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Abstract

Background: Network inference of gene expression data is an important challenge in systems biology. Novel
algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases
such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed
mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs
offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease
pathogenesis.

Methods: A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1β , TNF-α, TGF-β , and
PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were
batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for
the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with
soft integration of prior knowledge.

Results: Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes
belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust,
moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were
gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected
in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic
cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs
(including suppression of the transcriptional repressor OSR2 by all 4 stimuli.

Conclusion: A multi-stimuli GRN highly concordant with literature data was successfully generated by network
inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges
were independently validated by literature findings post network inference. The selected GO term ‘cartilage
development’ contained a number of differentiation markers, growth factors, and transcription factors with potential
relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated
in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D.
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Background
Networks of molecular components such as genes, pro-
teins, and metabolites play a crucial role in systems biol-
ogy. Since high-throughput gene expression data are now
more easily affordable, inference and modeling of gene
regulatory networks (GRNs) has become more important
over the last years. The regulation of gene expression can
be visualized by networks and used to obtain new insights
into the underlying biological mechanisms.
GRN inference from gene expression data is a widely

used and accepted approach to reconstruct networks in
systems biology. In this context, GRNs summarize gene
regulatory interactions, including the regulation of gene
expression by extra- and intracellular stimuli. The inferred
networks open the possibility to better understand the
underlying processes and cellular responses to manipula-
tion and represent a starting point for the extraction of
biological hypotheses.
Commonly, a GRN describing a biological network is a

graph G = (V ,E) where V represents the components
(nodes) and E the relationships (edges) between the com-
ponents. In the case of a GRNs, nodes represent genes and
edges stand for transcriptional regulation [1,2].
There are several inference methods, each using dif-

ferent sources and modeling assumptions that may lead
to different results and visualizations. To address GRN
inference from time series data, several methods and
approaches have been used. For example there are vec-
tor autoregressive models [3-6], linear Bayesian networks
[7,8] and ordinary differential equation (ODE)-based
approaches [9-11]. Regarding the fact that multi-stimuli
experiments often lead to complex networks, especially
if the data are time-resolved, heuristic network inference
approaches are appropriate to handle the high number
of possible structural connection parameters. Heuristic
approaches possess the ability to reduce the computation
time for network construction and still provide satisfac-
tory inference results.
To our knowledge, there are only few heuristic methods

for the inference of multi-stimuli experiments [12-14].
This type of experiments aims at investigating the rela-
tive importance of different stimuli for physiological and
pathological processes, which may depend on more than
one stimulus. In this case, the term multi-stimuli experi-
ments is commonly used in the literature [12-15].
To address the challenge of GRN inference from multi-

stimuli, time-resolved gene expression data, the heuristic
inference algorithm NetGenerator V2.0 was chosen in the
present study [12]. The main reason to select this method
is its ability to integrate prior knowledge obtained from
different sources. This leads to a network that combines
both expression data and prior knowledge, thus showing
the capability of generating meaningful results in various
biological and medical fields.

In the present study, the transcriptional regulation
in synovial fibroblasts (SFBs) isolated from rheumatoid
arthritis (RA) patients was studied by modeling the
response to 4 external stimuli (IL-1β , TNF-α, TGF-β , and
PDGF-D). RA is a chronic inflammatory and destructive
joint disease perpetuated by an invasive synovial mem-
brane, the so-called pannus tissue. Activated and semi-
transformed SFBs are key components of the inflamed
synovial membrane [16,17]. In the normal joint, SFBs
are characterized by a balanced expression of proteins
regulating the formation and degradation of the extra-
cellular matrix (ECM). In RA, however, SFBs are per-
manently activated by cytokines, e.g., TNF-α and IL-1β ,
which are potent pro-inflammatory cytokines especially
produced by macrophages [16,18]. Activated SFBs exces-
sively express and secrete tissue-degrading enzymes such
as matrix-metalloproteases (MMPs) or soft matrix com-
ponents (e.g., collagens), thus both maintaining the degra-
dation of ECM, cartilage, and bone, and inducing fibrosis
of the affected joints [18,19]. Moreover, SFB contribute to
joint inflammation by increased expression of additional
growth factors such as TGF-β or PDGF-D [17,20,21]. As a
consequence, autocrine mechanisms are assumed to play
a key role in synovial hyperplasia and the enduring acti-
vation of SFB [22]. For instance, TGF-β enhances its own
expression [23] and that of PDGF family proteins [23,24].
TGF-β , although also exhibiting deactivating features
[18], is known to support matrix remodeling/fibrosis and
initial activation of inflammatory processes. In contrast,
PDGF proteins act as potent growth factors for several cell
types in the synovial membrane, including SFBs [22], and
may serve as inducers of MMPs [25]. In addition, TGF-β
and PDGF-D are able to amplify the effects of other
cytokines. When combined, both cytokines augment the
secretion of pro-inflammatory and pro-destructive pro-
teins by SFB [26]; also, TGF-β and PDGF-D have been
independently shown to enhance the effects of IL-1β
[23,25].
Although several reports have covered the effects of

single or a combination of selected cytokines on SFB and
their influence on RA pathogenesis (reviewed in [22]), SFB
gene expression in response to 4 disease-relevant stimuli
(IL-1β , TNF-α, TGF-β , and PDGF-D) and the subse-
quent inference of GRNs have not been addressed to date.
Therefore, this study provides new hypotheses for the
interdependent regulation of SFB-derived gene expression
profiles under the influence of different cytokines and
growth factors.

Methods
Patients
Synovial membrane samples were obtained from RA
patients (n = 10; all Caucasian; Tables 1 and 2) upon joint
replacement/synovectomy at the Clinic of Orthopedics,



Kupfer et al. BMCMedical Genomics 2014, 7:40 Page 3 of 14
http://www.biomedcentral.com/1755-8794/7/40

Table 1 Clinical data of patients

Patient Gender/age Disease duration (years) RF ESR (mm/h) CRP (mg/ml) ARA Concurrent medication

EB87 F/65 12 + 50 106.7 5 NSAIDs

EB88 F/62 10 + 90 169.5 6 NSAIDs

EB213 F/69 15 + 94 99.1 4 NSAIDs, leflunomide, prednisone

EB220 F/57 20 + 23 2.3 4 NSAIDy, prednisone, MTX

EB221 F/66 12 + 7 5.4 4 NSAIDs, MTX

EB227 F/49 25 + 12 2.4 5 Celecoxib, prednisone, MTX, leflunomide

EB253 F/53 19 + 38 40.1 5 Azufildine

EB261 F/54 23 + 18 8.2 4 Prednisone, MTX, alendronate

EB266 F/63 11 + 35 17.4 5 NSAIDs, prednisone, azathioprin

EB268 F/53 8 + 25 14.8 6 NSAIDs, MTX, etanercept (TNF-blocker)

ARA, number of American Rheumatism Association (now ACR) RA classification criteria; CRP, C-reactive protein (normal range < 5 mg/l); ESR, erythrocyte
sedimentation rate; F, female; MTX, methotrexate; NSAIDs, non-steroidal anti-inflammatory drugs; RF, rheumatoid factor; +, positive.

Waldkrankenhaus ‘Rudolf Elle’, Eisenberg, Germany.
Informed patient consent was obtained and the study was
approved by the ethics committee of the Jena University
Hospital. RA patients were classified according to the
American College of Rheumatology (ACR) criteria valid
in the sample assessment period [27]. Negative purifica-
tion of primary SFBs from RA patients (purity: > 98%)
was performed as previously described [28].

Cell stimulation and isolation of total RNA
At the end of the fourth passage, the SFB were washed in
serum-free Dulbeccos modified Eagle’s medium (DMEM)
and then stimulated with 10 ng/ml of either IL-1β , TNF-α,
TGF-β , or PDGF-D (PeproTech, Hamburg, Germany) in
serum-free DMEM for 0, 1, 2, 4, or 12 hours (see Table 2).
At each time point, the medium was removed and the
cells were harvested after treatment with trypsin (0.25% in
Versene; Invitrogen, Karlsruhe, Germany). After washing

Table 2 Sample stimulation

Patient Stimulation of SFBs Creation date

EB87 TGF-β TNF-α - - 2006/06

EB88 TGF-β TNF-α - - 2009/03

EB213 TGF-β TNF-α - - 2009/03

EB220 TGF-β TNF-α IL-1β PDGF-D 2006/12

EB221 TGF-β TNF-α IL-1β PDGF-D 2006/12

EB227 TGF-β TNF-α - - 2009/03

EB253 - - IL-1β PDGF-D 2011/04

EB261 - - IL-1β PDGF-D 2011/04

EB266 - - IL-1β PDGF-D 2011/04

EB268 - - IL-1β PDGF-D 2011/04

Patient ID, stimulation of SFBs, and creation date (date of hybridization) of the
microarray.

with phosphate-buffered saline, cells were lysed with RLT
buffer (Qiagen, Hilden, Germany) and frozen at −70°C.
Total RNA was isolated using the RNeasy Kit (Qiagen)
according to the supplier’s recommendations.

Microarray analysis
The analysis of gene expression was performed using
HG-U133 Plus 2.0 RNA microarrays (Affymetrix, Santa
Clara, CA, USA; total of 120 microarrays). Labeling of
RNA probes, hybridization, and washing were carried
out according to the supplier’s instructions. Microarrays
were analyzed by laser scanning (Gene Scanner, Hewlett-
Packard, Palo Alto, CA, USA). The data for the stimuli
TNF-α and TGF-β are accessible through Gene Expres-
sion Omnibus series accession number GSE13837; the
data for the stimuli IL1-β and PDGF-D through Gene
Expression Omnibus series accession number GSE58203.
Since several studies have demonstrated that alternative
Chip Definition Files (CDF) for gene annotation resolve
the problem of choosing reliable and non-contradictory
probe sets for each transcript, the CDF presented by
Ferrari et al. was used in the present study [29]. This allows
to reduce the effects of cross-hybridization and other
system-based biases [30-33]. Robust Multichip Average
(RMA) was used with the default configuration for back-
ground adjustment and normalization [34].

ComBat
For batch correction of microarray data, the non-
parametric prior method of ComBat was used, which
represents an Empirical Bayesian (EB) method [35]. EB
methods are well-suited for the analysis of microarrays
since they are able to handle high-dimensional data from
small sample sizes in a robust manner. For this purpose,
EB methods borrow information from certain genes in
order to obtain improved estimates for the expression of
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all genes. This capability of shrinking the variance across
all genes has been shown in several publications [36-43].
Based on this advantage, Johnson et al. extended the EB
methods with a location and scale (L/S) adjustment, which
adjusts batches with small sample sizes to each other and
avoids special normalization procedures [35,44]. Based on
the available R-package of Johnson, a modified method
was developed for using RMA-normalized instead of
dChip-normalized data [45]. The Sample Information File
was created, which, besides the creation date, contains the
microarray name, time point (0, 1, 2, 4, and 12 h), and
treatment (IL-1β , TNF-α, TGF-β , and PDGF-D) of each
sample, all serving as covariates for the ComBat method.
The creation date was tagged as ‘batch effect’, necessary
for the correction of possible batch effects by ComBat.

Limma
For the identification of differentially expressed genes
(DEGs) in microarray experiments, the R-package
LIMMA was used [46]. LIMMA is commonly used in
the analysis of microarray data, designed to analyze com-
plex experiments involving simultaneous comparisons
between many RNA targets. Regarding the identification
of DEGs, the cardinal concept is to fit a linear model to
the expression data for each gene. The analysis is applied
to microarray expression data, which are represented
in a matrix consisting of probe sets (genes; rows) and
arrays (columns). LIMMA requires a design matrix rep-
resenting different RNA targets, as well as a contrast
matrix assigning the coefficients of the design matrix
to the contrasts of interest (i.e., expression over time,
disease status, and/or treatment). In our case, the con-
trasts of interests reflect the differential gene expression
over time for each stimulus (IL-1β , TNF-α, TGF-β , and
PDGF-D). The lmFit function fits the gene-wise linear
model to the microarray data. DEGs were obtained using
the implemented top-table function and user-specific
thresholds (i.e., 2-fold change; p-value ≤ 0.05) as recom-
mended in [47]. The Benjamini and Hochberg method
was used to correct the obtained p-values for multiple
testing [46].

GOstats
To test the association between GO categories and the
identified DEGs, the R-package GOstats was used. The
implemented conditional hypergeometric (hg) test uses
the relationships among GO categories to address the
hierarchical structure of the GO database [48]. For testing
the associations between GO and the list of selected
genes, a universe has to be defined containing all genes
on the microarray. In addition, the cutoff for the adjusted
p-value of the hg test has to be set to 0.05. The summary
containing the enriched GO categories and their signifi-
cance level is represented in the GOHyperGResult. The

result of GOstats also contains the actual gene count for
each of the significant GO categories.

Pathway studio
Pathway Studio 9 (PS9), formerly known as Pathway-
Assist, was used to extract prior knowledge for the DEGs
[49]. PS9 is an analysis software for pathways, gene reg-
ulation networks, and protein interaction maps. It allows
for an interpretation of microarray and proteomics data,
classification of proteins, drawing of pathway diagrams, as
well as export, import, and filtering of data. PS9 includes
the proprietary ResNet Mammalian Database 9 built from
20,000,000 abstracts in PubMed, as well as over 880,000
full-text articles [49]. All literature information regarding
the analyzed genes was manually validated in the respec-
tive publications by 2 long-term experts in the field of
(experimental) rheumatology (R.H.; R.W.K.), as described
previously [50]. This curation focused on the appear-
ance and the temporal behavior of the following features:
(i) constitutive vs. induced gene expression; (ii) co-
expression vs. divergent expression of mediators, TFs, and
target genes; (iii) expression of mediators/transcription
factors vs. expression of target genes; (iv) regulation of tar-
get gene expression based on the expression of different
transcription factors; (v) expression of individual genes vs.
expression of their functional groups; and (vi) discrepan-
cies to the literature. Subsequently, the extracted interac-
tions were assessed with respect to biological coherence
and relevance.

Network inference
Network inference requires previous standardization of
the gene expression profiles, consisting of centering and
scaling of each time series. The centering includes sub-
traction of the initial value of the time series (0 h) from
all expression values. Consequently, the time series for
each gene starts from the value zero. A subsequent scaling
divides each time series by its respective extreme, which
leads to gene-wise scaled data varying between −1 and 1.
Network inference was performed using the NetGene-
rator V2.0 [12], which models gene regulatory networks
based on a system of ODEs:

ẋi(t) =
N∑

j=1
ai, jxj(t) +

M∑

k=1
bi,kuk(t)

The sum of weighted gene expression of N genes and
weighted input u(t) describes the dynamic change of
expression xi of gene i. The terms uk(t) represent the
external stimulation (IL-1β , TNF-α, TGF-β , and PDGF-
D; M = 4) in a step function (uk(t < 0) = 0 and
uk(t >= 0) = 1). The interaction parameters ai, j and
the input parameters bi,k model the regulatory interac-
tions. The number of potential interactions sums up to
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N2+M·N , whereN is the number of genes finally selected
for modeling andM is the number of stimuli.
To denote potential (positive and negative) interactions

in the network, the parameters ai, j and bi,k were esti-
mated, with positive values representing activating con-
nections and negative values representing repression. The
model interaction parameters, which have to be deter-
mined by the NetGenerator V2.0 algorithm, characterize
the structure of the GRN. The main component of the
heuristic algorithm is an optimization procedure which
minimizes the number of non-zero parameters (repre-
sented as edges in the network) required to achieve a
good fit of the simulated model kinetics to the measured
time series data. The NetGenerator V2.0 applies explicit
structure optimization involving iterative construction of
a sparse sub-model [12,51-53].
One of the advantages of the NetGenerator V2.0

algorithm is the possibility to integrate prior knowledge.
This knowledge is received from diverse resources such
as the published literature. Since the extracted knowl-
edge is independent of the time series data, it provides
additional information for the inference process. To rep-
resent the prior knowledge, a separate interaction matrix
is established assigning specific values to the interactions
among genes. This information is encoded by the values
shown in Additional file 1. To obtain the best results for
the fitting of the inferred network model to the expression
data, it is necessary that the provided knowledge is flexibly
integrated (referred to as soft integration in the litera-
ture [54]). This avoids under-fitting or over-fitting as often
observed upon hard knowledge integration [54]. The best
solution is a balance between low network complexity (i.e.,
the lowest possible number of edges) and the lowest possi-
ble deviation between simulated andmeasured expression
values (i.e., average mean squared error - MSE). The most
important parameter is the ‘allowedError’, which controls
this balance. In this context, the ‘allowedError’ repre-
sents the maximally allowed error for any gene, stimulus,
and/or time point. To determine the optimal value for the
‘allowedError’, the resulting models of the inference runs
were analyzed. The optimized ‘allowedError’ resulting in
a low deviation (MSE), a low number of network edges,
and a high number of prior knowledge edges, was cho-
sen for further analysis. The selected model was validated
regarding the robustness of the inferred network against
small changes in the time series data, reflecting measure-
ment error due to technical or biological variance. There-
fore, Gaussian distributed (N (0, 0.052)) random noise was
added to the original data. This procedure was repeated
100 times, leading to a series of inferred models. These
models were analyzed concerning the occurrence of the
edges of the undisturbed network model. Edges with an
absolute frequency > 51 were regarded as stable and
consequently integrated into the final consensus model.

Results
Analysis of differentially expressed genes
Using RMA-normalized arrays (in total 120 arrays), the
expression values were corrected regarding possible batch
effects with the modified version of ComBat, since the
data were generated at different dates (Table 2; [45]). For
each stimulus, genes differentially expressed over time
were identified using LIMMA and thresholds for fold-
change and p-value (fold-change > 2; p-value ≤ 0.05;
Table 3). For the subsequent GO analysis, the union of the
DEGs resulting from the different stimuli was used. This
resulted in a set of 1,914 genes representing the input for
GOstats analysis (p-value ≤ 0.05).
The most significant GO term ‘cartilage development’

(GO:0051216; p-value of 1.02e−15; 24/134 genes; Table 4)
and in particular the 24 DEGs identified in this GO term
were chosen for network inference (Table 5). In order to
show the average/variance for the different patients, the
time-course of the expression of the 24 genes (average
+/− standard deviation of 6 replicates; see Table 2) are
depicted in Additional file 2.
We have used GO analysis for an approach to the

potential functional relevance of the 1914 differentially
expressed genes, since it is one of the best available
sources of information for TF-gene or gene-gene inter-
actions and their biological importance. The choice of
the 24 DEGs from the GO term was further supported
by the fact that 11/24 genes also appeared in the inde-
pendent GO term ‘regulation of cartilage development’.
In addition, the 24 chosen genes were manually checked
by the above 2 long-term experts in the field of (experi-
mental) rheumatology (R.H.; R.W.K.) for consistency with
the known literature as published previously [50]. Also,
the 24 chosen genes contain 13 transcription factors, 8
secreted factors, and 3 genes with other functions (now
color-highlighted in Table 5), indicating a good balance
between regulating factors and effector/target molecules
likely to represent the (patho)physiological processes.
Prior knowledge for the 24 DEGs of the GO term

‘cartilage development’ was extracted using PS9 (see
Additional file 3). The gene-to-gene interactions were
subsequently formatted for input into the network infer-
ence tool NetGenerator V2.0 (see Additional file 1). All
extracted knowledge was manually verified in order to

Table 3 Number of DEGs and their union

Stimulus # Genes Union

TGF-β 423

TNF-α 578 1914

IL-1β 641

PDGF-D 1192

Total number of DEGs for each stimulus.
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Table 4 GO analysis and the top 10 GO terms resulting fromGO analysis

TermID Category Count Size p-value Term

GO:0051216 BP 24 134 1.02e-15 Cartilage development

GO:0034097 BP 101 440 1.14e-15 Response to cytokine stimulus

GO:0071345 BP 84 343 6.59e-15 Cellular response to cytokine stimulus

GO:0019221 BP 71 281 1.68e-13 Cytokine-mediated signaling pathway

GO:0042127 BP 173 1007 5.77e-13 Regulation of cell proliferation

GO:0061035 BP 11 37 5.92e-13 Regulation of cartilage development

GO:0044249 BP 557 4336 6.16e-13 Cellular biosynthetic process

GO:0034645 BP 464 3483 7.49e-13 Cellular macromolecule biosynthetic process

GO:0070887 BP 213 1324 7.68e-13 Cellular response to chemical stimulus

GO:0048522 BP 369 2649 1.58e-12 Positive regulation of cellular process

The GO term ‘cartilage development’ was the most significant term with a p-value of 1.02e−15. The GO term ‘regulation of cartilage development’ (GO: 0061035) was
also listed with a p-value of 5.92e−13, containing a subset of the genes of the GO term ‘cartilage development’.

Table 5 Genes contained in themost significant GO term ‘cartilage development’

GCID SYMBOL ENTREZ GENENAME UNIPROT MOL CAT

GC08P100025_at OSR2 116039 Odd-skipped related 2 (Drosophila) Q8N2R0 TF

GC02M172929_at DLX2 1746 Distal-less homeobox 2 Q07687 TF

GC06P012290_at EDN1 1906 Endothelin 1 P05305 SF

GC04P123747_at FGF2 2247 Fibroblast growth factor 2 (basic) P09038 SF

GC05P042459_at GHR 2690 Growth hormone receptor P10912 -

GC02P121456_at GLI2 2736 GLI family zinc finger 2 P10070 TF

GC07M041970_at GLI3 2737 GLI family zinc finger 3 P10071 TF

GC07M027220_at HOXA11 3207 Homeobox A11 P31270 TF

GC12M012173_at LRP6 4040 Low density lipoprotein receptor-related protein 6 O75581 -

GC15P067358_at SMAD3 4088 SMAD family member 3 P84022 TF

GC04P004925_at MSX1 4487 msh homeobox 1 P28360 TF

GC12P104783_at CHST11 50515 Carbohydrate (chondroitin 4) sulfotransferase 11 Q9NPF2 -

GC09P132427_at PRRX2 51450 Paired related homeobox 2 Q99811 TF

GC12M028011_at PTHLH 5744 Parathyroid hormone-like hormone P12272 SF

GC11M065421_at RELA 5970 v-rel reticuloendotheliosis viral oncogene homolog A (avian) Q04206 TF

GC14M054416_at BMP4 652 Bone morphogenetic protein 4 P12644 SF

GC08M049880_at SNAI2 6591 Snail homolog 2 (Drosophila) O43623 TF

GC20P048599_at SNAI1 6615 Snail homolog 1 (Drosophila) O95863 TF

GC17P070117_at SOX9 6662 SRY (sex determining region Y)-box 9 P48436 TF

GC19M041837_at TGFB1 7040 Transforming growth factor, beta 1 P01137 SF

GC01M228106_at WNT9A 7483 Wingless-type MMTV integration site family, member 9A O14904 SF

GC12P066218_at HMGA2 8091 High mobility group AT-hook 2 P52926 TF

GC12P001726_at WNT5B 81029 Wingless-type MMTV integration site family, member 5B Q9H1J7 SF

GC05P170846_at FGF18 8817 Fibroblast growth factor 18 O76093 SF

GCID - GeneCard ID; SYMBOL - Offical gene symbol; ENTREZ - ENTREZ ID; GENENAME - Offical gene name; UNIPROT - UNIPROT ID; MOL CAT - Molecular Category;
TF - transcription factor, SF - secreted factor.
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avoid doubtful and misleading statements in the respec-
tive publications.
Network inference was performed using the tool Net-

Generator V2.0, employing two separate data matrices
as input. For the first input data matrix, standardized
time series expression data (see Methods for definition)
of the selected 24 genes following stimulation of RA-SFBs
with IL-1β , TNF-α, TGF-β , or PDGF-D were generated.
The absolute expression values for the 24 selected genes
were independently calculated for each stimulus and aver-
aged over 6 biological replicates (see Table 2). The first
input data matrix thus contained 20 rows (mean values
for the 5 time points regarding each of the 4 stimuli) and
24 columns (selected genes, i.e., DEGs belonging to the
GO term ‘cartilage development’). The second input data
matrix, representing prior knowledge concerning gene-
to-gene interactions, consisted of 24 columns and 24 rows
(see Additional file 1). For network inference with the Net-
Generator V2.0 tool, several runs were performed with
varying configuration parameter values in order to opti-
mize both the ‘average MSE’ and the number of inferred
network edges (for details see Methods section). The

parameter ‘allowedError’, which has the largest influence
on the results of the inference process, wasmodified in the
range of 0.001 and 1. The results are displayed in Figure 1.
The best model, selected on the basis of low average MSE
and high number of integrated prior knowledge edges,
showed 17 integrated prior knowledge edges, 84 network
edges in total, and an ‘allowedError’ of 0.045. The resulting
network is shown in Additional file 4.
The quality of the model optimization was confirmed

by a good fit of the simulated gene expression profiles
(obtained by network inference) to the measured data
(Figure 2).
Subsequently, a stability analysis (also called ‘internal

validation’) was performed to investigate the robustness
of the model. The main reason for this investigation is to
avoid an over-fitting of the inferred model to the mea-
sured data. Since minor data variability (i.e., noise) should
not change the structure of the GRN model, the dis-
turbed models should show a high structural similarity
to the initial network. Therefore, noise was added to
the expression values and further network inference was
performed.

Figure 1 Impact of the parameter variations. Influence of the NetGenerator parameter ‘allowedError’ on average MSE (+), number of network
edges (o), and number of integrated prior knowledge edges (�). The optimized model, selected on the basis of low average MSE and high number
of integrated prior knowledge edges (indicated by a dotted line), showed an average MSE of 2.91, 17 integrated prior knowledge edges, 84 network
edges in total, and an ‘allowedError’of 0.045.
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Figure 2 Time courses of measured and simulated gene expression data. Each panel displays the results for one of the 24 differentially
expressed genes (DEGs) selected from GO term ‘cartilage development’, comparing measured and simulated expression values (both in a scaled
form) over time (h). The measured, interpolated data are indicated by dashed lines, the simulated expression data by solid lines, with each color
representing one of the 4 stimuli (IL-1β = turquoise; TNF-α green; TGF-β = red, and PDGF-D = purple).
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Network inference with disturbed data was repeated 100
times, leading to a series of inferred models. These mod-
els were analyzed concerning the occurrence of the edges
of the undisturbed network model. Edges with an abso-
lute frequency greater than 51 were accepted as stable and
integrated into the consensus model.
This resulted in a medium-scale consensus network,

containing all 24 genes differentially expressed in response
to at least one of the 4 stimuli (Figure 3). The fact that
the network contains only 57 edges in total (26 stimuli-to-
gene edges and 31 gene-to-gene edges) indicates that it is
sparsely connected and thus of moderate complexity. This
desired result of the stability analysis is also reflected in a

decrease of the total number of integrated edges from 84
in the initial model to 57 in the consensus model.
Interestingly, 15/57 gene-to-gene edges of the consensus

model represented prior knowledge edges at the respec-
tive date of analysis (PS9 version from 2012/09/12; illus-
trated by 15 green gene-to-gene edges in Figure 3).
Three sources of additional literature knowledge

were used for ‘external’ validation of the consensus
model: (i) stimuli-to-gene interactions extracted by PS9
(2013/02/18) not considered for network model inference
(see Additional file 5); (ii) gene-to-gene interactions inte-
grated into PS9 in the period between network inference
(2012/09/12) and external model validation (2013/02/18);

Figure 3 Consensus network of the 24 differentially expressed genes (DEGs). The model contains nodes representing the 4 stimuli and the 24
selected DEGs. The heuristic optimization leads to an optimal fit of the model to the measured data and is preferably based on inferred edges
supported by prior knowledge (represented in green). Edges ‘externally’ validated by additional knowledge are emphasized by green double-line
edges. However, the model also contains edges only predicted from the expression data (represented in black) and one edge conflicting with prior
knowledge (represented in red).
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(iii) interactions resulting frommanual literature searches.
This ‘external’ model validation resulted in the confirma-
tion of 10 more edges (1 gene-to-gene and 9 stimuli-to-
gene interactions; indicated by the respective 10 green
edges in Figure 3). The 7/10 interactions derived from PS9
analysis included 6 interactions as named above in (i) and
one interaction as named in (ii) (the gene-to-gene edge
EDN1 to SNAI1 [55]).
The manual literature searches yielded 3/10 confirmed

interactions (TGFB1 to TGFB1, GLI2, and WNT5B;
[56-61]. Only one contradictory edge was noted (red edge
in Figure 3).
Regarding the whole process of ‘internal’ and ‘external’

validation, the number of edges confirmed by literature
knowledge increased from 17 to 25 from the initial to the
consensus network (compare Figure 3 to Additional file 4).

Discussion
To our knowledge, this is the first network modeling the
complex, time-resolved concerted action of 4 different
disease-relevant mediators (TNF-α, IL-1β , TGF-β , and
PDGF-D) on the gene expression in RA-SFBs.
On one hand, several known effects of each stimulus

(e.g., induction of transcription factors such as SMAD3,
SNAI2, and GLI2 by TGF-β [62-64] or RELA by TNF-α
and IL-1β [65]) were represented in the present net-
work. Such transcription factors regulate the expression
of their target genes, thus controlling the subsequent
cellular response to the (combination of) different stim-
uli. This includes the steering of important pathophys-
iological processes in RA, such as ECM formation and
fibrosis induction (guided by SMAD3; [62]), proliferation,
cell survival, and inflammation (driven by RelA; [66]), as
well as differentiation or dedifferentiation (controlled by
SNAI2 [67] or GLI2 [68]). On the other hand, the present
network predicted unexpected regulatory connections
(e.g., induction of GLI2 by PDGF-D).
Regarding the network inference, NetGenerator V2.0

was successfully applied to model a medium-scale (24
genes and 4 stimuli), robust network of moderate com-
plexity (57 edges). The full interaction matrix of the linear
model for N genes used in the present study has N ∗ N
elements (ai,j in the eq. in the chapter ‘Network Inference’
above) and thus requires at least N samples with N gene
expression values each. In addition, forM stimuli (i.e., 4 in
the present study) a number of M ∗ N elements (bj, k) has
to be added. Thus, in the present study with 24 genes and
4 stimuli, a total of at least 28 samples would be required
to identify 672 edges. As a consequence, the number of
inferred edges (57/672) is only 8.5% of that in the fully con-
nected network. This selection of the most reliable edges
is driven by both the criterion of sparseness and prior
knowledge. There was an impressive fit of the simulated
expression values to the measured values with a small

average mean squared error, in particular with regard to
the fact that the response of RA-SFB to 4 different stimuli
was simultaneously modeled. In addition, a high percent-
age of literature-confirmed edges (15/57) could be used
for inference of the consensus network. Strikingly, post-
inference, ‘external’ network validation resulted in the
confirmation of 10 additional network edges, thus yield-
ing a total of 25/57 (44%) literature-supported network
edges. The remaining 32 predicted edges (consisting of
only one contradictory edge and 31 edges without lit-
erature information) still require verification by future
wet-lab experiments.
However, the algorithm used for network inference in

the present study also shows some limitations. A detailed
mechanistic model for transcriptional GRN would also
have to consider important steps such as processing,
transport, translation, and degradation of mRNA, or else
the parallel existence of numerous interacting molecules
such as transcription factors, (phosphorylated) proteins,
micro-RNA etc. In addition, effects of post-translational
protein modifications, interactions with co-factors, and
intracellular localization should be considered. How-
ever, if medium scale models - such as in the present
study - are to be analyzed, mechanistic modeling reflect-
ing all of the above processes is presently impossible due
to the lack of detailed data and/or knowledge. Our current
aim was to use the gene expression profiles of stimu-
lated RA-SFBs to uncover relevant and unknown stimuli-
to-gene or gene-to-gene relations, and thus to identify
potential key regulators for RA.
In contrast to biological systems consisting of numerous

individual genes and their multiple reciprocal interac-
tions, network modeling based on limited gene expression
data sets (120 microarrays derived from 5 time points,
6 biological replicates, and 4 stimuli) requires restricted
complexity (i.e., a low number of genes; 24 in the present
study) and a limited number of interactions (i.e., stimuli-
to-gene or gene-to-gene interactions; 57 in the present
study). The aim of restricted network complexity was also
achieved by only assuming linear associations between the
individual components of the network, allowing a more
reliable modeling of data with considerable noise. The
inference with complex, unknown non-linear elements
would require a larger set of noise-free data (which is not
realistic for in-vivo and in-vitro studies, and likely diffi-
cult to finance) to test for the best type of non-linearity
and to identify its additional parameters (see section 3.3.2
in [53]). Although known non-linear relationships could
be easily integrated into the network inference algorithm,
this extension would still require prior knowledge about
the type of relationship and a substantially larger data
set (i.e., several hundred microarrays). By using cells
from 6 different biological replicates (i.e., RA patients;
see Table 2) in the present data set, a special attempt
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was made to consider the biological variance in diseased
individuals.
The main novelty of the present approach for dynamic

GRN inference is the possibility to consider the effects
of multiple stimuli, which permits the advanced, simul-
taneous analysis of multi-experiment time series ex-
pression data, in our case together with the option
of soft integration of prior knowledge. For example,
NetGenerator was capable of modeling the response follo-
wing the initial stimulation of RA-SFBs by TNF-α, IL-1β ,
TGF-β , and PDGF-D, e.g., sequential activation of signal-
ing molecules/transcription factors (see 13/24 potential
transcription factors in Table 5) and/or protein secretion
of (growth) factors (8/24 potential factors in Table 5),
which may support enduring activation of RA-SFBs [22]
and persistence of joint inflammation and destruction in
RA [16]. In addition, NetGenerator suggested that a vari-
ety of factors is induced in response to more than one
stimulus. For instance, TGF-β , WNT9A (also known as
WNT14), and PTHLH (also known as PTHRP; mediated
via SMAD3) are induced by both TGF-β and PDGF-D,
which is in good agreement with the literature [56,58,59].
Themulti-stimuli approach also creates the basis to pre-

dict possible cross-talk between signaling pathways distal
to the mediator-receptor level with potential relevance for
the pathogenesis of RA. For instance, the network sug-
gests parallel possibilities for the induction of the gene
expression of RELA by IL-1β and TFN-α, either directly
or mediated by suppression of the transcriptional repres-
sor OSR2 (an example for a positive feed-forward network
motif ). In addition, our model suggests an induction of
FGF2 and FGF18 by all 4 stimuli via the transcription fac-
tors GLI2, PRRX2, MSX1, and/or OSR2. In this context,
the predicted suppression of the transcriptional repres-
sor OSR2 by all 4 stimuli analyzed in this study (as well
as the influence of 2 or 3 stimuli on the genes TGF-β ,
RELA, GLI2, WNT5B, and WNT9A) may well indicate
the existence and/or importance of respective cross-talk
among these mediators in RA-SFBs. Thus, our predic-
tive model provides new information about the sequential
cascade regulation of gene expression, since the under-
lying indirect activation pathways are still inadequately
characterized in the literature.
However, the network also revealed opposing regula-

tory effects, e.g., suppression of WNT5B by TNF-α and
IL-1β , but induction by TGF-β , thus reflecting the dif-
ferential characteristics of the respective mediators. This
may reflect the complex, mostly indirect induction of gene
expression via subsequent signaling molecules by exter-
nal pro-inflammatory cytokines/ growth factors such as
IL-1β , TNF- α, and TGF-β .
Also gene-regulatory (sub-) cycles were identified

within the network. Two positive feedback loops were
predicted by the inferred network (i.e., the loop between

BMP4, GLI3, and PTHLH, and the loop between
TGFB1, EDN1, and FGF2). These positive feedback loops
bear pathogenetic potential for RA since deregulated
expression of these relevant genes could contribute to
pro-inflammatory or pro-destructive processes in RA
[69-76]. For instance, TGF-β/SMAD3-induced PTHLH
could suppress BMP4 expression, thereby suppressing
BMP4-driven transcription of the negative transcription
factor GLI3, and thereby enhancing its own transcrip-
tion. This circuit could provide a functional basis for the
enhanced expression of PTHLH and reduced amounts of
BMP4 in RA synovial membrane and fluid, in analogy to
previous reports [72,77]. However, since no explicit evi-
dence for the existence of such feedback loops was found
in the respective literature, this issue remains a target of
future studies.
Interestingly, the inferred GRN showed a relatively high

number of stimuli-to-gene edges in the case of TGF-β and
PDGF-D (9 each) and a lower number of such edges for
TNF-α and IL-1β (5 and 3, respectively). In addition, 6/9
of the TGF-β-to-gene edges were confirmed by literature,
whereas only 1 PDGF-D-to-gene edge was validated by lit-
erature, underlining the novelty of pathogenetic PDGF-D
effects in RA ([21]; presentmodel). The relative preference
of stimuli-to-gene edges for TGF-β and PDGF-D is likely
caused by the overrepresentation of DEGs for PDGF-D
(see Table 3) and the exclusive use of the most significant
GO term ‘cartilage development’ for network inference
(see Table 4). Of the 8 non-confirmed, novel PDGF-D-
to-gene edges, particularly WNT9A (stability score of
92/100; Figure 3) and possibly MSX1 (score of 86/100)
would be the most attractive ‘key regulator’ targets for
experimental validation.
Among the genes emphasized in the above discussion

for the structural features of the inferred model, WNT9A,
PTHLH, FGF2, and FGF18 are secreted proteins involved
in tissue development, especially formation of cartilage
and bone [69,72,75]. In addition, PTHLH has been shown
to mediate anti-proliferative effects and to induce the pro-
duction of matrix-degrading enzymes [73], which may
participate in cartilage and bone destruction [70]. Finally,
FGF2 supports angiogenesis and inflammation in the syn-
ovial membrane [76]. Therefore, these factors may trigger
the activation of RA-SFBs and other articular cell types
such as chondrocytes or osteoblasts [20,71,74,75,78].

Conclusion
NetGenerator V2.0 was successfully applied to model a
dynamic, medium-scale (24 genes and 4 stimuli), robust
GRN of moderate complexity (57 edges). In addition, the
predicted GRN showed a high reliability, since 10 pre-
dicted edges were independently validated by literature
findings after completion of the inference process. Also,
the model reflects known network motifs that are crucial
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for dynamic cellular behavior, such as cross-talk among
pathways, positive feed-forward motifs, and positive feed-
back loops. Finally, the model provides new insight into
the response of pathogenetically relevant RA-SFBs to
multiple stimuli implicated in the pathogenesis of RA,
especially the ‘novel’ potent growth factor PDGF-D. In
particular, transcription factors such as SMAD3, SNAI2,
and GLI2 (induced by TGF-β), or RELA (induced by
TNF-α and IL-1β), as well as the secreted factorsWNT5B
(suppressed by TNF-α and IL-1β , but induced by TGF-β),
and WNT9A (induced by both TGF-β and PDGF-D)
are examples of complex network interactions resulting
from the present study and may indicate very attractive
‘key regulator’ targets for experimental validation and/or
therapy.

Additional files

Additional file 1: Prior knowledge formatted for subsequent GRN
inference. Prior knowledge obtained from Pathway Studio and formatted
for NetGenerator V2.0. After manual review of the respective publications
this knowledge was converted into a knowledge matrix. The knowledge is
represented as follows: There is a connection (encoded by 1), there is no
connection (0), there is an activation (10), there is an inhibition (−10) and
no information is available (NA). These labels follow the approach of soft
integration of prior knowledge.

Additional file 2: Time-course of the expression of the 24 genes
(average +/− standard deviation of 6 replicates). The plot shows the
time-courses for each of the 24 genes with the standard deviation for each
time point.

Additional file 3: Prior Knowledge for subsequent GRN inference. The
Excel file contains the output of Pathway Studio for all 24 genes which are
components of the subsequent network inference process.

Additional file 4: Inferred network. Initially inferred model containing a
total of 84 edges. Seventeen of the edges are integrated prior knowledge
edges (indicated in green).

Additional file 5: Stimuli-to-gene interactions. The Excel file contains
the output of Pathway Studio for the stimuli-to-gene interactions (PS9,
version from 2013/02/18).
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