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1 Introduction

Strong interactions are described by quantum chromodynamics (QCD), a local relativistic

non-abelian quantum field theory which is not amenable to perturbation theory in the

low-energy, large-distance regimes. However, many fundamental questions are linked to

the large scale behavior of QCD. In particular, non-perturbative approaches to QCD can

be used to account for the different phases of hadronic matter under extreme conditions.

Recently, the study of the effects of strong magnetic fields on the QCD phase diagram

has become a topic of increasing interest (for a recent review, see refs. [1, 2]). In the non-

perturbative regimes this problem can be efficiently approached by lattice QCD simulations

with dynamical quarks.

The study of lattice gauge theories with external background fields has been pioneered

in refs. [3, 4] for the U(1) Higgs model in an external electromagnetic field. In the continuum

a background field can be introduced by writing:

Aµ(x)→ Aµ(x) +Aext
µ (x) . (1.1)

In the lattice approach one deals with link variables Uµ(x). Accordingly, on the lattice

eq. (1.1) becomes:

Uµ(x)→ Uµ(x)U ext
µ (x) , (1.2)

where U ext
µ (x) is the lattice version of the background field Aext

µ (x). As a consequence the

lattice action gets modified as:

S[U ]→ S[U ] + δ S[U,U ext] , (1.3)
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where δ S[U,U ext] takes into account the influence of the external field. An alternative

method, which is equivalent in the continuum limit, is based on the observation that an

external background field can be introduced via an external current [5, 6]:

Jext
µ = ∂νF

ext
νµ , (1.4)

so that the action gets modified as:

S → S + SB , (1.5)

where:

SB =

∫
dx Jext

µ (x)Aµ(x) = −1

2

∫
dxF ext

νµ (x)Fνµ(x) . (1.6)

The main disadvantage of these approaches resides on the lack of gauge invariance for

non-abelian gauge theories. The issue of gauge invariance, however, does not pose if one is

interested in QCD in external magnetic fields. In fact, let us consider the lattice partition

function of QCD with f flavors of dynamical staggered quarks:

Z =

∫
DU e−SG

∏
f

[detM(U)]
1
4 , (1.7)

where SG is the gauge field action and M is the fermion matrix for a staggered quark with

bare mass amf :

Mn,m(U) =
4∑

ν=1

ην(n)

2

{
Uν(n)δm,n+ν̂ − U †ν (m)δm,n−ν̂

}
+ amf δm,n ,

ην(n) = (−1)n1+...+nν−1 . (1.8)

Since magnetic fields couple only to quarks, external magnetic fields can be introduced in

the lattice action by replacing in the fermion mass matrix eq. (1.8) the gauge field links

according to eq. (1.2), where the U ext
µ (x)’s are U(1) elements corresponding to the external

magnetic fields with continuum gauge potential Aext
µ (x). For instance, if we consider con-

stant magnetic fields directed along the x3 direction, then the continuum gauge potential

in the Landau gauge reads:

Aext
k (~x) = δk,2 x1H . (1.9)

Therefore, we may write:

U ext
1 (~x) = U ext

3 (~x) = U ext
4 (~x) = 1 , U ext

2 (~x) = cos(qfeHx1) + i sin(qfeHx1) , (1.10)

where e is the (positive) elementary charge and qf is the quark charge (qu = 2/3, qd =

−1/3). Since the lattices have the topology of a torus, the magnetic field turns out to be

quantized [4]:

a2qf eH =
2π

L2
s

next , next integer (1.11)

where Ls is the lattice spatial size. Indeed, in the recent literature this approach has been

adopted in extensive numerical simulations of QCD in external magnetic fields [7–23].
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An alterative approach to put background fields on the lattice has been proposed since

long time [24]. Indeed, that proposal allows to overcome the problem of gauge invariance by

implementing background fields on the lattice by means of the manifestly gauge-invariant

lattice Schrödinger functional. In this paper we present an exploratory study of lattice

QCD immersed in a uniform external magnetic field. The background field is introduced

by using the Schrödinger functional. Moreover, for simplicity, we restrict ourself to one

flavor of staggered dynamical quark.

The plan of the paper is as follows. In section 2, for completeness, we briefly discuss

our method to introduce background fields on the lattice. In section 3 we present the

results of our numerical simulations for several local observables. We also address the

problem of the possible dependence of the pseudoritical couplings on the magnetic field

strengths. Section 4 is devoted to the discussion of the effects of magnetic fields on QCD

thermodynamics. Finally, our conclusions are relegated in section 5.

2 Magnetic fields within the Schrödinger functional

For reader’s convenience, let us briefly review background fields in lattice gauge theories

within the Schrödinger functional. Firstly, we illustrate the method in pure gauge theories.

In ref. [24], to overcome the gauge invariance problem in presence of background fields, it

was proposed that background fields on the lattice could be implemented by means of the

gauge invariant lattice Schrödinger functional:

Z[U ext
k ] =

∫
DU e−SG , (2.1)

where the functional integration is extended over links on a lattice with the hypertorus

geometry and satisfying the constraints (xt ≡ x4 is the temporal coordinate)

Uk(x)|xt=0 = U ext
k (~x) , (k = 1, 2, 3) . (2.2)

One also imposes that links at the spatial boundaries are fixed according to eq. (2.2). In

fact, in the continuum this last condition amounts to the requirement that fluctuations over

the background field vanish at infinity. This approach has been applied for both abelian

and non-abelian gauge theories with different background fields [25–34].

The effects of dynamical fermions can be accounted for quite easily. Indeed, when

including dynamical fermions, the lattice Schrödinger functional in presence of a static

external background gauge field becomes:

Z[U ext
k ] =

∫
Uk(Lt,~x)=Uk(0,~x)=Uext

k (~x)
DU DψDψ̄e−(SG+SF )

=

∫
Uk(Lt,~x)=Uk(0,~x)=Uext

k (~x)
DUe−SG detM , (2.3)

where SF is the fermion action and M indicates the generic fermion matrix. Notice that

the fermion fields are not constrained and the integration constraint is only relative to the

gauge fields. This leads to the appearance of the gauge invariant fermion determinant after
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integration on the fermion fields. As usual we impose on fermion fields periodic boundary

conditions in the spatial directions and anti-periodic boundary conditions in the temporal

direction. In fact, eq. (2.3) has been employed to study the dynamics of QCD with two

degenerate staggered quarks [35, 36], as well as the quantum Hall effect in graphene [37].

In the case of QCD in constant magnetic fields the constraints in the lattice Schrödinger

functional need to be slightly modified to take into account that the magnetic field is

coupled only to quarks. To this end, we impose that during the upgrade of the gauge links

U ext
k (~x) = I, while for the upgrade of the fermion fields U ext

k (~x) = I× eiθextk (~x) where:

θext
k (~x) = δk,2 qf eH x1 . (2.4)

Since our Schrödinger functional Z[U ext
k ] is defined on a lattice with periodic boundary

conditions, usually we impose that:

θ2(x1, x2, x3, x4) = θ2(x1 + Ls, x2, x3, x4) . (2.5)

As a consequence the magnetic field H turns out to be quantized:

a2qf eH =
2π

Ls
next (2.6)

with next integer. However, it should be kept in mind that we are dealing with a periodic

lattice with fixed boundary conditions, so that is is not strictly necessary to impose the

quantization eq. (2.6) and the “integer” next can be an arbitrary real number.

3 Numerical results

We perform simulations of lattice QCD with one-flavor of rooted staggered quark. Our

numerical results were obtained by choosing as gauge action the Wilson action:

SG = β SW ≡ β
∑
x,µ>ν

(
1− 1

3
Re[TrUµν(x)]

)
(3.1)

where Uµν(x) are the plaquettes in the (µ, ν)-plane and β = 6
g2

. Therefore we are led to

consider the following lattice Schrödinger functional:

Z[U ext
k ] =

∫
Uk(Lt,~x)=Uk(0,~x)=Uext

k (~x)
DU e−βSW [detM(U)]

1
4 , (3.2)

where the staggered fermion matrix is given by eq. (1.8). To perform the functional inte-

gration over the SU(3) links we have made use of the publicly available MILC code [38]

which has been suitably modified by us in order to introduce the boundary constraints

eq. (2.2). All simulations make use of the rational hybrid Monte Carlo (RHMC) algorithm.

The functional integration is performed over the lattice links, but the links at the spa-

tial boundaries are fixed according to eq. (2.2). Accordingly, the links which are frozen

are not evolved during the molecular dynamics trajectory and the corresponding conjugate

momenta are set to zero. The length of each RHMC trajectory has been set to 1.0 in molec-

ular dynamics time units. For each value of the gauge coupling β and the magnetic field
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eH we collected 4000–5000 trajectories, and about 10000 trajectories around the critical

coupling. To allow thermalization we typically discarded 1000 trajectories. The statistical

errors were estimated by means of boostrap combined with binning.

In the present exploratory study we consider lattices of size Ls = 24 and Lt = 4 and

fixed bare fermion mass m0 ≡ am = 0.025. At fixed Lt the temperature of the gauge

system T = 1
aLt

is changed by varying the coupling constant β.

Since the smallest quark electric charge is |q| = 1/3, from eq. (2.6) we get:

a2 eH =
6π

Ls
next (3.3)

Different strengths of the external magnetic field are labelled by the parameter next accord-

ing to eq. (3.3). We performed simulations for next = 0, 1, 3, corresponding to field strength

a2eH = 0, 0.7854, 2.3562 in lattice units, and assumed qf = 2
3 (up quark). Note that, the

case of down quark qf = −1
3 can be recovered with next = −1

2 (a2eH = −0.3927). In fact,

to check the dependence of the free energy on the magnetic field we have also performed

numerical simulations for next = −1
2 .

For the sake of completeness let us discuss, briefly, how the background magnetic

field influences the dynamics of the gauge system. We said that to update the gauge

system we used the rational hybrid Monte Carlo algorithm. As it is well known (see for

instance ref. [39]), to simulate the fermion determinant one introduces color-triplet scalar

pseudofermion fields. The pseudofermion action depends on the inverse of the staggered

fermion matrix eq. (1.8). In the molecular dynamics one solves the equations of motion

of the momenta conjugated to the gauge links. The derivative of the gauge momentum

is called the force term, which is the formal derivative of the effective action with respect

to the gauge potential. Thus, the force term consists of two contributions, namely the

gauge force term and the fermion force term. Our boundary conditions correspond to set

U ext
k = I on the xt = 0 hypersurface and at the spatial boundaries of the lattice in the

gauge force term, while U ext
k (~x) = I × eiθextk (~x) in the fermion force term. To maintain the

above constraints during the molecular dynamics, the momenta conjugated to the frozen

gauge links are set to zero.

3.1 Local observables

In this section we are interested in the effects of the external magnetic field on several local

observables. First, we consider the gauge action which, following the MILC convention, we

define as:

Gaction =
1

L3
s Lt

〈 ∑
x,µ>ν

[3− Re TrUµν(x)]
〉
. (3.4)

In figure 1 we display the gauge action as a function on the gauge coupling β for three

different values of the magnetic field. Since Gaction is a pure gauge quantity, it couples to

the magnetic field only through quark loops. Therefore we expect that this quantity should

manifest a very weak dependence on the magnetic field. Indeed, figure 1 shows that the

effects of the magnetic field on the gauge action are at most of order 10−2 (see figure 5).

Interestingly enough, we see that the gauge action increases as a function of eH in the
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Figure 1. The gauge action eq. (3.4) versus β for qf = 2
3 and next = 0, 1, 3.

strong coupling region whereas it decreases in the weak coupling region. In fact the three

different curves displayed in figure 1 cross near the critical coupling βc ' 5.0.

A more interesting quantity is the quark chiral condensate:

〈ψ ψ〉 =
1

L3
s Lt

1

4
〈TrM−1〉 , (3.5)

which should display a pronunciate dependence on the magnetic field. In figure 2 we

display 〈ψ ψ〉 versus the gauge coupling β for three different values of the magnetic field

eH. The chiral condensate was computed by noise estimators with 4 random vectors. It

is evident that the chiral condensate increases as a function of eH for all temperatures.

For comparison, in figure 2 we also display the real part of the Polyakov loop expectation

value:

〈L〉 =
1

3L3
s

〈∑
~x

Lt∏
xt=0

TrU4(~x, xt)
〉
. (3.6)

The Polyakov loop L, likewise the gauge action, is a pure gauge observable. Nevertheless,

figure 2 shows that the Polyakov loop displays a sizable dependence on the magnetic field.

In particular, we see that L increases with eH for all temperatures as for the chiral con-

densate. This behavior can be qualitatively understood if the quark free energy decreases

with the applied magnetic field. In fact, later on we will show that the strongly interacting

system behaves like a paramagnetic medium, i.e. positive magnetic susceptibility.

Another interesting feature of figure 2 is the crossing of the chiral condensate and the

Polyakov loop near the critical temperature. In fact, figure 2 seems to suggest that the
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Figure 2. The chiral condensate eq. (3.5) (left) and the real value of the Polyakov loop eq. (3.6)

(right) versus β for qf = 2
3 and next = 0, 1, 3.

pseudocritical gauge coupling βc does not manifest a strong dependence on the magnetic

field eH.

3.2 Pseudocritical couplings

In this section we address the problem of the possible dependence of the pseudocritical

coupling on the magnetic field. In general, the (pseudo)critical coupling is determined as

the value for which some relevant susceptibilities exhibit a peak. In the present paper, to

precisely localize the peak in the relevant susceptivity we parametrize the peak region with

a Lorentzian function:

F (β) =
a1

a2 (β − βc)2 + 1
. (3.7)

Our estimate of the critical coupling βc is obtained by fitting the susceptivity to eq. (3.7) in

the peak region. We use the Polyakov loop susceptibility as well as the disconnected part

of the chiral susceptibility to locate the transition temperature to the high temperature

phase of QCD.

First, we consider the disconnected chiral susceptibility:

χdisc
ψ ψ

=
1

L3
s Lt

1

16

(
〈[TrM−1]2〉 − [〈TrM−1〉]2

)
. (3.8)

In figure 3 we show the disconnected chiral susceptibility as a function of the gauge coupling

for three different values of eH. As usual the disconnected chiral susceptibility displays a

sharp peak near the chiral critical coupling. Interestingly enough, the dependence of the
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Figure 3. The disconnected chiral susceptibility eq. (3.8) versus β for qf = 2
3 and next = 0, 1, 3.

The continuous lines are the results of the fits of the chiral susceptibilities to eq. (3.7). The estimate

critical couplings are reported in the legend.

chiral susceptibility on the magnetic field is almost relegated to the peak region. More-

over, the peak values increase with eH signaling that the chiral transition sharpens in

presence of a non-zero magnetic field. Notwithstanding, we find that, within our statistical

uncertainties, the chiral critical coupling does not depend on the magnetic field.

We have also considered the Polyakov loop susceptibility:

χL = L3
s

(
〈L2〉 − 〈L〉2

)
. (3.9)

Results for the Polyakov loop susceptibility are shown in figure 4. In this case we see that

the dependence of the Polyakov loop susceptibility on the magnetic field is less pronounced

with respect to the disconnected chiral susceptibility. Moreover, figure 4 shows that the

peak of χL decreases with increasing eH. This means that the applied magnetic field tends

to smooth out the deconfinement transition. However, even in this case the deconfinement

critical couplings does not display any appreciable dependence on eH. Moreover, we find

that the chiral and deconfinemnet critical couplings agree for any values of the magnetic

field strengths considered in this work. Finally, as further check, we have considered the

variation of the gauge action:

∆Gaction ≡ Gaction(eH 6= 0)−Gaction(eH = 0) , (3.10)

which is known to display a peak in the critical region. Of course, by using ∆Gaction we

may estimate the pseudocritical couplings only for non-zero magnetic field strengths.
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Figure 4. The Polyakov loop susceptibility eq. (3.9) versus β for qf = 2
3 and next = 0, 1, 3. The

continuous lines are the results of the fits of the Polyakov loop susceptibilities to eq. (3.7). The

estimate critical couplings are reported in the legend.

In figure 5 we show ∆Gaction versus β for the three different values of the magnetic

field employed in the present work. As discussed in section 3.1 the effects of the magnetic

field on the gauge action are tiny. Moreover, the non monotonic dependence of the gauge

action on eH is clearly displayed in figure 5. In any case, we see that ∆Gaction does display

a well developed peak in the critical region. We find that the peaks in ∆Gaction are located

at a systematically slightly larger values of the gauge coupling with respect to the chiral

and Polyakov loop susceptibilities. In a finite volume this is, of course, not unexpected.

Indeed, we recall that we are using lattices with fixed boundary conditions and, as previous

studies showed, the gauge action turns out to be more susceptible to finite volume effects.

Nonetheless, what it is relevant is that the pseudocritical couplings do not depend on the

magnetic field eH.

For reader convenience, in table 1 we summarize our estimates of the critical couplings

βc as function of the magnetic field eH. From table 1 we may safely conclude that the

critical temperature does not depend on the external magnetic field.

4 Thermodynamics in external magnetic fields

The partition function Z[U ext
k ] allows us to define observables that can be used to establish

the equation of state of the theory. Such observables play an important role in describing

the thermodynamic properties of the system.
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3 next = 1. The continuous

lines are the results of the fits of ∆Gaction to eq. (3.7). The estimate critical couplings are reported

in the legend.

The free energy density is related to the logarithm of the partition function as:

f(T,H) = −T
V

logZ[U ext
k ] = − 1

L3
s Lt

logZ[U ext
k ] . (4.1)

The pressure is given by the derivative of T logZ[U ext
k ] with respect to the volume. As-

suming that we have a large, homogeneous system, differentiation with respect to V is

equivalent to dividing by the volume. Therefore in the thermodynamic limit the pressure

can be written as minus the free energy density:

p(T,H) = −f(T,H) . (4.2)

Using the well-known relation between the trace anomaly (also called interaction measure)

and the derivative of the pressure:

I(T,H) = ε(T,H)− 3 p(T,H) = T 5 ∂

∂T

p(T,H)

T 4
, (4.3)

one can easily calculate the energy density:

ε(T,H) = I(T,H) + 3 p(T,H) , (4.4)

the entropy density:

s(T,H) =
ε(T,H) + p(T,H)

T
, (4.5)
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Operator a2eH βc

χdisc
ψ ψ

0 5.047(5)

0.7854 5.044(6)

2.3562 5.049(4)

−0.3927 5.046(2)

χL 0 5.060(5)

0.7854 5.048(10)

2.3562 5.041(11)

−0.3927 5.051(5)

∆Gaction 0 −
0.7854 5.078(6)

2.3562 5.079(5)

−0.3927 5.070(16)

Table 1. Summary of the values of the critical couplings βc estimated with different operators for

the magnetic field strenghts considered in this work.

and the speed of sound:

c2
s =

∂p

∂ε

∣∣∣∣
s

. (4.6)

As usual, we need to renormalize the free energy density by subtracting the divergent zero-

point energy. To do this it is enough to subtract the zero temperature contribution. Thus

we define:

fr(T,H) = f(T,H)− f(0, H) , pr(T,H) = −fr(T,H) . (4.7)

The zero temperature contributions are conventionally obtained by performing simulations

on lattices with Lt = Ls. Moreover, since we are interested in the thermal magnetic

properties of our system, we will focus on:

∆fr(T,H) ≡ fr(T,H)− fr(T,H = 0) , ∆pr(T,H) = −∆fr(T,H) . (4.8)

In a Monte Carlo simulation, one cannot compute the partition function directly. The most

frequently used method in practice is the integral method, in which a derivative of the free

energy with respect to some parameter serves as observable, which then gets integrated

again to yield the free energy density. Since we are doing simulations at fixed Lt, it is

convenient to take derivatives with respect to the bare gauge coupling β. The expectation

values of the derivatives with respect to β of our partition function correspond to the

average Wilson action. Thus, we have:

1

T 4

∂∆pr(T,H)

∂β
= −L

3
t

L3
s

{(
〈SW 〉H,T − 〈SW 〉H,0

)
−
(
〈SW 〉H=0,T − 〈SW 〉H=0,0

)}
. (4.9)

In figure 6 we report our results for the β-derivative of ∆pr(T,H) (normalized to T 4)

versus the ratio T/Tc for three different values of the magnetic field. We recall that the

temperature corresponding to a given value of the gauge coupling is given by the relation
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3 next = 1, 3, and qf = − 1
3 next = 1.

T = 1
Lta(β) . For the dependence of the lattice spacing on the gauge coupling we used the

two-loop β-function. Accordingly, we have:

a(β) ΛQCD = fQCD(β) , (4.10)

where fQCD(β) is the asymptotic scaling function of QCD with one dynamical fermion

Nf = 1:

fQCD(β) =

(
6b0
β

)−b1/(2b20)

exp

(
− β

12b0

)
, b0 =

11− 2
3Nf

(4π)2
, b1 =

102− 38
3 Nf

(4π)4
.

(4.11)

For definitiveness, the critical temperatures have been obtained by using the pseudocritical

gauge coupling estimated by means of the chiral susceptibilities. Obviously, a direct deter-

mination of the physical scale should be preferable. However, it is known that the lattice

violations to the asymptotic scaling law eq. (4.10) are within a few percent. So that, the

adopted approximation is adequate to the purpose of the present exploratory study.

From the derivative of the pressure, after numerical integration, we may easily obtain

∆pr(T,H) = −∆fr(T,H). In figure 7 we display the normalized pressure ∆pr(T,H) versus

the temperature for three different values of the magnetic field. Figure 7 shows that the

magnetic contributions to the renormalized pressure is clearly different from zero even for

T < Tc, and it seems to vanish rapidly for low temperatures. This behavior can be naturally

accounted for within the Hadron Resonance Gas model (see, for instance, ref. [40, 41]). On

the other hand, for temperatures above the critical temperature the pressure increases
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Figure 7. ∆pr(T,H)
T 4 versus T/Tc for qf = 2

3 next = 1, 3, and qf = − 1
3 next = 1.

rapidly in qualitative agreements with perturbative calculations in the high-temperature

regime [42].

As concern the energy density, using eq. (4.3) we may write:

I(T,H)

T 4
=

∆εr(T,H)− 3 ∆pr(T,H)

T 4
= T

dβ

dT

∂

∂β

[
∆pr(T,H)

T 4

]
, (4.12)

T
dβ

dT
= −a d β

d a
≡ Rβ(β) , (4.13)

where Rβ(β) is the lattice βQCD-function. According to our approximation, we have:

Rβ(β) = −
fQCD(β)
d
d β fQCD(β)

. (4.14)

Using eqs. (4.12), (4.13), and (4.14) we determined the so-called interaction measure dis-

played in figure 8 for three different values of the magnetic field.

After that, the magnetic contributions to the renormalized energy density can be

straightforwardly obtained as:

∆εr(T,H)

T 4
=

∆I(T,H)

T 4
+ 3

∆pr(T,H)

T 4
. (4.15)

In figure 9 we show the renormalized energy density. Even for the magnetic contribution

to the energy density we find two different regimes for T < Tc (confined phase) and T > Tc
(deconfined phase). Having determined the magnetic contribution to the pressure and
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Figure 8. The interaction measure I(T,H)
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Figure 9. ∆εr(T,H)
T 4 , eq. (4.15), versus T/Tc for qf = 2

3 next = 1, 3, and qf = − 1
3 next = 1.
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energy density, in principle one can construct the equation of state and obtain the entropy

density and the speed of sound by means of eqs. (4.5) and (4.6). For the purposes of

the present paper we do not discuss any further this matter. We, merely, observe that

in the deconfined phase T > Tc the magnetic contribute to the energy density increases

slower with respect to the pressure by increasing the temperature. This behavior leads to

a stiffening of the equation of state.

Let us, finally, address the problem of the magnetic susceptibility. As is well known, for

small magnetic field strengths we may write for the free energy density (see, for instance,

ref. [43]):

∆fr(T,H) = −1

2
χmag(T )H2, (4.16)

where χmag is the magnetic susceptibility. Therefore, to determine the magnetic suscep-

tibility we need to check if ∆fr(T,H) = −∆pr(T,H) scales with H2 at least for small

enough magnetic field strengths. To this end, in figure 10 we display ∆fr(T,H)
(qf eH)2

for different

values of the magnetic field strength. In fact, we see that the free energy density seems

to scale with H2 for (qf = 2
3 , next = 1), and (qf = −1

3 , next = 1), and for temperatures

not too far from the critical temperature. We note, however, that in the high-temperature

region physical observables are more affected by finite volume and cutoff effects. On the

other hand, we see clearly that for the strongest magnetic field used in this paper (qf = 2
3 ,

next = 3) the scaling with H2 is badly violated. It is useful to give the corresponding

values of the magnetic field in physical units. To this end, we use the known flavor depen-

dence of the QCD critical temperature reported in ref. [44] to infer that for Nf = 1 the

– 15 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
8

100 150 200 250 300

T (MeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

χ
m

a
g
(T

)/
(q

fe)
2

  |eH|
1/2

 = 0.48 GeV

  |eH|
1/2

 = 0.67 GeV

  |eH|
1/2

 = 1.17 GeV

Figure 11. The magnetic susceptibility χ
q2fe

2 as a function of the temperature for different magnetic

field strengths.

critical temperature is Tc ∼ 190 MeV. This corresponds to a lattice spacing a ' 0.26 fm.

So that, in the critical region, we estimate
√
|eH| ' 0.48, 0.67, 1.17 GeV corresponding to

next = −0.5, 1, 3 respectively. Thus, we see that for magnetic field strengths not exceeding

1.0 GeV the free energy density seems to display an approximate scaling with H2 within

our statistical uncertainties. This is in qualitative agreement with the results in ref. [7]

where the strongest magnetic field used was
√
|eH| ' 0.85 GeV. In any case, for physical

applications, we recall that the magnetic fields relevant for heavy-ion collision experiments

are of order
√
|eH| ∼ 0.1 GeV.

To determine the magnetic susceptibility we are lead to consider the free energy den-

sity for
√
|eH| ≤ 1.0 GeV where we can safely apply eq. (4.16). Indeed, in figure 11

we report our determination of the magnetic susceptibility as function of the tempera-

ture. For comparison, we also display our determination of the magnetic susceptibility for√
|eH| ' 1.17 GeV. From figure 11 we see that the magnetic susceptibility is positive in the

whole temperature range explored in the present study. Moreover, the magnetic suscep-

tibility increases monotonically with the temperature. Therefore, the strongly interacting

medium behaves as a paramagnetic substance both below and above the critical tempera-

ture Tc. It is remarkable that our results for the magnetic susceptibility is in fair qualitative

and quantitative agreement with ref. [19] where it has been considered Nf = 2 + 1 QCD

with physical quark masses, discretized on a lattice by stout improved staggered fermions

and a tree level improved Symanzik pure gauge action.
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5 Conclusions and discussion

In conclusion, let us summarize briefly the main results of the present paper. We investi-

gated QCD with one flavor of staggered quark in an external magnetic field on the lattice.

The external magnetic field has been introduced by means of the so-called Schrödinger

functional. We have investigated the magnetic properties of one-flavour quarks and gluons

in thermal equilibrium for magnetic field strengths up to
√
|eH| ≤ 1.17 GeV. In particu-

lar, we focused on the effects of the magnetic field on several local observables and found

results in qualitative agreement with recent results in the literature obtained with a dif-

ferent method, as described in section 1, to implement external magnetic fields in QCD

on the lattice. We have, also, looked for the effects of the magnetic field on the critical

temperature. Surprisingly, we found that the critical temperature does not change even for

the strongest magnetic field used in the present work. This is in striking contrast with the

results in the literature. However, since we used one flavor rooted staggered quark which is

known to be strongly affected by taste symmetry violation effects, one could suspect that

our results on the critical temperature is merely due to lattice artifacts. Indeed, presently

we are simulating the same physical system by adopting highly improved staggered quarks

(HISQ) where the taste symmetry violations are dramatically reduced. Nevertheless, our

preliminary simulations adopting HISQ quarks to do not yet display a clear dependence of

the pseudocritical temperature on the background magnetic field. In any event, we plan

to report progress on this subject in a future paper.

We evaluated the magnetic contributions to the pressure, energy density, and free

energy. Our results are in qualitative agreement with previous investigations. In partic-

ular, we confirm that the free energy density scales with H2 for small enough magnetic

field strengths. Moreover, we determined the magnetic susceptibility and found that the

strongly interacting medium behaves like a paramagnetic substance both below and above

the critical temperature in agreement with previous results in the literature.
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