placenta. The preimplantation development

involves six cleavage divisions before blastocyst formation from the morula.

Blastocyst consists of approximately 60 cells, with an inner cell mass and

specialized outer trophectoderm cells. The embryo develops from the inner cell

mass (Geneviere et al. 2009). A mammalian embryo by the cavitation process

becomes the blastocyst.

Epithelial cell layers of a metazoan organism are characterized by structural and

functional connectivity, closeness of intact surfaces and outer–inner anisotropy of

the epithelial layer. To translate anatomical descriptions of metazoan morphology

into topological analogies, the external shape of an organism is modeled by smooth

closed surfaces. The connectivity of an epithelial layer during epithelial morpho-

genesis is ensured by the system of specialized intercellular contacts that integrate

cells into a morphological and functional entity (Kolega 1986; Zallen 2007; Gibson

and Gibson 2009). The appearance of the epithelial tissue was one of the most

significant innovations in the early metazoan evolution; the steps involved were

specializations of intercellular contact complexes and extracellular matrices.

In early cleavage and at the morula stage, blastomeres have inner contacts. This

set of contacts is inhomogeneous. Blastomeres do not maintain a large number of

contacts. Large cells are not stable and divide into smaller cells. An increasing

number of cells during early cleavage leads also to the increasing number of

contacts per cell and subsequent differentiation.

In an attempt to understand how inside–outside positions give rise to the cell

polarity establishment, a possibility which we can name a topological scanner for

apical–basal polarization has been put forward.

The inside–outside and cell polarity phenomena are complementary, because

both rely on differences along the radial axis breaking the symmetry of the early

embryo. As a result of epithelization, the external surface of an embryo becomes

smoother and more spherical; blastocoel, the inner cavity filled with a liquid,

appears. The epithelized cell sheet has potential motility (it is not a 3D close

packing) that gives a possibility of further morphogenetic movements in early

development.

The first topological rearrangement of embryo morphology is the appearance of

the separated two-side closed sheet of epithelial cells. Indeed the birth of the cavity

is a complication of topology. Cavity creation modifies the topology of cell

ensemble and this 3D cell complex becomes topologically equivalent to the sphere.
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In most animals, cavity of blastocoel emerges during cleavage and enlarges in

consequence of germ layer epithelization. In mammals, the cavity of the blastocyst

is not a blastocoel. Mammalian morula is transformed to the blastocyst through

delamination. In mammalian embryogenesis, cell fate is specified at the 8-cell stage

by the establishment of cell polarity (Yamanaka et al. 2006; Johnson 2009) along

the radius of early morula. Subsequent cell divisions lead to symmetric or

asymmetric distribution of polarity information, based on the angle of cell division.

Division parallel to the radial axis generates two identical, polarized cells that

inherit the entire distribution of polarity information. In contrast, asymmetric

division ‘‘perpendicular’’ to the inside–outside axis creates two different cells:

outside one, and one apolar cell that stays inside. Both cell types would then differ

in their developmental potential.

Mechanism of cavity formation Thus, the cavity formation is important in animal

development, and this is a good example of a simple form that develops into a

complex form. Blastula is a 3D cell complex of close packing polarized cells, and its

cells have coherent positions from one to another. This coherence creates a virtual

discrete field formed by cell structure vectors. Cells have ‘‘almost parallel‘‘ structure

vectors, which slowly change from one cell to another. We can mark a smooth

vector field in the whole volume of morula or blastula, and on the boundary of an

embryo this field is directed inside.

The next step of the simulation is: this vector field generates a continuous flow

(map). And this map, by Brouwer’s theorem (Sect. 4) has a fixed point (or zero of

corresponding vector field). Eventually, we can distinguish an inner cell with zero

vector of polarization. So cells produce a cavity. It is a topological event—a cavity

building. It means the appearance of a closed cell layer.

Planarity of graph of blastomeres Cell contacts maintain a closed cell layer and

entire embryo as a whole. A frontier epithelial area has a free surface (local order)

bordering an environment. The set of epithelial cells forms a closed two-side

spherical envelope (global order) of an embryo. Each boundary cell having its

‘‘free’’ face is polarized (Presnov et al. 2010).

The problem is: we chose for initial set either some cells or even no cells. In the

case of a small number of blastomeres of an early embryo, we cannot pick out an

outer cellular sheet. A critical blastomere number (which is a specific for given

species) forms a new topological landscape—an external spherical layer, which

contains all cells of an embryo. These external cells are polarized. This local order

leads to the emanation of the global order—an external spherical layer with a

planar graph of cell contacts. However, it can be picked out from a bond graph of

a spherical cover. Probably a minimal number of blastomeres for detection of

closed spherical cover is equal 4. In this case, blastomeres place at the edges of a

tetrahedron (planar graph K4). For a nonplanar blastomere graph with the minimal

number of nodes 5 (Kuratowski graph—K5), by picking out a planar margin

subgraph it is eliminated an edge inside as physically unreal one (Fig. 2). The

closed spherical coat from close packing cells has a boundary function of

separation from an environment and therefore has a topological reason for a cavity

appearance.
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8 Gastrulation: Discrete Curvature

In mathematics, our attention focuses on geometric properties of the boundaries of

domains and on the influence of those geometric properties on the complex analysis

of the domain. Using a model of close spatial cell packing and appearance on the

blastula surface a cell tessellation, we introduce the natural assumption of curvature

(local order), which is initiated by this tessellation. This leads to the appearance of

cells with negative curvature. We possess a topological prediction and argument of

invagination, a topological cause of an immersion inside the spherical surface.

Returning to polyhedral surfaces it is useful to fix a notion of curvature,

independent of all geometrical information. For each graph on the sphere, a face is

characterized by the number of neighboring faces, and this implies that curvature

can be set up in case of the polyhedral surface with canonical Euclidean metrics for

the 3D space. We give here a general definition of polyhedral objects; this leads to

another interpretation of the curvature of a polyhedral surface. A polyhedral 3D

object P3 means a cell complex which is homeomorphic to a 3D object, which is

regular and satisfies the intersection condition. That is, each cell is embedded in P3

with no identifications on its boundary, and the intersection of any two cells (of any

dimension) is a single cell (if nonempty). Because P3 is topologically a manifold,

each face is contained in exactly two cells (face to face).

The idea how to define a discrete (combinatorial) curvature was presented in our

previous works (Presnov and Isaeva 1990; Presnov and Isaeva 1991) in a simple

topological computation: on the surface of fertilized and cleaving egg (S2), the

discrete morphogenetic field emerges as a pattern of blastomere contacts. For every

face f, a value k(f) of the discrete curvature of this face

kðf Þ ¼ 1� jf j
6

ð4Þ

can be defined. This discrete curvature of a face on the 3D cell obeys the discrete

Gauss–Bonnet theorem. The classical Gauss–Bonnet theorem for the sphere says

1

2p

Z
S2

kdr ¼ 2: ð5Þ

Here k is the Gaussian curvature. As a consequence of the Euler theorem (Hir-

zebruch and Kreck 2009) for structurally stable graphs on the sphere,
P

f k(f) = 2.

Therefore, k(f) is the discrete analogue of continuous value k.

Fig. 2 Planar graph K4 and
minimal nonplanar graph K5
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Remark The same approach was proposed elsewhere. A corner of a tessellating

graph is a pair ðv; f Þ 2 V � F such that v 2 of . The set of all corners of G is denoted

by C: = C(G). Let G be a plane tessellation. Then the function C ! R
1 defined by

kðv; f Þ :¼ 1

jvj þ
1

jf j �
1

2
ð6Þ

is called the discrete curvature on the graph G (Knill 2012). The definition of

discrete curvature is relevant for planar graphs only.

The egg cleavage results in a pattern of cell contacts on the surface of the embryo

as a discrete morphogenetic field. The epithelization of the primary germ layer takes

place at different stages according to the species. In many animals, during mid-

blastula transition, a loose packing of blastomeres is replaced by densely packed

cells, which form on the embryo surface a network of polygons by increasing the

length of specialized contact zones. In the period corresponding to mid-blastula

transition, dissociated blastomeres of a starfish or sea urchin form the epithelized

blastula by bending and closure of a fragment of the cell monolayer, by a process,

called blastulation (Dan–Sohkawa and Fujisawa 1980; Kadokawa et al. 1986;

Presnov et al. 2010).

We observed a similar blastulation process in experiments with dissociated

blastomeres (embryos of the sea urchin Strongylocentrotus nudus). It was shown

earlier that sea urchin embryos formed from reaggregated blastomeres are possible

to develop into larvae and transform after metamorphosis into fertile sea urchins

(Giudice 1962; Hinegardner 1975). The transition of the cytoskeleton/cytomatrix

into integrated ‘‘histoskeleton’’ by means of intercellular integration through cell–

cell contacts gives the possibility of coordinated epithelial movement. Epithelial

movements are responsible for many morphogenetic transformation, including the

folding, delamination, cavitation (Kolega 1986). Some topological inhomogeneities

presumably can determine the localization and direction (inside or outside) of the

epithelial morphogenetic movements.

There are only five homogeneous (k = const) discrete fields on the sphere, which

correspond to five regular polyhedra, and only three of them are structurally stable

(34, 46 and 512). During synchronous cleavage divisions, only the first four

blastomeres admit a homogeneous field on the embryo surface. Later the field of

cellular contacts on the embryo surface inevitably becomes topologically inhomo-

geneous. Consequently, the symmetry of the discrete morphogenetic field breaks.

The occurrence of inhomogeneity of this field on a sphere, in accordance with

Euler’s theorem used for polyhedra, is a consequence of the topology of our 3D

physical space. So, in conformity with biological terminology, positional informa-

tion for discrete morphogenetic fields is found out by theorems of Gauss and Euler

as a relationship between its local order and the integral order. Probably it is

preferable here to use a more specific term—topological information. As soon as the

sum of adjacent faces becomes larger than 6, the local face curvature becomes

negative, which leads to invagination and, consequently, to gastrulation. When the

number of adjacent faces is smaller than 6, the face’s curvature is positive (Presnov

et al. 2010).
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An active epithelial morphogenesis was revealed in experiments in vitro: starfish

zygotes without the fertilization envelope after several cleavage divisions formed a

cell monolayer, finally closing into a hollow sphere resembling a normal blastula

(Dan–Sohkawa and Fujisawa 1980). It was shown that during this blastulation

process, the presence of the cells with negative curvature correlates with the

incurvation of the cell sheet (Presnov et al. 2010).

It was found also that in some animals, the localization of invagination or other

type of morphogenetic cell movements during normal embryogenesis coincides

with the position of a cell having the highest value of the cell field as negative

curvature (Presnov and Isaeva 1991; Isaeva et al. 2012). For example, Fig. 3

demonstrates discrete singularities of the cell contact field on the surface of animal

and vegetal semi-spheres of a crustacean embryo: the localization of the cell with

negative curvature coincides with the site of cell ingression during the following

gastrulation, while cells of positive curvature are localized on the animal surface of

the embryo.

Epithelial cell layers in metazoan organisms are characterized by outer–inner

anisotropy. Two sides of a cell sheet may also differ in the number of cells and cell

contacts able to determine the vector of an epitheliogenesis: incurvation (invag-

ination) or excurvation (evagination) of the cell layer (Presnov et al. 2010).

Obviously, gastrulation is not directly related to the inhomogeneity of the

blastomere pattern following cleavage. Rather, the place on the egg surface having

the highest value of the cell field and the localization of morphogenetic cell

movement in gastrulation coincide because they both are determined by preexisting

pattern of embryo polarity (Presnov and Isaeva 1991). Conversely, cells with the

lowest number of contacts become centers of evagination and proliferation. A

similar concept was previously put forward to explain cell proliferation in intestinal

macrovilli (Pyshnov 1980; Klein 2002; Rumpler et al. 2008). Thus, initiation of

gastrulation may be related to the inevitable emergence of local curvature in the

discrete morphogenetic field on an embryo surface.

9 Gastrulation: Cell Mapping

Gastrulation is the first spherical surgery in embryogenesis. It is the inevitable

topological transition from the sphere with field singularities to the torus with the

homogeneous field (Sect. 10), a transition that means zeroing of the field. So an

Fig. 3 Topological singularities
of the discrete cell field in the
crustacean Holopedium embryo:
a animal hemisphere; b vegetal
hemisphere (after Anderson
1973)
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embryo or a larva is a topologically stable object and, consequently, gastrulation

indeed topologically stabilizes embryonic development.

Gastrulation is also an extensive rearrangement of cells or/and epithelial sheets in

an embryo. In different animals, cell streams are visualized as morphogenetic fields

of cell movements—as vector fields (Fig. 4). Gilbert (2007) considered fate maps,

gene expression maps and morphogenetic cell movements in developmental biology

treating the mapping as a metaphor referring to the practice of cartography and as a

representation of 2D surface in 3D space. However, it is possible to reveal the cell set

mapping in biological morphogenesis using a topological approach. Thom (1969)

was the first who considered morphogenetic cell movements topologically as a

smooth mapping of the spatial patterns. Cherdantsev (2006) presented the concept of

spatial unfolding of cell movements during gastrulation as the mapping of the plane

into the plane. The spatial unfolding maps a flat contour into that of negative

curvature. In terms of the smooth mapping theory, this means that each point of a

new contour has a single prototype in the initial contour. It is possible to consider cell

streams during gastrulation (Fig. 4) as the continuous mapping of the closed ball into

itself (Sect. 4). In postgastrulation development, epithelial morphogenetic move-

ments are responsible for the folding, budding, closure of separating epithelial sheets.

Topological deformations (Sect. 10) modifying connectivity of cell layers and

resulting in the separation of additional closed epithelial surfaces from preexisting

ones, for example, enterocoelic formation of mesoderm in Deuterostomia,

neurulation, eye cap formation in chordates (Maresin and Presnov 1985; Presnov

et al. 1988) can be considered as a mapping. Neural mapping is visualized due to

axon connections, as, for example, retino–tectal projection via axons of retinal

ganglion cells to midbrain visual centers.

10 Morphogenesis: Spherical Surgeries

The topological approach makes it possible to consider a succession of purely

geometrical transformations of a growing organism. Our goal is a translation of

anatomical descriptions into topological language, namely, to formalize the shape of

an organism as a set of smooth closed surfaces. Metazoan morphogenesis may be

represented as a sequence of topologically various epithelial surfaces (Isaeva et al.

2006). Epithelial cell layers are characterized by morphological and functional

connectivity, closeness of an intact surface, and apical–basal polarity, i.e., outer–

Fig. 4 Morphogenetic cell
movements during gastrulation:
a frog embryo; b mammalian
embryo (after Gilbert 2010)
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inner anisotropy. Neglecting the thickness of the cellular layer, we consider

epithelia as smooth, closed, orientable surfaces, of spherical or toroidal shape. The

topology of non-orientable surfaces of the Möbius strip or the Klein bottle type is

impossible, both for biological membranes and for epithelial sheets.

It is natural now to apply a theorem of elementary topology to the analysis of

spatial grouping of epithelial surfaces of an animal body: any closed surface in 3D

space is homeomorphic to a sphere with a given number (p) of handles. The sphere

with p handles sets a class of homeomorphic surfaces of the genus p. If there are no

topological surgeries, such as breaking (cutting) and gluing (pasting) of epithelial

sheets, the genus of the surface (p) is a topological invariant, and any geometrical

deformations such as surface curvature, linear and angle values are not essential.

The closed surfaces of the genus p = 0 (sphere), p = 1 (torus), p = 2 (double torus,

or ‘‘pretzel’’) and so on give a topological classification.

Topological handles in biological objects are usually realized as channels (or

canals, holes), for example, the digestive tube. Topological freedom in epithelial

morphogenesis due to topological surgeries is realized by ‘‘cutting’’ and ‘‘gluing’’ of

epithelial sheets. Those topological cases in embryogenesis occur locally, and

involve complex cell events: sheet disintegration followed by cell adhesion and

cytoskeletal cooperation giving rise to a newly formed cell sheet (or sheets).

Furthermore, local topological surgeries inevitably lead to global topological

alterations of biological forms. During embryonic development, the surface of an

organism (its epithelial ‘‘envelope’’) undergoes sequential topological surgeries,

which change the topological genus of the surface. In a case such as sea urchin

development, the surface of an egg and a zygote, the outer surface of the blastula or

early gastrula are surfaces of the genus 0, whereas the epithelial surface of an

embryo after gastrulation or a larva with the complete intestinal tube having both

oral and anal openings is a surface of the genus 1, the torus. Accordingly, in

embryonic development, the transformation of the genus of the surface, so-called

spherical surgery, occurs. A transition of blind archenteron to through intestine tube

is realized during gastrulation by the formation of another opening besides the

blastopore (or a primary mouth); the last one becomes the definitive oral opening in

Protostomia, or anal opening in Deuterostomia. This transition is the main

topological profile in metazoan development.

Changes in the connectivity of germ (embryonic) layers followed by separation

of additional closed spherical surfaces from preexisting ones are another kind of

topological catastrophes (for example, enterocoelic formation of mesoderm,

neurulation). Different types of topological surgeries modify the spatial design of

epithelial sheets in ontogenesis. As a consequence, the spatial plan of an

evolutionarily advanced animal organism may be represented topologically as an

outer epithelial envelope of a certain genus p embracing a number of inner closed

epithelial surfaces embedded inside the outer envelope.

Metazoan morphogenesis may be typified as a topological pattern formation of

smooth closed epithelial surfaces. Specifically, the transition from a blind

archenterons to the intestine tube is the first topological step of metazoan

development and evolution. In many taxa, animals have only the intestine tube

without any additional channels, so their external surface is topologically equivalent
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to the torus, p = 1 (Fig. 5a). Archetypically, the chordate body plan can be

presented as the surface of genus p = 1 ? 2n, which formed by an intestine and

several pairs of gill slits (Fig. 5b).

Accordingly, the local topological surgery leads to the global topological

complication of biological forms, as the genus of the surface is a global property.

Topological dependence and topological constraints fit into evolutionary and

genetically determined processes of embryogenesis—biological morphogenesis

cannot be independent of the topological arrangement of physical space (schema of

topological morphogenesis in Maresin and Presnov (1985)).

11 Phylogeny: Topological Classification

An analysis of topological image of the closed epithelial layer that covers the outer

surface of an organism, regarding it as a continuous envelope formed by both

Fig. 5 Topological body plans:
a a worm; b chordate archetype
(after Presnov and Isaeva 1996;
Isaeva et al. 2006)

Fig. 6 Main topological transformations of animal body plans in evolution
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ectodermal and endodermal (intestinal) epithelia, is applicable also to the topological

evolution of the body surface in metazoan evolution. Evolutionary topological steps

change the genus of the surface (Fig. 6), whereas modifications of connectivity do

not change the topological scheme of the outer surface of an animal body [additional

examples in Isaeva et al. (2006)]. The animal body surface is an interface between an

organism and its environment. Adaptive topological transformations of the body

surface in metazoan evolution result in an enlargement of the interface ensuring the

optimal distribution of external medium flows within an organism, better utilization

of necessary nutrients and oxygen, and more complete excretion.

12 Conclusion: Topological Significance

We believe that the topological approach is a powerful tool, which has not been used

sufficiently in previous biological investigations. Various topological forms and

functions throughout development and other topological semantics presented above

bind together biological forms and functions. Local singularities and the integral

morphogenetic pattern are closely linked in a developing organism and result in

symmetry breaking. In other words, the topological portrait of physical space, taken as

a whole, provides a sketch of fundamental consideration of biological morphogenesis,

presenting a series of morphological shapes observed during development and

evolution. The topological methods and theorems make it possible to consider as a

whole the succession of shape transformations of metazoan organisms in develop-

ment and evolution, topological correlations and restrictions, and to discover

topological features and topological realization of biological morphogenesis.
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Grands Courants de la Pensée Mathématiques. Cahier du Sud, Paris, pp 35–47

Cherdantsev VG (2006) The dynamic geometry of mass cell movements in animal morphogenesis. Int J

Dev Biol 50(2–3):169–182

Chuong C-M, Wu P, Plikus M, Jiang T-X, Widelitz RB (2006) Engineering stem cells into organs:

topobiological transformations demonstrated by beak, feather, and other ectodermal organ

morphogenesis. Curr Top Dev Biol 72:237–274

Dan–Sohkawa M, Fujisawa H (1980) Cell dynamics of the blastulation process in the starfish, Asterina

pectinifera. Dev Biol 77(2):328–339

Axiomathes (2014) 24:117–135 133

123



Dubrovin BA, Novikov SP, Fomenko AT (1990, 1992, 1995) Modern geometry. Graduate texts in

mathematics, vols 93, 104, 124. Springer, New York

Forman R (1998) Morse theory for cell complexes. Adv Math 134(1):90–145

Fuselier EJ, Wright GB (2009) Stability and error estimates for vector field interpolation and

decomposition on the sphere with RBFs. SIAM J Numer Anal 47(5):3213–3239

Geneviere A-M, Aze A, Even Y, Imschenetzky M, Nervi C, Vitelli L (2009) Cell dynamics in early

embryogenesis and pluripotent embryonic cell lines: from sea urchin to mammals. In: Rinkevich B,

Matranga V (eds) Stem cells in marine organisms. Springer, Dordrecht, pp 215–244

Gibson WT, Gibson MC (2009) Cell topology, geometry, and morphogenesis in proliferating epithelia.

Curr Top Dev Biol 89:87–114

Gilbert SF (2007) Fate maps, gene expression maps, and the evidentiary structure of evolutionare

developmental biology. In: Laubischler MD, Maienschein J (eds) From embryology to evo–devo: a

history of developmental evolution. The MIT Press, Cambridge, MA, pp 357–374

Gilbert SF (2010) Developmental biology, 9th. Sinauer Ass., Inc., Sunderland, MA

Giudice G (1962) Restitution of whole larvae from disaggregated cells of sea urchin embryos. Dev Biol

5(3):402–411

Goldstein B, Hird SN (1996) Specification of the anteroposterior axis in Caenorhabditis elegans.

Development 122(5):1467–1474

Gromov M (2010) Spaces and questions. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V (eds)

Visions in mathematics: GAFA2000 special volume, part 1. Birkhäuser, Springer Basel AG,
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