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Abstract

In the era of big data, the rapid development of mobile participatory sensing devices brings the explosive
expansion of data, making information overload a serious problem. In this case, a personalized recommendation
system on mobile social media appears. Collaborative filtering is the most widely used approach in a
recommendation system. Nevertheless, there still exist many problems, such as the serious data sparsity problem
and the cold start problem. Existing approaches cannot effectively solve these problems. Most of the existing
recommendation approaches are based on single information source and cannot effectively solve the cold start
and data sparsity problems. In addition, some approaches proposed to solve data sparsity fail to consider the
effects of users’ influences and prediction order on recommendation accuracy. Accordingly, from the perspective of
increasing the categories of information, the similarity propagation approach based on a heterogeneous network is
proposed to ease the cold start problems by improving the similarity calculation method. In addition, to ease the
data sparsity problems, we propose a hybrid collaborative filtering approach based on a score prediction graph to
finish the user-item score matrix in order. Finally, we conduct validation experiments on the MovieLens dataset.
Compared with five state-of-the-art approaches, our approach outperforms them in terms of the performances of
mean absolute error, root-mean-square error, recall, and diversity.

Keywords: Big data, Recommendation system, Similarity propagation, Heterogeneous network, Score prediction
graph

1 Introduction
With the rapid development of mobile Internet, the mo-
bile social media services [1, 2] are increasingly abun-
dant. The mobile phone as a representative of mobile
participatory sensing devices has become a part of peo-
ple’s daily life. However, the limited capacity of mobile
users to receive information and the explosive growth of
information in the mobile environment makes it difficult
for mobile users to choose what they need from a lot of
information quickly and effectively in the era of big data.
Recommendation system plays an indispensible role in
solving this problem.

Collaborative filtering is one of the most widely used
approaches in a recommendation system. Nevertheless,
there still exist many problems, such as the serious data
sparsity problem and the cold start problem. In order to
solve the two problems, many researchers have put for-
ward several solutions. These studies can be divided into
two categories. The first category is filling the user-item
matrix by default or by prediction [3]. Filling the user-
item matrix by default is inefficient and erases users’
personalized information. Filling the user-item matrix by
prediction is to predict scores according to the nearest
neighbors of users or items. It is usually a one-time ef-
fort without considering the effects of users and user
prediction order on recommendation accuracy, resulting
in predication deviation on its nearest neighbors.
The other category is improving users’ interest model

and focusing on a certain aspect of users’ or items’ infor-
mation to reduce the data sparseness. For example, the
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item-based collaborative filtering approach focuses on
the scores of items in the nearest neighbor selection and
the content-based collaborative filtering approach fo-
cuses on the content of items to build users’ interest
model [4]. This kind of solution, relying on a single in-
formation source, fails to satisfy users’ diversified de-
mand due to its inaccuracy and single recommendation.
Accordingly, in this paper, we first propose a similarity

propagation approach based on a heterogeneous net-
work to effectively ease the cold start and data sparsity
problems. The proposed similarity propagation approach
based on heterogeneous networks analyzes users’ prefer-
ences from multi-perspectives by combining several
types of information, which overcomes the drawbacks
and disadvantages caused by single information source.
Then we propose a score prediction graph (SPGraph)
generation approach and work out a prediction node se-
quence under the principle that the less influence a node
has, the earlier it will be predicted. Based on the predic-
tion node sequence, we fill the user-item matrix step by
step to generate a recommendation list, which can reduce
the impact of a node’s predication deviation on its nearest
neighbors to really improve the prediction accuracy.
The main contributions of this paper are summarized

as follows:

1. We integrate several types of information and
relations into recommendation heterogeneous
networks and propose the similarity propagation
approach which mitigates the impacts of cold start
and data sparsity problems caused by single
information source.

2. We propose the prediction node sequence
generation approach-based SPGraph to improve
accuracy by reducing the impact of a node’s
predication deviation on its nearest neighbors.

3. We conduct sufficient experiments on the
MovieLens dataset, which demonstrate that our
approach outperforms five state-of-the-art
approaches.

The rest of this paper is organized as follows: Section 2
summarizes the related work. Section 3 thoroughly dem-
onstrates the proposed similarity propagation approach.
Section 4 explicates the details of the SPGraph-based
collaborative filtering approach. Section 5 shows the ex-
perimental data and results along with a thorough ana-
lysis. Lastly, Section 6 concludes the paper and discusses
the future work.

2 Related work
In this section, we briefly review the existing recommen-
dation approaches which fall into four main categories:
collaborative filtering recommendation, content-based

recommendation, knowledge-based recommendation, and
hybrid recommendation.

2.1 Collaborative filtering recommendation
It serves to predict and recommend the items that target
users might like according to the interests of their nearest
neighbors who share with them the similar behavioral
characteristics obtained from the analysis of their behav-
ioral habits [5]. Recent years have witnessed an endless
stream of studies and researches on collaborative filtering
approaches which can be divided into two categories:
neighborhood-based and model-based. Neighborhood-
based approaches, further divided into user-based [6] and
item-based approaches [7, 8], serve to identify similar
users with the target user according to their similarity
which is measured by their feedbacks on shared items and
then compute predictions based on these similar users’
feedbacks on other items. It is faced with the feedback
scarcity that arises in practice because a user may only
give feedbacks on a limited number of items, namely data
sparsity. Model-based approaches, such as aspect models
[9], latent factor models [10], Bayesian models [11], and
decision trees, alleviate the feedback scarcity by generating
a global model based on the given training data and then
using the model to predict the active user’s preference on
unknown items, but most of them suffer from high com-
putational overheads caused by the tuning of a large num-
ber of parameters embedded in the models. As a result, it
is hard to apply them into large-scale social networks.

2.2 Content-based recommendation
It is realized by matching users’ characteristics with
items’ content, which has been studied in many papers.
For example, Yu et al. [12] proposed the recommenda-
tion approach for multiple interests and multiple con-
tents. Hannon et al. [13] put forward the UPR model
used for twitter forward recommendation. Wu et al. [14]
combined content-based recommendation with system-
based recommendation to predict and recommend ac-
cording to the CCAM model. Ronen et al. [15] studied a
content-based characteristic selection method which is
independent of recommendation systems. Most existing
content-based recommendation systems, in which items
are usually described with keywords, are designed to rec-
ommend items according to text contents. However,
similarity evaluations based on keywords may be mis-
leading due to the ambiguity of natural languages. Be-
sides, this kind of approaches may also result in
deviation of the results, of which the single and inaccur-
ate information source is the root cause.

2.3 Knowledge-based recommendation
This kind of recommendation is closely linked and some-
times even interactive with users’ requirements. When
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users input their requirements, the system will work out
recommendation results to match. If no results show
up, users will have to modify their requirements.
Burke [16] proposed the restraint-based recommenda-
tion system based on recommendation knowledge
base while in [17] Burke proposed the case-based rec-
ommendation approach.

2.4 Hybrid recommendation
Hybrid recommendation systems are the integrative,
parallel, or linear combinations of several recommenda-
tion systems with an effort to fill in the gaps of single
recommendation systems. Top-N based collaborative fil-
tering (TNCF) and majorizing similarity based collabora-
tive filtering (MSCF) [18] proposed by Song are hybrid
collaborative filtering approaches which integrate score
similarity and property similarity. They first compute
user similarity and select the top N nearest neighbors of
the target user and then predict scores and provide rec-
ommendation. This method improves the accuracy,
while it greatly increases the complexity of the
computation.
Collaborative filtering recommendation, content-based

recommendation, and knowledge-based recommendation
approaches are all based on a single information source
and fail to satisfy users’ diversified demand and effectively
solve the cold start and data sparsity problems.
Although hybrid recommendation approaches try to

overcome the cold start and data sparsity problems by
combing several recommendation systems, they are just
linear combinations and cause high approach complexity
and non-accurate prediction.
In addition, these approaches proposed to solve data

sparsity fail to consider the effects of users’ influences
and prediction order on recommendation accuracy.

3 Similarity propagation approach based on
heterogeneous networks
In this section, we propose a similarity propagation ap-
proach based on heterogeneous networks to overcome the
cold start and data sparsity problems. We first define some
terms used in our paper. Then we describe our similarity
propagation approach based on heterogeneous networks.

3.1 Preliminaries

3.1.0.1 Definition 1 Recommendation heterogeneous
network: As shown in Fig. 1, a recommendation hetero-
geneous network is made up of four major entities,
namely users, items, tags, and properties. Six types of
such entity relations mainly exist on the network, as UP
(between users and properties), UI (relations between
users and items), UT (relations between users and tags),
IP (relations between items and properties), IT (relations

between items and tags), and H (relations between
homogeneous entities).
A recommendation heterogeneous network can be
represented as Gr = (V,E,W), where V = Vu∪Vi∪Vt∪Vp,
E = EUP∪EUI∪EUT∪EIP∪EIT∪EH, and W is the weight of
the relations. V is the union set of Vu, Vi, Vt, and Vp;
Vu is the user set; Vi is the item set; Vt is the tag set;
and Vp is the property set. E is the union set of EUP,
EUI, EUT, EIP, EIT, and EH; EUP is the relation between
the user and the property; EUI is the relation between
the user and the item; EUT is the relation between
the user and the tag; EIP is the relation between the
item and the property; EIT is the relation between the
item and the tag; and EH is the relation between
homogeneous entities.
We define the following rules to determine whether

relations exist between entities.

� If a user u possesses the property p, then
<u,p>∈EUP∈E

� If a user u purchases the item i and grades it as d,
then <u,i>∈EUI∈E when and only when d > d .

� If a user u is tagged as t, then <u,t>∈EUT∈E.
� If an item i possesses the property p, then

<i,p>∈EIP∈E.
� If an item i is tagged as t, then <i,t>∈EIT∈E.

3.1.0.2 Definition 2 Meta path: A meta path is defined
as the path whose length is between two random nodes
vi and vj in the recommendation heterogeneous network,
denoted as vi →lim vm →lmj vj , where lim and lmj represent
certain types of relations, either of the same type or of
different types.
There are three types of meta paths between users in

the recommendation heterogeneous network, as shown
in Fig. 2.

3.1.0.3 Property 1 Meta paths represent the similarities
between entities.
Users purchasing the same item, users labeled with the

same tag, and users possessing the same property all
share some similarities. The more items, tags, and prop-
erties they share, the more similar they are.

3.1.0.4 Property 2 Similarities can transit to entities
with no meta paths as long as they are connected with
another common entity by at least one meta path.
For example, in Fig. 3, although there is no meta path be-

tween u1 and u3, they still share some similarities because
both u1 and u3 are connected with u2 by meta paths. Be-
tween u1 and u3 exists a random walking path composed
of two or more meta paths which in nature are special ran-
dom walking paths composed of only one meta path.
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3.1.0.5 Definition 3 Similarity propagation matrix:
Similarity propagation matrix can be defined as follows:

T ¼
TUUTUITUTTUP

TIUTIIT ITTIP

TTUTTITTTTTP

TPUTPITPTTPP

2
664

3
775 ð1Þ

where U is users set, I is items set, T is tags set and P is
properties set.
Similarity propagation matrix belongs to symmetric

matrix. tuv∈TUU is the similarity propagation probability
between user u and user v. tui∈TUI is the similarity
propagation probability between user u and item i. tut∈-
TUT is the similarity propagation probability between
user u and tag t. tup∈TUP is the similarity propagation
probability between user u and property p. tij∈TII is the
similarity propagation probability between item i and
item j. tit∈TIT is the similarity propagation probability
between item i and tag t. tip∈TIP is the similarity propa-
gation probability between item i and property p.
tmn∈TTT is the similarity propagation probability be-
tween tag m and tag n. ttp∈TTP is the similarity propaga-
tion probability between tag t and property p. And

tpq∈TPP is the similarity propagation probability between
property p and property q.
During the process of random walking, different types

of relation accounts for various degrees of contribution
and therefore are given different weights—wup, wui,wut,-
wip, and wit for EUP, EUI, EUT, EIP, and EIT, respectively.
And the weight of relations between homogeneous en-
tities is set as β. These parameters are defaulted as 1 in
the experiments of this paper. The initialization of each
sub-matrix in T is as follows.

3.1.1 Initialization of user probability propagation matrix
TUU is the user probability propagation matrix, and the
similarities between users are set as the number of the
initial propagation matrixes. When users grade the same
item, the improved Pearson coefficient will be used to
measure the similarities between them.
The similarity between user ui and user uj is defined

according to Eq. (2):

sim ui;uj
� � ¼

X
p∈P

rui;p−rui
� �

ruj;p−ruj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p∈P

rui;p−rui
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

p∈P
ruj;p−ruj
� �2q

ð2Þ
where P is the common items that ui and uj have
graded and rui and ruj are the average score of ui and
uj, respectively.
If the users have no common grading items, sim(ui,uj)

will be defined according to Eq. (3):

sim ui;uj
� � ¼ Pi ∩ Pj

Pi ∪ Pj
ð3Þ

where pi is the items user ui has purchased and pj is the
items user uj has purchased.

Fig. 2 Three types of meta paths between users

Fig. 1 Recommendation heterogeneous network
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The formula of the sub-matrix of TUU is as follows:

TUU i; jð Þ ¼
βsim ui; uj

� �
if P ≠ ∅

Pi ∩ Pj

Pi ∪ Pj
otherwise

8<
: ð4Þ

where β is the weight of the relation between homoge-
neous entities.

3.1.2 Initialization of user-item probability propagation
matrix
TUI, denoting the user-item probability propagation
matrix, is defined as follows:

TUI i; jð Þ ¼ wui ⋅1 if eui ¼ 1
0 otherwise

(
ð5Þ

where wui is the weight of the relation between users
and items.
When user ui purchased item ij and graded it as s, if s is

larger than the threshold value δ, eui = 1; otherwise, eui = 0.

3.1.3 Initialization of user-tag probability propagation
matrix
TUT is the user-tag probability propagation matrix. We
employ the term frequency–inverse document frequency
(TF-IDF) approach to measure the similarity between
users and tags. The more often user ui uses or is labeled
with tag tj and the less popular tag tj is, the more similar
user ui and tag tj are.
TUI is defined as follows:

TUT i; jð Þ ¼
wut

nu;t
log 1þ nt uð Þð Þ if eut ¼ 1

0 if eut ¼ 0

8<
: ð6Þ

where nu,t is the times user ui uses tag tj, nt
(u) is the times

tag tj is used, and wut is the weight of the relation between
users and tags. eut = 1 indicates that the user has used the
tag while eut = 0 indicates the user has not used the tag.

3.1.4 Initialization of user-property probability propagation
matrix
TUP, denoting the user-property probability propagation
matrix, is defined as follows:

TUP i; jð Þ ¼ wup⋅1 if eup ¼ 1
0 otherwise

�
ð7Þ

where wup is the weight of the relation between users and
properties. If user ui possesses property pj, then eup = 1;
otherwise, eup = 0.

3.1.5 Initialization of item probability propagation matrix
TIIis the item probability propagation matrix, and the simi-
larities between items are set as the number of the initial
propagation matrixes. When item Ii and item Ij are graded
by a common user, the improved Pearson coefficient will
be used to measure the similarities between them.
The similarities between two item entities, denoted as

sim(Ii,Ij), is defined according to Eq. (8):

sim Ii; I j
� � ¼

X
u∈U

ru;Ii− �rui
� �

ru;Ij− �ruj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u∈U

rui;p− �rui
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

p∈P
ruj;p−ruj
� �2q

ð8Þ

where U is the users who have graded both Ii and Ij and
rui and ruj are the average grades of ui and uj, respectively.
If Ii and Ij have not been graded by a common user,

sim(Ii,Ij) will be defined according to Eq. (9):

sim Ii; I j
� � ¼ Ui ∩Uj

Ui ∪Uj
ð9Þ

where Ui is the users who have purchased item Ii while
Uj is the users who have purchased item Ij.
The formula of the sub-matrix of TII is as follows:

Fig. 3 Frame of SPGraph-based collaborative filtering approach
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TII i; jð Þ ¼
βsim Ii; I j

� �
if P ≠∅

Ui ∩Uj

Ui ∪Uj
otherwise

8<
: ð10Þ

where β is the weight of the relation between homoge-
neous entities.

3.1.6 Initialization of item-tag probability propagation
matrix
TIT is the user-property probability propagation matrix.
We employ the TF-IDF approach to measure the simi-
larity between items and tags. The more often item Ii is
labeled with tag Tj and the less popular tag Tj is, the
more similar item Ii and tag Tj are.
TIT is defined as follows:

TIT ¼ wit
ni;t

log 1þnt ið Þð Þ if eit ¼ 1
0 otherwise

�
ð11Þ

where ni,t is the times item Ii is labeled with tag Tj, nt
(i) is

the times tag Tj is used, and wit is the weight of the rela-
tion between items and tags. eit = 1 indicates that the
item has been labeled with the tag.

3.1.7 Initialization of item-property probability propagation
matrix
TIP, denoting the item-property probability propagation
matrix, is defined as follows:

TIP i; jð Þ ¼ wip ⋅1 if eip ¼ 1
0 otherwise

(
ð12Þ

where wip is the weight of the relation between items and
properties. If item Ii possesses property pj, then eip = 1;
otherwise, eip = 0.

3.1.8 Initialization of tag probability propagation matrix
TTT, denoting the tag probability propagation matrix, re-
fers to the similarities between tags and is defined as
follows:

TTT i; jð Þ ¼ wtt

X
i∈N bð Þ∩N b

0ð Þnb;inb0 ;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈N bð Þnb;i

2X
i∈N b

0ð Þnb0 ;i
2

r
0

8>>><
>>>:

ð13Þ

where wtt is the weight of the relation between tags,
N(b) is the tag set containing tag b, and nb,j is the num-
ber of users that label item i with tag b.

3.1.9 Initialization of property-tag probability propagation
matrix
TTP, denoting the property-tag probability propagation
matrix, is a null matrix as a result of the lack of direct
relations between properties and tags.

3.1.10 Initialization of property probability propagation
matrix
TPP, denoting the property probability propagation matrix,
is also a null matrix because no direct relations exist be-
tween properties.
Finally, we normalize to 1 each line of the propagation

probability matrix.

3.2 Similarity propagation approach
If a d-length path exists between two random nodes vo
and vs in a heterogeneous network, it will take d random
walks from vo to vs and the path between vo and vs will
be a d-length random path. When arriving at node vt
during the random walking, we can either proceed to
another node at the propagation probability between
node vt and its neighbor node or restart at the certain
probability α [19]. Until the probability of access to each
node converges to a number, it ceases to propagate. Both
methods will lead to a Markov chain.
Random walking paths are made up of meta paths

which represent the similarities between entities. And
the similarities, propagated during the process of ran-
dom walking, are positively correlated with the number
of random walking paths and negatively correlated with
the length of them.
Therefore, the formula of the similarity propagation

between vi and vj is defined according to Eq. (14):

sim vi; vj
� � ¼ X

γ∈l
p σð Þα 1−αð Þlength γð Þ ð14Þ

where l is a path from vi to vj and length(γ) is a γ-length
path from vi to vj.
Turning the above formula into a matrix, we get a

similarity matrix, defined as follows:

Rsim ¼

"
RUU

RIU

RTU

RPU

RUI

RII

RTI

RUT

RIT

RTT

RPI RPT

RUP

RIP

RTP
RPP

#
¼

Xl

γ¼1

α 1−αð ÞγT γ

ð15Þ

where RUU is the similarity matrix of users and RII is the
similarity matrix of items.

4 SPGraph-based collaborative filtering approach
Based on the user similarity matrix and item similarity
matrix deduced from the similarity propagation ap-
proach, this section proposes a hybrid collaborative fil-
tering approach based on the score prediction graph
(SPGraph). Figure 3 illustrates the framework of our ap-
proach, which consists of two stages.
The offline training stage constructs the SPGraph by

searching for the nearest neighbors of users or items via
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similarity matrix, generates prediction node sequence by
anti-centrality sort principle after calculating the central-
ity of each node, and finishes the user-item score matrix
via the hybrid collaborative filtering approach. The on-
line recommendation stage searches for the positive K
nearest neighbors of the target user via the similarity
propagation approach and predicts users’ scores via the
hybrid collaborative filtering approach to form recom-
mendation lists.

4.1 Construction of SPGragh

4.1.0.1 Definition 4 SPGraph: SPGraph is an iso-
morphic undigraph with weight generated by the nearest
neighbor selection in the user similarity matrix and the
item similarity matrix. A SPGraph can be represented as
SPGraph = (V,E,W), where V is one type of entity, either
users or items, E denotes one type of relation, and W is
the similarity between entities. <vi,vj>∈E means that item
vi and item vj or user vi and user vj have similarity which
is represented as wij∈W.
Then we will introduce the SPGraph generation ap-
proach with the example of the user similarity matrix.
And the user score predication graph is denoted as
SPGU. Near neighbors with low similarity not only
occupy computing resources but also reduce the ac-
curacy of predication; therefore, in the nearest neigh-
bor selection, we set a threshold value δ to eliminate
them. Approach 1 presents the pseudo-code of SPGraph
generation approach.

At the beginning, there only exists the set of inde-
pendent user nodes V = {v1,v2,…,vn} in SPGU. Lines 7–12
demonstrate that, for every value in the matrix (rij∈RUU),
if rij is greater than δ , an edge <vi,vj> will be added to

the SPGU and the weight of the edge wij is set to rij.
Figure 4(1) briefly shows the generation approach of
SPGU.

4.2 Generation of prediction node sequence based on
anti-centrality sort
As is shown in Fig. 4(2), the centrality of user u5 is the
lowest. So if we first predicate the score of u5, its devi-
ation will only affect the score predication of u6 to some
extent and have little effect on other users. However, if
we first predicate the score of u3, its deviation will dir-
ectly affect the score prediction of u1, u4, and u6. The
score prediction of u4 will be affected the most due to
its high similarity with u3. According to the principle
“The less influential the node is, the lower centrality the
node has, the earlier the node is predicted, the less rat-
ing error is.”, we propose a prediction node sequence
generation approach based on anti-centrality sort. The
pseudo of the prediction node sequence generation ap-
proach is as follows.

Lines 4–8 describe the computing of the centrality of
nodes in SPGU. Lines 11–12 describe that we first search
for the node with the lowest centrality and then add it
to the node sequence array in order. Lines 14–16 de-
scribe that we delete the node added to the node se-
quence array and its similarity, re-compute the centrality
of rest, and then repeat the process from line 10 to line
16 till the completion of the node sequence. The gener-
ating process of the prediction node sequence of SPGU

is as shown in Fig. 4(2).
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4.3 Hybrid collaborative filtering approach
Based on the prediction node sequence, we use the hy-
brid approach integrating the user-based nearest neigh-
bor recommendation approach (UbCF) with the item-
based nearest neighbor recommendation approach
(IbCF) to predict the score that user u gives to item i.
Based on the UbCF approach, the predicated score

user u gives to item i is computed according to Eq. (16).

pred u; ið Þ ¼ �ru þ
P

s∈Sim uð Þsim u;sð Þ� rs;i− �rsð ÞP
s∈Sim ið Þ sim u; sð Þ ð16Þ

where Sim(u) is the nearest neighbors of user u, sim(u,s)
is the similarity between user u and user s, rs,i is the
score that user s gives to item i, and r s is the average
score that user s gives to all items.
Based on the IbCF approach, the predicated score user

u gives to item i is computed according to Eq. (17):

pred u; ið Þ ¼
P

p∈Sim ið Þsim i;pð Þ�ru;pP
p∈Sim ið Þsim i; pð Þ ð17Þ

where Sim(i) is the nearest neighbors of item i, sim(i,p)
is the similarity between item i and item p, and ru,p is
the score user u gives to item p.
Due to the impact of the similarity of the near neigh-

bor set, UbCF and IbCF vary in the accuracy of predica-
tion. For example, it is obvious that the UbCF-based
recommendation results are more accurate when the

similarity of the user’s near neighbor set is {1,0.8,0.9}
while the similarity of the item’s near neighbor set is
{0.4,0.5,0.5}. So the confidence weight [20] is introduced
to balance the final prediction result. And the larger the
similarity of the near neighbors set is, the bigger its con-
fidence weight is.
The confidence weight of the user is defined according

to Eq. (18):

conu ¼
X

ui∈Sim uð Þ

sim ui; uð ÞX
ui∈Sim uð Þ

sim ui; uð Þ � sim ui; uð Þ ð18Þ

The confidence weight of the item is defined according
to Eq. (19):

conv ¼
X

vi∈Sim uð Þ

sim vi; vð ÞX
vi∈Sim vð Þ

sim vi; vð Þ � sim vi; vð Þ ð19Þ

Larger confidence weight results in more accurate
predication.
Besides, different data sets and users may put varied

weight on these two recommendation approaches. There-
fore, parameter θ is introduced to measure the weight a
user gives to an approach. wu denoting the weight of the
UbCF approach and wv denoting the weight of the IbCF
approach are defined as follows:

a

b c

Fig. 4 User predication node sequence generation approach
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wu ¼ conu � θ

conu � θ þ coni � 1−θð Þ ð20Þ

wv ¼ coni � 1−θð Þ
conu � θ þ coni � 1−θð Þ ð21Þ

Furthermore, when neither the users’ nearest neighbor
set Sin(u) nor the items’ nearest neighbor set Sin(i) are
null sets, the hybrid recommendation approach is de-
fined as follows:

pred u; ið Þ ¼ wu � predu u; ið Þ þ wv � predv u; ið Þ
ð22Þ

where the sum of wu and wv is 1.

wu ¼ conu � θ

conu � θ þ coni � 1−θð Þ ð23Þ

wv ¼ coni � 1−θð Þ
conu � θ þ coni � 1−θð Þ ð24Þ

When Sin(i) is a null set and Sin(u) is not, the hybrid
recommendation approach equals to the UbCF. And
when Sin(u) is a null set and Sin(i) is not, the hybrid rec-
ommendation approach equals to the IbCF.
If both Sin(u) and Sin(i) are null sets during the user-

item matrix filling phase in the offline training phase,
pred(u,i) = null. As to online prediction, cold start prob-
lems have been solved by similarity propagation ap-
proach because there will be a corresponding nearest
neighbor set for every new user or item. Besides, in
order to improve the accuracy of predication, we choose
the positive K nearest neighbor instead of the top K
nearest neighbor. And positive K is defined as follows:

positive K uð Þ ¼ uijsim ui; uð Þ≥δf g ð25Þ
The value of K varies in users as a result of the differ-

ent number of users filtered by the similarity threshold
value δ.

5 Experiments and comparison
In this section, we evaluate our approach. We first intro-
duce the experiment dataset, the evaluation metrics, and
the parameter setting. Then we perform some experi-
ments to investigate the performance of our approach
compared with five state-of-the-art approaches.

5.1 Datasets, evaluation metrics, and parameter setting
In this experiment, we employ the available movie data-
sets, MovieLens, which can be obtained from the Movie-
Lens site [21]. Table 1 tabulates the details about the
datasets.
The dataset is so sparse that we need to pre-process it

by deleting users whose movie records are less than 50
and movies which are graded by less than 50 users.

In the experiment, we employ four commonly used
evaluation metrics including mean absolute error
(MAE), root-mean-square error (RMSE), recall rate, and
diversity. They are defined and summarized as follows.

MAE ¼
X

u;i∈T
ru;i−ru;i
�� ��
Tj j ð26Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;i∈T

ru;i−ru;i
� �2
Tj j

vuut ð27Þ

where |T| is the number of rating records in the test set,
ru,i is the actual score for user u on item i and ru;i is the
predicted score by recommendation system.

Recall ¼
X

u∈U
R uð Þ∩P uð Þj jX

u∈U
P uð Þj j ð28Þ

where P(u) is the item set that target users graded in
the test set and R(u) is the item set recommended by the
recommendation system.

Diversity R ið Þð Þ ¼ 1−

X
i;j∈R uð Þ;i≠jsim i; jð Þ

1
2 R uð Þj j R uð Þj j−1ð Þ ð29Þ

where sim(i,j) is the similarity between item i and item
j and R(u) is the recommendation list.
The diversity of the recommendation system is the

mean value of the diversities of all the users’ recommen-
dation lists and is defined according to Eq. (30).

Diversity ¼ 1
Uj j

X
u∈U

Diversity R uð Þð Þ ð30Þ

where U is the user set in the test set.
The threshold values and parameters in our experi-

ment are optimized with the restart factor 0.8, the
threshold value 0.4, and the balance factor 0.9. The
weights of the six types of relations are initialized as 1.
For lack of space, the parameter optimization process is
not mentioned in this paper. The threshold and the bal-
ance factor are optimized. Here only Fig. 5 is used to
demonstrate the effects of the restart factor on the per-
formance of the approach.

Table 1 Statistics of experiment datasets

Statistics MovieLens

Number of users 700

Number of movies 10,000

Number of tags 6100

Theme of movies 20

Rating records 100,000

Rating range 0–5
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5.2 Experiment results
In order to confirm whether our approach can perform
better than other approaches, we compare our approach
with five state-of-the-art approaches. More details are
provided below:
UbCF and IbCF [22], whose information source is the

scores users give to items, are user-based and item-
based nearest neighbor recommendation approaches,
respectively.
Hybrid user-item based collaborative filtering (HCF)

[22] is the hybrid recommendation approach which inte-
grates the user-based nearest neighbor recommendation
with the item-based nearest neighbor recommendation.
TNCF is a hybrid recommendation approach which

integrates the rating similarity with the property simi-
larity. And it adopts the top N method to select the
nearest neighbors.

MSCF is the reinforced approach of TNCF by improv-
ing the nearest neighbor selection method.
Then we randomly split the dataset into 10 subsets for

10-fold cross-validation. The nine subsets are training
datasets, and the remaining one subset is the test data-
set. All approaches will be repeated 20 times in every ex-
periment to avoid sample bias. The mean values of the
four evaluation metrics are calculated when the length
of the recommendation list is 20 and 30. The compari-
son results are summarized in Table 2 and Fig. 5.
Figure 6 shows clearly the performance of the six ap-

proaches on MAE, recall, and diversity. It is very clear
that the performance of HCF on all the four evaluation
metrics is better than UbCF and IbCF because HCF is a
hybrid recommendation approach which integrates the
user-based nearest neighbor recommendation with the
item-based nearest neighbor recommendation.

Fig. 5 The effect of restart factor alpha on the performance of the approach

Table 2 Results of the six approaches

Methods UbCF IbCF HCF TNCF MSCF Our approach

The length of recommendation list n = 20

MAE 0.799000 0.820004 0.786254 0.759431 0.749642 0.612635

RMSE 1.220041 1.238451 1.190004 1.172457 1.162245 1.158036

Recall 0.752544 0.692545 0.792445 0.795474 0.798415 0.856674

Diversity 0.354954 0.352424 0.385454 0.401771 0.524854 0.568545

The length of recommendation list n = 30

MAE 0.795714 0.818571 0.776040 0.755981 0.746721 0.602412

RMSE 1.228245 1.245100 1.192544 1.175125 1.165105 1.142428

Recall 0.789254 0.725875 0.805747 0.814745 0.828604 0.855441

Diversity 0.354521 0.352488 0.385471 0.401545 0.524454 0.585145
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As for TNCF, its improvement on similarity comput-
ing by introducing property similarity alleviates the im-
pact of sparse data to some extent. So TNCF performs
better than HCF. On the other hand, MSCF performs
better than TNCF as a result of its improvement on both
similarity computing and nearest neighbor selection.
Among the six approaches, our approach outperforms

other approaches in terms of the performance of MAE,
RMSE, recall, and diversity. To be more specific, com-
pared with MSCF, our approach improves 19.3 % in
MAE, 1.9 % in RMSE, 7.2 % in recall rate, and 11.5 % in
diversity. There are two reasons that our approach is the
best. On the one hand, our approach adds other proper-
ties and information to similarity computing to further
reduce the effect of sparse matrix. On the other hand,
our approach uses the hybrid collaborative filtering ap-
proach to predicate scores and fill the user-item matrix
step by step based on prediction node sequence which
can really improve the prediction accuracy.

6 Conclusions
In this paper, we address the following issues. Firstly, most
of the existing recommendation approaches are based on
single information source and cannot effectively solve the
cold start and data sparsity problems. In addition, some ap-
proaches proposed to solve data sparsity fail to consider the
effects of users’ influences and prediction order on recom-
mendation accuracy. To solve these problems, the paper
proposes the similarity propagation approach based on het-
erogeneous networks and the predication node sequence
generation approach based on anti-centrality sort, the
former integrating various types of information to effect-
ively solve the cold start problem and the latter solving data

sparsity by gradually filling the user-item score matrix based
on prediction node sequence. We conduct experiments on
the MovieLens dataset. Compared with five state-of-the-art
approaches, our approach outperforms them in terms of
the performances of MAE, RMSE, recall, and diversity.
There are several areas in which we can improve our

work. Firstly, more feature extraction methods [23] can be
introduced to analyze the user preference. Secondly, social
community discovery [24] and precise semantic analysis
method [25–28] can be introduced to the similarity com-
puting so as to more accurately and effectively work out
user preference. Thirdly, more methods [29] can be used to
filter the training dataset in order to make the dataset trust-
worthy. Fourthly, we can implement the Spark-based simi-
larity propagation approach to improve approach efficiency.
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