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Abstract We investigate the relative probabilistic support afforded by the combi-

nation of two analogies based on possibly different, structural similarity (as opposed

to e.g. shared predicates) within the context of Pure Inductive Logic and under the

assumption of Language Invariance. We show that whilst repeated analogies

grounded on the same structural similarity only strengthen the probabilistic support

this need not be the case when combining analogies based on different structural

similarities. That is, two analogies may provide less support than each would

individually.

Keywords The counterpart principle � Structural similarity � Analogy � Inductive

logic � Logical probability � Rationality � Uncertain reasoning

1 Introduction

Suppose that I am considering how likely it is that my son would enjoy a visit to the

cinema to see The Sound of Music. Thinking about it I recall that last year he did

enjoy seeing Toy Story which somewhat enhances my belief that he will also enjoy

The Sound of Music. I then remember my aunt telling me how much she enjoyed it.

Should this now further increase the probability I would give to my son liking it?
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Here is an example of two facts which individually seem to provide analogical

support for my son liking The Sound of Music yet in combination they seem to be

pulling in different directions and possibly canceling each other out. (Like enjoying

curry and rhubarb crumble but not both at the same time!)

The plan in this paper is to investigate this issue of combining analogical support

(at least up to two such supports) within the context of Pure Inductive Logic (PIL for

short). Of course since this version of Carnapian Inductive Logic considers the

assignment of rational, or logical, probability in the absence of any intended

interpretation of the language on closer scrutiny the above example hardly seems

relevant (since we already know a great deal about films, aunts, etc. so they are very

far indeed from being uninterpreted). Nevertheless it still seems to us interesting to

consider this question ‘in vacuo’, in other words as a nascent artificial agent might

do.

Within philosophy, and similarly in AI and psychology, there is a considerable

literature on analogy, see Bartha’s (2013, 2009) for an excellent overview. Bartha

however explicitly avoids considering approaches to analogical reasoning within the

general framework of Carnap’s Inductive Logic, as found for example in Carnap

(1952, 1980), Carnap and Stegmüller (1959), Costantini (1983), Festa (1996),

Huttegger (2014), Kuipers (2000, 1984), Maher (2000, 2001), Maio (1995),

Niiniluoto (1981, 1988), Pietarinen (1972), Romeijn (2006), Skyrms (1993), Spohn

(1981), Welch (1999).1 It is within this framework, more specifically within PIL and

directly following on from the earlier (Hill et al. 2011; Hill and Paris 2013a, b;

Howarth et al. 2016; Paris and Vencovská 2015), that this present paper is set.

Working within such a mathematical setting has the advantage of precision and

permanence, a correct theorem cannot be denied only at worst put aside as

irrelevant, though we will argue later that results in this formal backwater do have

relevance within the wider ambit.

2 Notation and Context

The context of this paper is PIL as explained, for example, in Paris (2015) and Paris

and Vencovská (2015). Thus we have a language L with relation symbols

R1;R2; . . .;Rq, say of finite arities r1; r2; . . .; rq respectively, and constants an for

n 2 Nþ ¼ f1; 2; 3; . . .g, and no function symbols nor equality.2 Let SL denote the

set of first order sentences of this language L.

We are interested in picking a rational probability function w on SL, i.e. a

function w : SL ! ½0; 1� such that for h;/; 9xwðxÞ 2 SL

(P1) If � h then wðhÞ ¼ 1,

(P2) If � :ðh ^ /Þ then wðh _ /Þ ¼ wðhÞ þ wð/Þ,
(P3) wð9xwðxÞÞ ¼ limm!1 wð

Wm
i¼1 wðaiÞÞ;

1 See Hill (2013), Hill and Paris (2013a) for some discussion of this literature.
2 We identify L with the set fR1;R2; . . .;Rqg.
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where rational is customarily identified with w satisfying certain arguably rational

principles. Whilst there is currently no clear consensus on what these principles

should be one that is very widely adopted.

The Principle of Constant Exchangeability, Ex. A probability function w on SL

satisfies Constant Exchangeability if, for any permutation r of 1; 2; . . . and

hða1; . . .; amÞ 2 SL,

wðhðarð1Þ; . . .; arðmÞÞÞ ¼ wðhða1; . . .; amÞÞ:

All the probability functions considered in this paper will be assumed to satisfy Ex.

A second similar principle.

The Principle of Predicate Exchangeability, Px If Ri;Rj are relation symbols of

Lq, of the same arity, then for h 2 SL,

wðhÞ ¼ wðh0Þ

where h0 is the result of transposing Ri;Rj throughout h.

Px necessarily differs from Ex as far as our default language L is concerned in

that L has infinitely many constant symbols but only finitely many relation

symbols.3 If w satisfying Ex ? Px can be extended to a probability function w1
on the sentences of a language L1 with infinitely many relation symbols of each

arity and continue to satisfy Ex ? Px we say that w satisfies Language Invariance,

Li. This is a stronger condition on w than simply satisfying Ex ? Px nevertheless

it holds widely for the main probability functions considered in this subject, for

example Carnap’s Continuum of Inductive Methods. It is also arguably rational on

the grounds that the probability assigned to a sentence h should surely not depend

on the presence or otherwise of relation symbols in the overlying language which

are not mentioned in h. This amounts to the requirement that a rational probability

function on a language L should be extendible to a rational probability function on

any larger language, and once Px is taken as a condition for rationality this is

equivalent to Li by a sequential compactness argument (see Paris and Vencovská

for more details).

3 The Results

In Hill and Paris (2013b) a further putative rationality principle was proposed based

on ‘probabilistic analogical support by structural similarity’:4

3 In the study of PIL there are good reasons for this differing treatment, in particular almost all principles

currently being considered are adequately captured in languages with only finitely many relation symbols,

unlike the case for constants.
4 This underlying conception of analogy is similar to that employed in Structure-Mapping Theory in AI,

see Gentner (1983).

Combining Analogical Support in Pure Inductive Logic 403

123



The Counterpart Principle, CP Let h; h0 2 SL be such that h0 is the result of

replacing some constant/relation symbols in h by new constant/relation symbols not

occurring in h. Then5

wðh j h0Þ �wðhÞ:

For example in the case where R1 was unary and R2;R3 binary and

h ¼ :R1ða1Þ ^ 9x R2ðx; a2Þ

we could have that

h0 ¼ :R1ða3Þ ^ 9x R3ðx; a2Þ

and this instance of CP would give

wð:R1ða1Þ ^ 9x R2ðx; a2Þ j :R1ða3Þ ^ 9x R3ðx; a2ÞÞ�wð:R1ða1Þ ^ 9x R2ðx; a2ÞÞ:

We are thinking of h and h0 in the statement of CP as capturing what is meant by

structural similarity, that they have exactly the same syntactic form, only some

names have changed. For example, purely in terms of the syntax and in the absence

of any interpretation my aunt enjoying The Sound of Music at Christmas is struc-

turally similar to my son enjoying The Sound of Music on his birthday. For such

structurally similar h; h0 just Ex ? Px force that they must get the same probability.

The Counterpart Principle adds to this formal connection by asserting that there is

also a material connection in that conditioning on h0 enhances (or at least does not

diminish) the probability of h.

Relating CP to the common format of analogical reasoning within philosophy as

a whole (Bartha 2013), gives a Candidate Analogical Inference Rule (R) saying, in

short, that having a mapping � from a source domain S to a target domain T the

plausibility of a proposition Q� holding in T given that Q holds in S should be

stronger the more features h; h� the domains have in common as opposed to features

on which they differ. Within this template CP corresponds to the null case where

any evidence of matching/dismatching features is absent (a case that Bartha does

not treat). In fact as we shall explain in the penultimate section allowing in even one

such matching feature can, rather unexpectedly, destroy the analogical support in

the way we are measuring it.

The general pattern of support by analogy that CP endeavours to capture seems to

be rather common in our everyday lives, and in science. For example learning that

every natural number can be proved to be the sum of four squares might well cause

one to guess that every natural number can also be proved to be the sum of nine

cubes. From such familiarity one might then feel that there was possibly a case to

argue for the rationality of CP. In fact we do not really need to do so since by the

following theorem from (Hill and Paris 2013b) it is actually inherited from Li.

5 Throughout we avoid any problems of conditioning on sentences with zero probability by identifying,

for example, wð/ jwÞ�wðg j fÞ with wð/ ^ wÞ � wðfÞ�wðg ^ fÞ � wðwÞ:
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Theorem 1 Li implies CP.

In a sense one might say that this theorem provides one answer to the question

raised by Hesse (1966), as to what is the philosophical justification for analogical

reasoning. For whenever we reason it is necessary to simply discard almost

everything we know—there is just too much of it to fully incorporate. We must ring

fence a tiny fraction of it that we consider relevant and reason simply on the basis of

that knowledge. Theorem 1 tells us that if all we consider relevant is our knowledge

that h0 holds and we assign probabilities rationally, in the sense of satisfying Li (and

Ex) then the probability of h will be enhanced.6 From this viewpoint the derived

analogical support arises through adopting Li.

Still we should emphasize here that what is ‘derived’ is an increased belief in h
within the ring fence. Whether or not this has any relevance to beliefs in the wider

world outside the ring fence depends on how far we can accept the ring fence

assumption.7 It should also be made clear that we are not claiming that this

increased belief equates with increased probability of being ‘true’ in any objective

sense. But what it might be argued to provide is plausibility, and in turn the impetus

to attempt to confirm a truth, though no more than that. For example the discovery

that every natural number is the sum of 4 ¼ 22 squares might equally have

encouraged mathematicians to try to prove that every natural number is the sum of

23 ¼ 8 cubes rather than 32 ¼ 9 cubes.

As a further development of the idea of structural similarity as embodied in CP

the following result is shown in Paris and Vencovská (2015):

Theorem 2 Suppose that h; h0; h00 2 SL are such that h0 is the result of replacing

some constant/relation symbols in h by new constant/relation symbols not

occurring in h and similarly h00 is the result of replacing some constant/relation

symbols in h0 by new constant/relation symbols not occurring in h or h0. Then for w

satisfying Li,8

wðh j h0Þ �wðh j h00Þ: ð1Þ

Carrying on from the above example then this gives that

6 Or at least not diminished—the conditions for merely equality in CP are rather messy but in our view

sufficiently ‘unnatural’ as to offer no serious grounds on which to criticize CP, see Hill and Paris (2013b)

for more details.
7 Possibly this explains the force of analogy in mathematics and science where the outside world

according to our current view is so structured and lawlike.
8 With nothing more than complicating the notation we could also add to the conditioning sentences a

sentence w provided that none of the relation and constant symbols which replace or are replaced in the

passage from h to h0 to h00 appear in w. This remark also applies to Theorem 3.
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wð:R1ða1Þ ^ 9x R2ðx; a2Þ j :R1ða3Þ ^ 9x R3ðx; a2ÞÞ
�wð:R1ða1Þ ^ 9x R2ðx; a2Þ j :R1ða3Þ ^ 9x R3ðx; a4ÞÞ:

For h; h0; h00 as in this theorem there is a clear sense in which h0 is structurally at least

as similar to h as h00 is. In other words there is a sense of distance, or degree of

similarity, the nearer h0 is to h the more analogical support it provides. In summary

then we could say that Theorem 1 tells us that h0 provides ‘analogical support by

structural similarity’ for h under the assumption that w satisfies Li and Theorem 2

tells us that the closer the analogy (i.e. structural similarity) the stronger the ana-

logical support.

Theorem 2 raises the question of what the effect is of combining multiple such

analogies and more generally what is the algebra of analogical support by similarity

in the presence of Li? We will certainly not answer that question in this paper but

will settle for elucidating the situation when ‘multiple’ is weakened to ‘two, at

most’.

In order to state our results, which will be proved in full in the next section, it will

be useful to sketch an artifice in the proof of Theorem 2 as given in (Paris and

Vencovská 2015) because it enables us to reduce these questions to a particularly

simple form. Leaving implicit any constant and relation symbols common to them

all, we can write these h; h0 and h00 as

h ¼hðB~1;C~1;D~1Þ;
h0 ¼hðB~1;C~2;D~2Þ;
h00 ¼hðB~2;C~2;D~3Þ;

where the B~1;B~2;C~1;C~2;D~1;D~2;D~3 are entirely disjoint blocks of distinct constant

and/or relation symbols and the B~1;B~2 are matching in terms of the positions of

constant and relation symbols, and similarly for the C~;D~. So for example if B~1 ¼
ha1;R1;R2gt with R1 unary and R2 ternary then B~2 must similarly be of the form

hak;Rm;Rggt with Rm unary, Rg ternary.

Let the probability function w on SL satisfy Li and as explained above let w1 be

the extension of w to SL1 satisfying Ex ? Px. Let B~n for n[ 2 be blocks of totally

new relation and constant symbols from L1 matching B~1 and similarly produce

C~n;D~n matching C~1, D~1 respectively, so that no constant or relation symbol appears

in more than one block of any sort. Notice that since w1 extends w and satisfies Ex

? Px to show that wðh j h0Þ �wðh j h00Þ it is enough to show that

w1ðhðB~1;C~2;D~2Þ j hðB~1;C~3;D~3ÞÞ � w1ðhðB~1;C~2;D~2Þ j hðB~3;C~4;D~4ÞÞ: ð2Þ

Let L be the language with a single binary relation symbol R. Define a probability

function v on SL by

vðRðai; ajÞÞ ¼ w1 hðB~i;C~j;D~jÞ
� �

and more generally
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v
^

i;j� n

Rðai; ajÞ�i;j
 !

¼ w1
^

i;j� n

hðB~i;C~j;D~jÞ�i;j
 !

where the �i;j 2 f0; 1g and R1 ¼ R;R0 ¼ :R; etc. (By a theorem of Gaifman, see

Gaifman (1964) or Paris and Vencovská (2015), v extends uniquely to a probability

function on SL satisfying Ex.)

Referring to Paris and Vencovská (2015, p. 187) for the details it can now be

shown that for v satisfying Ex,

vðRða1; a2Þ jRða1; a3ÞÞ� vðRða1; a2Þ jRða3; a4ÞÞ: ð3Þ

But this is just another way of formulating the inequality (2).

From this sketch we see that to show that (1) holds for w satisfying Li it is enough

to show that (3) holds for a probability function v on SL satisfying Ex.

We shall use the same method to investigate other simple cases of ‘analogical

support by (multiple) instances of structural similarity’. Note that any probability

function on SL satisfying Ex also satisfies Li: for L has just one (binary) relation

symbol and if v is a probability function on a language with at most one relation

symbol of each arity which satisfies Ex then v trivially satisfies Px and also satisfies

Li since we can just introduce relation symbols which for each arity are identical (to

within the name). Hence showing above that (1) held for w satisfying Li was in fact

equivalent to showing that (3) held for v on SL satisfying Ex; any v on SL satisfying

Ex and failing (3) would have provided a counterexample to (1) satisfying Li.

This observation leads us to concentrate on deciding which inequalities must hold

between

(a) wðRða1; a2ÞÞ
(b) wðRða1; a2Þ jRða3; a4ÞÞ (c) wðRða1; a2Þ jRða1; a4ÞÞ
(d) wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ (e) wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a6ÞÞ
(f) wðRða1; a2Þ jRða1; a4Þ ^ Rða1; a6ÞÞ (g) wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a2ÞÞ

for w a probability function on SL satisfying Ex. In other words we are interested in

comparing the degrees of support afforded by up two individually structurally

similar sentences.9 To illustrate these within a less formal context suppose that we

read ‘enjoys’ for R, ‘my son’ for a1, The Sound of Music for a2 and so on. Then

(a) would correspond, ceteris paribus, to the probability I would give to my son

enjoying The Sound of Music, (c) to his enjoying it on my recalling that he enjoyed

Toy Story and (g) to when I also recalled that my aunt enjoying the sound of music.

Likewise (b) would correspond to the probability I would give to my son enjoying

The Sound of Music just given that my work colleague enjoyed Toy Story.10 (Of

9 This is not an exhaustive list of such conditionals, a point we shall return to later.
10 It is of course essential in these cases that one treats them purely as given without introducing any

further knowledge or interpretation. Difficult as this is for anything but a nascent artificial agent, still it is

the case that in everyday reasoning we do ring fence the available information between relevant and

irrelevant. All we ask of our reader here is that they use ring fencing that includes only what is explicitly

given.
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course this informal example is very special because in the general case, as indi-

cated in the earlier, R will correspond to a template for a sentence and the ai blocks

of constants and/or relations.)

The answers we obtain are given by the following Fig. 1 where a connection

from x to y by upward sloping lines than means that y is always at least as large as

x (and for some w strictly larger) whilst in unconnected cases the inequality can go

either way. In each case, as above, establishing the inequality here provides a

corresponding inequality for the more general case of multiple analogical support

whilst a counterexample to the inequality holding itself provides a counterexample

to the corresponding theorem for multiple analogical support.

So, with the above ring fence assumptions in place, (a) � (b) prescribes that the

probability I would give that my son will enjoy The Sound of Music should not be

diminished when I recall his previously enjoying Toy Story. Similarly (d) � (g)

would prescribe one giving at least as much probability to the generalized Pell’s

equation x2 � 3y2 ¼ 6 having a solution when judging (just!) on the basis of x2 �
3y2 ¼ 1 and x2 � 10y2 ¼ 6 having solutions than when judging instead on the basis

of x2 � 5y2 ¼ 4 and x2 � 2y2 ¼ 1 having solutions.

Each of these inequalities then corresponds to a ‘Principle of Analogical Support

by Structural Similarity’ satisfied by a probability function satisfying Li. For

example (b) � (e) gives that for w satisfying Li,

wð9x R2ðx; a3Þ j 9x R3ðx; a5ÞÞ�wð9x R2ðx; a3Þ j 9x R2ðx; a5Þ ^ 9x R3ðx; a2ÞÞ

whilst we cannot in general conclude that for such a w the instance

wð9x R2ðx; a3Þ j 9x R3ðx; a5Þ ^ 9x R4ðx; a2ÞÞ�wð9x R2ðx; a3Þ j 9x R2ðx; a5ÞÞ

of (d) � (c) holds.

As we shall see for the most part the inequalities and incompatibilities in the

above diagram will be straightforward to show. The main novelty in this paper is in

proving Theorem 4, that (d) � (g).

a

b

cd

e fg

Fig. 1 The relationships between (a)–(g)
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4 The Proofs

We now set about proving that the inequalities indicated in the above diagram are

all that necessarily hold for w a probability function on SL satisfying Ex. We shall

start by giving the positive results. In order to do this, as well as to later furnish

some counterexamples, we need to recall (and slightly rejig) the Representation

Theorem for polyadic probability functions as given in (Paris and Vencovská

2015, Chapter 25) the special case of the language L as above.

Let D ¼ ðdi;jÞ be an N 	 N f0; 1g-matrix. Define a probability function wD on SL
by setting

wD
^

i;j� n

Rðai; ajÞ�i;j
 !

to be the probability of (uniformly) randomly picking, with replacement, hð1Þ; hð2Þ;
. . .; hðnÞ from f1; 2; . . .;Ng such that for each i; j� n, dhðiÞ;hðjÞ ¼ �i;j. This uniquely

determines a probability function on SL satisfying Ex. (For details see e.g. Paris and

Vencovská 2015, Chapter 7).

Clearly convex mixtures of these wD also satisfy Ex. The converse (that any

probability function satisfying Ex is a convex mixture of these wD) does not hold but

as shown in (Paris and Vencovská 2015, Chapter 25) if we move to a suitable non-

standard universe and take N to be a non-standard integer then any probability

function w on SL satisfying Ex is a convex mixture (as an integral) of the standard

parts 
wD of wD from this non-standard universe (see Paris and Vencovská 2015,

Theorem 25.1). The important point to take away from this as far as this paper is

concerned is that it is sometimes enough to check whether an inequality holds for

these 
wD and since the mathematics is exactly the same it is just as good to check it

for the wD for standard N.

Given this observation, it turns out that that (d) � (g) is a consequence of the

following theorem whose rather messy proof is given in Paris and Vencovská.

Theorem 3 Let ðdi;jÞ be an N 	 N f0; 1g-matrix such that
P

i;j di;j ¼ T [ 0:

Then
X

i;j

di;jAiBj � T3N�2

where Ai ¼
P

r di;r;Bj ¼
P

s ds;j.

Given this inequality we can now prove the main theorem of this paper which

shows that (d) � (g).

Theorem 4 Let w be a probability function on the sentences of the binary

language L ¼ fRg satisfying Ex. Then

wðRða1; a2Þ jRða1; a3Þ ^ Rða4; a2ÞÞ�wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ:
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Proof For D an N 	 N f0; 1g-matrix and n 6¼ m, wDðRðan; amÞÞ is the probability

of picking hðnÞ; hðmÞ 2 f1; 2; . . .;Ng such that dhðnÞ;hðmÞ ¼ 1. In other words

wDðRðan; amÞÞ ¼ N�2
X

i;j

di;j:

Hence, since the choices h(1), h(2), h(3), h(4), h(5), h(6) are all independent,

wDðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ ¼ wDðRða1; a2ÞÞ3 ¼ N�6
X

i;j

di;j

 !3

: ð4Þ

Likewise wDðRða1; a2Þ ^ Rða1; a3Þ ^ Rða4; a2ÞÞ is the probability of picking

h(1), h(2) such that dhð1Þ;hð2Þ ¼ 1 and then (independently) picking h(3), h(4) such

that dhð1Þ;hð3Þ ¼ 1 and dhð4Þ;hð2Þ ¼ 1: For a particular choice of h(1), h(2) these latter

two probabilities are respective

N�1
X

s

dhð1Þ;s; N�1
X

r

dr;hð2Þ:

Thus the combined probability of these with dhð1Þ;hð2Þ ¼ 1 is

N�2
X

i;j

di;j N�1
X

s

di;s

 !

N�1
X

r

dr;j

 ! !

:

By Theorem 3 this is at least

N�6
X

i;j

di;j

 !3

and combined with (4) we obtain that

wDðRða1; a2Þ ^ Rða1; a3Þ ^ Rða4; a2ÞÞ�wDðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ:

Being a linear inequality this also holds for convex mixtures of the wD so by the

Representation Theorem (Paris and Vencovská 2015, Theorem 25.1)

wðRða1; a2Þ ^ Rða1; a3Þ ^ Rða4; a2ÞÞ�wðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ

for any probability function w on SL satisfying Ex. Since by Ex

wðRða1; a3Þ ^ Rða4; a2ÞÞ ¼ wðRða3; a4Þ ^ Rða5; a6ÞÞ

the denominators of the conditional probabilities on both sides of the inequality in

the statement of the theorem are the same and the required result now follows. h

Along similar lines, although much easier, we can show that (d) � (e). For, when

T ¼
P

i;j di;j ¼
P

i Ai as before,
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wDðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ ¼ T3N�6

wDðRða1; a2Þ ^ Rða1; a4Þ ^ Rða5; a6ÞÞ ¼ TN�5
X

i

A2
i

 !

and

T3N�6 � TN�5
X

i

A2
i

 !

follows by Hölder’s Inequality. Thus for w a probability function on SL satisfying

Ex,

wðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ�wðRða1; a2Þ ^ Rða1; a4Þ ^ Rða5; a6ÞÞ:

Since w satisfies Ex,

wðRða3; a4Þ ^ Rða5; a6ÞÞ ¼ wðRða1; a4Þ ^ Rða5; a6ÞÞ

and (d) � (e) follows.

Turning to the other positive inequalities, (a) � (b) is just Theorem 1 whilst (b)

� (d) and (c) � (f) follow similarly by applying the Principle of Instantial

Relevance, PIR, see Gaifman (1971), Humburg (1971), Paris and Vencovská (2015)

(or for the former using the footnote to Theorem 2). Furthermore, (b) � (c) is (3).

We now address the inequalities that do not (necessarily) hold. To give a

counterexample to (c) � (g) consider w ¼ wD where D is an N 	 N f0; 1g-matrix.

In this case, with the above abbreviations,

wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a2ÞÞ ¼ T�2
X

i;j

di;jAiBj; ð5Þ

wðRða1; a2Þ jRða1; a4ÞÞ ¼ T�1N�1
X

i

A2
i : ð6Þ

Letting D be the 6 	 6 matrix

1 1 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

gives values to (5), (6) of 9 / 32 and 7 / 24 respectively, and provides the required

counterexample. This same probability function also gives a counterexample to (e)

� (g) [(hence also to (e) � (d)].
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A counterexample to (d) � (c) is given by setting

w
^

i;j� n

Rðai; ajÞ�i;j
 !

¼ v
^

i;j� n

PðajÞ�i;j
 !

ð7Þ

where v is any cL1

k of Carnap’s Continuum of Inductive Methods11 for the unary

language L1 ¼ fPg with 0\k\1. In this case (d) � (c) becomes

cL1

k ðPða2Þ jPða4Þ ^ Pða6ÞÞ� cL1

k ðPða2Þ jPða4ÞÞ:

Putting in the actual values here gives

2 þ 2�1k
2 þ k

� 1 þ 2�1k
1 þ k

which is false for k in this range.

Similarly this probability function also gives counterexamples to (e) � (c), (f)

� (c) and (b) � (a).

We now describe a counterexample to (g) � (f) . Let v be a probability function

on the sentences of the language fP1;P2;P3; . . .g where the Pi are unary, satisfying

Px and Ex, and set

w
^

i;j� n

Rðai; ajÞ�i;j
 !

¼ v
^

i;j� n

PjðaiÞ�i;j
 !

: ð8Þ

Then w satisfies Ex and the instance of (g) � (f) for this w becomes

vðP2ða1Þ jP4ða1Þ ^ P6ða1ÞÞ� vðP2ða1Þ jP3ða1Þ ^ P2ða4ÞÞ

and this can be seen to fail for the probability function v which treats the predicates

as stochastically independent and identically distributed as, say, cL1

2 on L1 ¼ fPg.

This same probability function furnishes a counterexample to (g) � (e) and (g) �
(d).

To show that we do not have (c) � (e) let D1;D2 be respectively the 4 	 4

matrices

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

Then,

11 See Carnap (1952), or in the notation of this paper (Paris and Vencovská 2015, Chapter 16).
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wD1ðRða1; a4ÞÞ ¼ 7=16;

wD1ðRða1; a4Þ ^ Rða5; a6ÞÞ ¼ ð7=16Þ2;

wD1ðRða1; a2Þ ^ Rða1; a4ÞÞ ¼ ð42 þ 12 þ 12 þ 12Þ=43 ¼ 19=64;

wD1ðRða1; a2Þ ^ Rða1; a4Þ ^ Rða5; a6ÞÞ ¼ ð19=64Þ 	 ð7=16Þ ¼ 133=1024;

wD2ðRða1; a4ÞÞ ¼ 8=16 ¼ 1=2;

wD2ðRða1; a4Þ ^ Rða5; a6ÞÞ ¼ ð1=2Þ2 ¼ 1=4;

wD2ðRða1; a2Þ ^ Rða1; a4ÞÞ ¼ ð22 þ 22 þ 22 þ 22Þ=43 ¼ 1=4;

wD2ðRða1; a2Þ ^ Rða1; a4Þ ^ Rða5; a6ÞÞ ¼ ð1=4 	 ð1=2Þ ¼ 1=8:

Hence for w ¼ ðwD1 þ wD2Þ=2;

wðRða1; a2Þ jRða1; a4ÞÞ ¼
ð19=64Þ þ ð1=4Þ
ð7=16Þ þ ð1=2Þ ¼ 7=12;

wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a6ÞÞ ¼
ð133=1024Þ þ ð1=8Þ
ð7=16Þ2 þ ð1=4Þ

¼ 261=452;

giving a counterexample to (c) � (e).

Finally to give an example where (d) � (f) fails let E1;E2, respectively, be the

2 	 2 matrices

1 1

1 1

1 0

0 0

Then

wE1ðRða1; a4Þ ^ Rða1; a6ÞÞ ¼ ð22 þ 22Þ=23 ¼ 1;

wE1ðRða1; a2Þ ^ Rða1; a4Þ ^ Rða1; a6ÞÞ ¼ 1;

wE1ðRða3; a4Þ ^ Rða5; a6ÞÞ ¼ 1;

wE1ðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ ¼ 1;

wE2ðRða1; a4Þ ^ Rða1; a6ÞÞ ¼ ð12 þ 02Þ=23 ¼ 1=8;

wE2ðRða1; a2Þ ^ Rða1; a4Þ ^ Rða1; a6ÞÞ ¼ ð13 þ 03Þ=24 ¼ 1=16;

wE2ðRða3; a4Þ ^ Rða5; a6ÞÞ ¼ ð1=4Þ 	 ð1=4Þ ¼ 1=16;

wE2ðRða1; a2Þ ^ Rða3; a4Þ ^ Rða5; a6ÞÞ ¼ ð1=64Þ;

Hence for w ¼ ðwE1 þ wE2Þ=2;

wðRða1; a2Þ jRða1; a4Þ ^ Rða1; a6ÞÞ ¼
1 þ ð1=16Þ
1 þ ð1=8Þ ;

wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ ¼
1 þ ð1=64Þ
1 þ ð1=16Þ ;

giving a counterexample to (d) � (f).
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Combining the inequalities and non-inequalities produced above now gives

exactly the relationships indicated in Fig. (1).

As already mentioned (a)–(g) do not form an exhaustive list of all such

conditionals with at most two individually structurally similar sentences. Firstly

each of these has a ‘mirror image’ formed by transposing the two coordinates, for

example

(e) wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a6ÞÞ; (e’) wðRða2; a1Þ jRða4; a1Þ ^ Rða6; a5ÞÞ:

Of these (a), (b), (d), (g) are the same as their mirror images while for the others it is

easy to see by the device used with (7) or (8) that including them in Fig. (1) does not

give any new vertical lines beyond those already present in the mirror image of

Fig. (1).

More significantly we have left for future consideration the seemingly thorny

cases of conditionals where the two supporting structurally similar sentences

contain common constants which are not also common to the conditioned sentence,

for example wðRða1; a2Þ jRða1; a3Þ ^ Rða4; a3ÞÞ:

5 Other Analogy Principles in PIL

In this short section we briefly mention some other analogy principles which have

been suggested within the context of PIL as being in some sense rational. Ideally

such principles will both capture a facet of analogical support as we intuit it and be

consequences of other established and acknowledged rational principles (such as is

the case with the Counterpart Principle) from which they too will inherit this status.

Failing that they will present and formalize altogether new aspects of what might be

understood as rational though their acceptability will then to a large degree hinge on

their being consistent with other established and acknowledged rational principles.

Already in the joint paper (Carnap and Stegmüller 1959) with Stegmüller Carnap

was interested in the idea of analogical support within the context of his (unary)

Inductive Logic and this was to continue right up to (Carnap 1980, Chapter 16). The

probability functions ck of Carnap’s Continuum of Inductive Methods were too

restrictive to encompass modeling the sort of analogical effects that Carnap had in

mind which has led a number of investigators to propose instead various mixtures,

products and generalizations of the ck, see for example Carnap (1954, 1980),

Costantini (1983), Festa (1996), Hesse (1964), Huttegger (2014), Kuipers (1984),

Maher (2000, 2001), Maio (1995), Niiniluoto (1981), Romeijn (2006), Skyrms

(1993), Spohn (1981). Such approaches however have so far still failed to fully

achieve the required effects see for example Kuipers (2000, p. 81), Hill et al.

(2011), Hill and Paris (2013a), Maher (2001), Pietarinen (1972), Spohn (1981),

Welch (1999). Furthermore being largely chosen to satisfy a property rather than

being derived as the functions characterizing some concrete, arguably rational,

principles they seem to us to suffer from a certain arbitrariness in the choices of the

constituent functions, factors.
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Two notable exceptions founded on general principles are (Maio 1995; Maher

2000). Unfortunately neither seem entirely satisfactory, di Maio’s requires a

questionable (to our mind) linearity condition, (Maio 1995, II3, p. 378), and Maher’s

is effectively restricted to a language with at most two predicates (see Maher 2001).

In Carnap (1973) and Carnap and Stegmüller (1959) the authors also suggested a

somewhat less arbitrary notion of analogical support by similarity12 based on sharing

properties and a derived notion of closeness. To explain this let R1;R2; . . .;Rq be, as

usual, the now all unary, predicates of L and let a1ðxÞ; a2ðxÞ; . . .; a2qðxÞ be the atoms

of L, that is the formulae of the form

R�1

1 ðxÞ ^ R�2

2 ðxÞ ^ . . . ^ R�q
q ðxÞ

where �1; �2; . . .; �q 2 f0; 1g. Then for atoms

arðxÞ ¼
q̂

i¼1

R�i
i ðxÞ; amðxÞ ¼

q̂

i¼1

Rdi
i ðxÞ;

the analogical support afforded to amða2Þ by arða1Þ, in the absence of any further

information on a1; a2, was to be a decreasing function (in terms of the subset

ordering) of the set Dðar; amÞ ¼ fi j �i ¼ dig.

More specifically Carnap’s writings suggest an analogy principle see Carnap

(1973, p. 320), Hill (2013, p. 101) of the form:

For atoms ar; am; ak, if Dðar; amÞ � Dðar; akÞ then

wðarðanþ2Þ j amðanþ1Þ ^
n̂

i¼1

ahiðaiÞÞ�wðarðanþ2Þ j akðanþ1Þ ^
n̂

i¼1

ahiðaiÞÞ: ð9Þ

Using Johnson’s Sufficientness Postulate it is easy to see that this principle holds for

the probability functions ck in Carnap’s Continuum of Inductive Methods. Unfor-

tunately this is somewhat less satisfactory than it might initially appear because for

the cLk (9) holds with equality whenever m; k 6¼ r,13 hardly capturing the idea that

amðanþ1Þ’s support for arðanþ2Þ depends on the set of shared features. Several

families of probability functions are known which do satisfy (9) with strict subset

and inequality but currently no complete characterization is available see for

example D’Asaro (2014, Section 3), Hesse (1964), Maher (2000), Welch (1999).14

A second point on which (9) might be queried is the requirement that the standing

evidence should be of the form
Vn

i¼1 ahiðaiÞ, in other words a state description,

rather than, say, simply a sentence /ða1; a2; . . .; anÞ 2 QFSL. After all the

underlying intuition in both cases would seem to be no different. In fact allowing

this generalization has a significant effect. With the exception of cL0 ; c
L
1 the principle

12 In Carnap (1980) Carnap also has a notion of analogy by proximity but that essentially denies Ex so is

not under consideration here.
13 In the accounts related in this section the problem of conditional probabilities being undefined when

the denominator probability is zero was avoided by adopting the convention of treating

wðh j/Þ�wðh jwÞ (etc.) as an abbreviation for wðh ^ /ÞwðwÞ�wðh ^ wÞwð/Þ.
14 In fact with Atom Exchangeability and Regularity this characterizes the cLk for 0\k�1, see

(D’Asaro and Paris).
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no longer holds for Carnap’s Continuum even when q ¼ 2. Indeed there are only a

very few further probability functions satisfying the principle (and Ex ? Px ?

SN15), see Hill and Paris (2013a) for a complete characterization, none of them

seemingly particularly attractive as a rational choice.

More recently several other analogy principles based on interpretations of the

earlier mentioned Candidate Analogical Inference Rule (R) of Bartha (2013), have

been investigated in the context of PIL, see Howarth et al. (2016), in particular a

version of this rule which prescribes that the more properties on which a target and

source agree (and the fewer on which they disagree) the more support there is that

the target will satisfy an additional property known to be satisfied by the source.

While this allows considerable freedom of formalization within PIL the basic

version seems to be the principle:

For hðanþ1; a~Þ;/ðanþ1; a~Þ 2 QFSL, where a~¼ ha1; a2; . . .; ani,

wð/ðanþ2; a~Þ j hðanþ1; a~Þ ^ hðanþ2; a~Þ ^ /ðanþ1; a~ÞÞ�wð/ðanþ2; a~Þ j/ðanþ1; a~ÞÞ:

That is the similarity of anþ1; anþ2 engendered by them both satisfying h argues that

anþ2 will satisfy / given that anþ1 does.

Unfortunately cL0 is the only probability function satisfying this principle

(together with Ex ? Px ? SN). In Howarth et al. (2016) various refinements of this

principle were considered some of which do follow from commonly accepted

rational principles within PIL. Nevertheless the failure of the above basic version

must put a question mark against this formalization of the underlying intuition

grounding rule (R), at least within the framework of PIL.

6 Conclusion

In this paper we have considered all possible variations of the Counterpart Principle

of Analogical Support by Structural Similarity which hold under the assumption of

Language Invariance, Li, when we allow up to two analogies and all relation/con-

stant symbols common to the conditioning conjuncts are also present in the

conditioned sentence.16 In summary these turn out to be generated by the template

of particular instances

(b)� (a): wðRða1; a2Þ jRða3; a4ÞÞ�wðRða1; a2ÞÞ
(c)� (b): wðRða1; a2Þ jRða1; a4ÞÞ�wðRða1; a2Þ jRða3; a4ÞÞ
(d)� (b):wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ�wðRða1; a2Þ jRða3; a4ÞÞ
(e)� (d):wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a6ÞÞ�wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ
(g)� (d):wðRða1; a2Þ jRða1; a4Þ ^ Rða5; a2ÞÞ�wðRða1; a2Þ jRða3; a4Þ ^ Rða5; a6ÞÞ
(f)� (c):wðRða1; a2Þ jRða1; a4Þ ^ Rða1; a6ÞÞ�wðRða1; a2Þ jRða1; a4ÞÞ

15 SN is the Strong Negation Principle which asserts that if h0 is the result of replacing a relation symbol

R everywhere in h by :R then wðh0Þ ¼ wðhÞ.
16 In this paper the relationship of, say, wðRða1; a2Þ jRða1; a3Þ ^ Rða4; a3ÞÞ to (a)–(g) is not considered.
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for w a probability function on the language fRg satisfying Ex. By a template we

mean that Rðai; ajÞ may be replaced here by a sentence of a language L in which the

ai substitute for disjoint blocks of constant and/or relation symbols of L and w is

replaced by a probability function on L satisfying Li.

From (b) � (a), (d) � (b) and (f) � (c) we see that, as one might expect, more

analogies of the same structural similarity produce more support (or at least not

strictly less support) whilst from (c) � (b), (e) � (d) and (g) � (d) we have, again

not unexpectedly, that greater structural similarity gives greater analogical support.

More surprising are some of the inequalities which do not necessarily hold, for

example that we need not have (e)� (c). Here adding to the conditioning Rða1; a4Þ
in (c) the analogous but more distantly similar Rða5; a6Þ can actually reduce the

analogical support, though support it remains since from (e) � (b), (b) � (a) we do

still have (e) � (a). In terms of our introductory example this says that although

adding the information about the aunt and The Sound of Music still leaves some

analogical support, it may in fact diminish the support provided by the Toy Story

evidence alone.

The results in this paper are clearly just the tip of the iceberg, for example we

have not considered the case where the underlying template involves not simply

binary R but ternary, 4-ary etc. Even in the case of binary R we have not considered

cases where constants common to the conditioning sentences are not also present in

the conditioned sentence. We have also not considered cases where we also have

negated analogies (as allowed by Bartha in his ‘Candidate Analogical Inference

Rule’ described in Howarth et al. 2016). Given our results so far, and the

technicalities needed to show them, the challenge of answering the apparently

limitless number of genuinely new questions that arise, and in turn of building those

answers into our understanding, seems formidable. Certainly at this juncture the

prospect of an elegant, meaningful general theory of multiple analogical support by

structural similarity can be no more than a matter of pure speculation.

Finally it is worth reminding ourselves that the results in this paper have been

derived on the assumption that one’s chosen rational probability function satisfies

just Li. In Polyadic Inductive Logic however there are a number of stronger

‘rationality principles’ which have been proposed, in particular Li with Spectrum

Exchangeability,17and it may be that making these further assumptions will produce

a different picture. Given our previous difficulties in attempting to generalize PIR to

this polyadic context (see Paris and Vencovská 2015, Chapter 36) that too would

look to be a challenging endeavour.18

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

17 In a nutshell Spectrum Exchangeability asserts that the probability of a state description should depend

only on the numbers of constants which look identical according to that state description and not on what

particular relations they satisfy, (see for example Paris and Vencovská 2015). It is a natural extension to

polyadic languages of Atom Exchangeability, so essentially Carnap’s Attribute Symmetry, (Carnap

1980, p. 77), for unary languages.
18 Another approach to PIR which may also shed some light on analogy can be found in Ronel and

Vencovská (2016).
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