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Abstract New correlations for saturated and undersaturated

oil viscosity were developed for Saudi Arabian crude oil. The

data consist of 79 and 71 experimental measurements of sat-

urated and undersaturated crude oil viscosity, respectively, at

reservoir conditions. Other PVT measurements above and

below bubble point pressure are also included. The new cor-

relations were developed using genetic programming

approach. The new models were developed and tested using

linear genetic programming (GP) technique. The models

efficiency was compared to existing correlations. Average

absolute relative deviation, coefficient of correlation, and

crossplots were used to evaluate the proposed models, and

their outputs indicate the accuracy of theGP technique and the

superiority of the developed models in comparison with the

commonly utilized models tested.

Keywords Genetic programming � Oil viscosity �
Saturated � Undersaturated � Correlation

Introduction

Crude oil viscosity is an important physical property that

controls and influences the flow of oil through porous

media and pipelines. The viscosity, in general, is defined as

the internal resistance of a fluid to flow. Oil viscosity is a

strong function of many thermodynamic and physical

properties such as pressure, temperature, solution gas–oil

ratio (GOR), bubble point pressure, gas gravity, and oil

gravity. Viscosity of crude oil is a fundamental factor in

simulating reservoirs, forecasting production as well as

planning thermal enhanced oil recovery methods that make

its accurate determination necessary.

Usually oil viscosity is determined by laboratory mea-

surements at reservoir temperature. However, experimental

determination of reservoir oil viscosity is costly and time-

consuming. A literature survey has indicated that empirical

viscosity correlations developed are divided into three

major types: dead oil viscosity, saturated oil viscosity, and

undersaturated oil viscosity. Figure 1 shows a typical oil

viscosity diagram as a function of pressure at constant

reservoir temperature.

Saturated oil viscosity

Numerous correlations have been proposed to calculate the

oil viscosity. These correlations predict viscosities from

available field-measured variables including reservoir

temperature, oil API gravity, solution gas–oil ratio, pres-

sure, and saturation pressure.

Chew and Connally (1958) presented their crude vis-

cosity correlation as a function of dead oil viscosity and

solution gas–oil ratio under reservoir conditions. Viscosity

was measured for data of 457 crude oil samples gathered

from different areas of USA, Canada, and South America.

Measurements were conducted within the ranges of

72–292 �F, 132–5645 psia, and 51–3544 cu ft/bbl for

reservoir temperature, bubble point pressure, and solution

gas–oil ratio at bubble point, respectively.

Beggs and Robinson (1975) developed fairly accurate

and simple crude oil viscosity model based on API gravity
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temperature and solution gas–oil ratio. Measurements of

600 samples dataset were used to derive the correlation

with pressure range of 0.0–5250 psig, solution GOR of

20–2070 scf/STB, oil gravity of 16–58 �API, and temper-

ature of 70–295 �F. They limit their correlation on data that

do not have crude composition and suggest using different

correlations for better accuracy if composition is available.

Later, Khan et al. (1987) published their empirical cor-

relation using Saudi Arabian crude oil viscosity measured

using rolling ball viscometer at various pressures and tem-

peratures. The study utilized viscosity data of 75 bottom-

hole samples taken from 62 Saudi oil reservoirs. A total of

1691 data measurements below the bubble point pressure

were used to derive the correlation which is simply based on

crude bubble point viscosity, pressure, and bubble point

pressure. They compared their model with Begs and

Robinson and Chew and Connally and claimed that their

own correlation was the most accurate for Saudi crudes.

Naseri et al. (2005) used PVT experimental data of 472

series of Iranian oil reservoirs in developing their empirical

correlation. These data include oil API gravity, reservoir

temperature, saturation pressure, solution gas–oil ratio, and

PVT measurements at reservoir temperature. Out of the

total dataset, 250 were used to develop the empirical model

and the rest was spared for validation purposes. Dead

viscosity and bubble point pressure were used as input

parameter and model developed was of good accuracy

exceeding that of the models they compared with average

absolute error of 26.31%.

Undersaturated oil viscosity

Many correlations have been proposed to calculate the

undersaturated oil viscosity. These correlations predict

viscosities from available field samples including reservoir

temperature, oil API gravity, solution gas–oil ratio, pres-

sure, and saturation pressure. Vazquez and Beggs (1977)

used more than 600 laboratory PVT analyses from fields of

different geographical locations. The data encompassed

very wide ranges of pressure, temperature, and oil prop-

erties and included more than 6000 measurements of gas

solubility, oil formations volume factor, and oil viscosity at

various pressures. Regression analysis techniques were

used to correlate the laboratory data.

Khan et al. (1987) utilized viscosity data of 75 bottom-

hole samples taken from 62 Saudi oil reservoirs. A total of

1503 data measurements above the bubble point pressure

were used to derive the correlation which is simply based

on crude bubble point viscosity, pressure, and bubble point

pressure. They compared their model with Beal’s (1946)

correlation, and it gives close estimates for undersaturated

crude oil viscosity.

Kartoatmodjo and Schmidt (1991) used widespread data

collected from PVT reports and literature. A set of 5392 data

points was used to develop their correlation. These data

represent 740 different crude oil samples. For the develop-

ment of undersaturated oil properties correlations, a total of

3588 data points collected from 661 different crude oil

samples were used. The functional form of Sutton’s was

used in this study to develop the undersaturated oil viscosity

correlation. They developed a crude oil viscosity model

based on API gravity, temperature, and solution gas–oil

ratio. The used data have the following ranges: oil gravity of

14.4–59 �API, pressure of 14.7–6054.7 psia, temperature of

75–320 �F, and solution–gas ratio of 0–2890 scf/stb.

Hossain et al. (2005) presented their empirical correla-

tions for dead, saturated, and undersaturated heavy oil

utilizing three databanks. The databanks consist of heavy

oil data from various parts of the world with wide ranges of

temperature, pressure, and fluid compositions. A total of

361 data points were used to develop the undersaturated oil

viscosity correlation. With temperature range of

118–218.7 �F, solution–gas ratio of 19.4–493 scf/bbl,

bubble point pressure of 121–6272 psia, and pressure of

300–6400 psia.

Bergman and Sutton (2006) developed their correlation

which provides a wider range of bubble point viscosity and

pressure differentials than other existing correlations for

undersaturated oil viscosity. This model derives undersat-

urated viscosity using only bubble point viscosity and

pressure differential. The correlation can be satisfactorily

used on gas free oils and oil with solution gas. The data

used to derive the correlation included samples with bubble

point viscosity from less than 0.1–14,000 cp. Accuracy is

maintained over this wide range of values.

Genetic programming

Genetic programming (GP) is a development in the field of

evolutionary algorithms extending the classical genetic

algorithms (GA) to a symbolic optimization technique and
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Fig. 1 Typical viscosity trend as a function of pressure
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overcoming GA limitation of being a fixed-length repre-

sentation scheme requiring encoding of the variables and

its non-dynamic variability requiring the string length to be

defined in advance (Koza 1992). Unlike common opti-

mization methods, GP is able to work with a coding of the

design variables as opposed to the design variables them-

selves. It is a problem-independent application working

with a population of points as opposed to a single point. In

addition, it requires the objective function value only, not

the derivatives. Finally, GP is considered highly exploita-

tive family of probabilistic (non-deterministic) search

approach (Alvarez 2000).

GP is based on so-called tree representation in which

trees can represent computer programs, mathematical

equations, or complete models of process systems. GP

initially creates an initial population generating random

individuals (trees) of functions and terminals (inputs) to

represent the problem. In all iterations, the algorithm

executes and evaluates the individuals in the population

and assigns a fitness value. Individuals are then selected for

reproduction and generate new individuals by mutation,

crossover. Finally, the best program in the generation is

designated (Koza 1992). Figure 2 shows a flowchart pre-

senting general genetic programming workflow.

The generated potential solutions in the form of a tree

structure during the GP operation may have better and

worse terms (subtrees) that contribute more or less to the

accuracy of the model represented by the tree structure.

Orthogonal least squares (OLS) algorithm is used to esti-

mate the contribution of the tree branches to the accuracy

of the model, and hence, terms having the smallest error

reduction ratio could be eliminated from the tree. Figure 2

illustrates an example of elimination of a sub-tree based on

OLS.

Results and discussion

A database of 150 Saudi Arabian crude oil samples was

utilized. The database includes 79 saturated samples and 71

undersaturated samples with viscosity measurements (l) at
wide ranges of pressures and temperatures. Other

Fig. 2 General flowchart of

genetic programming (Koza

et al. 2003)
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parameters including dead oil viscosity (ld), solution gas–

oil ratio (Rs), bubble point pressure (Pob), crude API, gas

specific gravity (cg), and crude viscosity at bubble point

(lob) are also included. The quality of the data was judged

and compared before they were considered and they were

randomized and used in genetic programming (GP) soft-

ware capable of building computer program out of the data

provided to develop, test and validate the two proposed

saturated and undersaturated viscosity models. Both satu-

rated and undersaturated datasets were divided into three

segments. The first two were used to train and test the

model while the third was spared to blind test and validate

the model efficiency. The software was run for 1000 gen-

erations with a maximum population size of 500. Several

values of crossover and mutation rates were investigated,

and the optimum setting found was 50 and 95% for

crossover frequency and mutation frequency, respectively.

The function set used was limited to (?, -, *, / and H)

while the terminal set was the input parameters for each

model in addition to machine randomly generated con-

stants. The generation of genetic programming models was

started and terminated when project history showed no

improvement (Fig. 3).

Saturated oil viscosity model

A dataset of 79 saturated crude samples was randomized,

and two segments of 26 samples each were used for both

training and testing. The rest was used for model validation

and blind testing. The model was simply developed as a

function of solution gas–oil ratio and viscosity at bubble

point pressure as input parameters. The evolved viscosity

model shows efficient performance, and Table 1 lists the

domain of the data segments used in building and testing

processes in addition to that used for validation of the

developed GP saturated oil viscosity model. Figure 4 pre-

sents the best evolved genetic program in C?? code. The

f[0], f[1], etc. are temporary computation variables used in

the program evolved. The output is the value of f[0] after

program execution. The variable labels V[0], V[1], etc. are

the names assigned to input data. Writing up the equation

(Eq. 1) representing the evolved program for saturated oil

viscosity, we obtained the following:

l ¼
a15 Dþ 2Dj j�D

a2
16

� �
a216 � a16
� �

� 2Dj j�D

a2
16

h i
þ a316ld

a416
ð1Þ

where

D ¼ a13C � 2Aþ a14

B

����
����þ 7

2A

B
� a2

� �

A ¼ Rs a1 � l2d
� �

� a2

B ¼ a4A
2 2� a5ldð Þ2

a3
þ a6ld þ a7

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a10ld þ a11ldRs þ a12j j

p

The A, B, C, and D are the computation variables used

in the program evolved, whereas the a1, a2, … a16 are the

correlation coefficients as listed.

a1 1.9244 a9 0.9592

a2 0.0026 a10 0.6221

a3 0.6189 a11 0.0023

a4 2.8541 a12 0.1979

a5 0.9404 a13 0.6342

a6 1.0895 a14 0.6617

a7 1.4270 a15 1.3709

a8 1.0632 a16 0.9974

The model efficiency was compared to some published

correlations such as Chew and Connally (1958), Beggs and

Robinson (1975), Khan et al. (1987), and Naseri et al.

(2005). Figure 5 consists of crossplots of the predicted

Fig. 3 An example of

elimination of a sub-tree
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versus experimentally measured viscosities using the

developed genetic viscosity model and the four previously

mentioned correlations. Average absolute relative error

(AARE) and Pearson’s coefficient of correlation (COC)

defined in Eqs. 2 and 3 were calculated, and the AARE was

used to validate the efficiency of proposed model in com-

parison with other tested models.

AARE ¼ 100

n

X lActual � lForecastj j
lActualj j ð2Þ

COC ¼
P

lActual � lActualð Þ lForecast � lForecastð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
lActual � lActualð Þ2 lForecast � lForecastð Þ2

q ð3Þ

where

lActual = measured viscosity value, cp.

lForecast = correlated viscosity value, cp.

lActual = average measured viscosity value, cp.

lForecast = average correlated viscosity value, cp.

The figure indicates that the proposed model (Fig. 5a)

outperforms the other correlations in predicting the

experimentally measured viscosity with the least average

absolute relative error (AARE) of 9.37% and highest

coefficient of correlation (COC) of 99.35%. Beggs and

Robinson (1975) was the second best correlation while the

least accuracy was that of Naseri et al. (2005). Khan et al.

(1987) correlation was originally developed for Saudi

crude oil, and we expected high performance; however, it

shows a significant departure from the 45� line for higher

viscosity range of our dataset. Table 2 summarizes the

accuracy of the developed GP model in comparison with

the different correlations in predicting the saturated crude

oil viscosity.

Undersaturated oil viscosity model

The dataset used for this model consists of 71 experimental

measurements of undersaturated crude oil viscosity. The

model was developed as a function of pressure, bubble

point pressure, and viscosity at bubble point pressure as

input parameters. Table 3 lists the ranges of the data used

in building and validating the new undersaturated oil vis-

cosity model constituting the limits of the model. Figure 6

presents the best evolved genetic program in C?? code.

Equation 4 represents the write up of the evolved program

for undersaturated oil viscosity,

l ¼ lob þ b8 � D� b9: ð4Þ

where

D ¼ b6ðC � lobÞ � b7

C ¼ P

Pb

� �
b4 � A � Bþ b5 þ lobð Þ

B ¼ lob � b3

A ¼ b1
P

Pb

� �
lob � b2ð Þ

Again, the A, B, C, and D are the computation variables

used in the evolved program, whereas the b1, b2, … b9 are

the correlation coefficients listed as follows:

b1 0.1317 b4 1.0529 b7 0.0086

b2 1.7892 b5 0.3579 b8 0.3055

b3 3.4466 b6 0.1323 b9 0.0099

The model efficiency was tested against some com-

monly used correlations such as Vazquez and Beggs

(1977), Khan et al. (1987), Kartoatmodjo and Schmidt

(1991), Hossain et al. (2005), and Bergman and Sutton

(2006). The evolved undersaturated viscosity GP model

shows efficient performance over wide ranges of input

variables. Figure 7 consists of plots of the predicted versus

experimentally measured viscosities using the developed

genetic viscosity model and the four previously mentioned

correlations. All models tested shows good accuracy with

best performance obtained with the proposed GP model

indicating an average absolute relative error of 9.36%.

Table 4 shows the accuracy of the developed model in

comparison with the different correlations in predicting the

undersaturated crude oil viscosity.

Table 1 Minimum and maximum values for the used data in building and validating the new saturated crude viscosity model

Building and testing data Validation data

Rs (cf/bbl) ld (cp) lo (cp) Rs (cf/bbl) lob (cp) lo (cp)

Minimum 0 1.085 0.37 0 1.085 0.38

Maximum 1020 6.72 5.06 895 6.72 6.72
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Fig. 4 Saturated crude viscosity model in C?? language
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Sensitivity analysis

The impacts of the input independent variables on saturated

and undersaturated crude oil viscosity models were calcu-

lated and presented by the GP software. The purpose of

variable impact analysis is to measure the sensitivity of

model predictions to changes in independent variables. As

a result of the analysis, every independent variable is

assigned a relative variable impact value. The lower the

percent value for a given variable, the less that variable

Fig. 4 continued
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affects the prediction. The results of the analysis can help

in testing the model results robustness and simplifying the

model with adequate accuracy by reducing the number of

independent variables (inputs), those that have very low

impact, if many were involved (AlQuraishi 2009). Fig-

ures 8 and 9 present the impact analysis of independent

variables on saturated and undersaturated crude viscosity

predictions, respectively. Saturated viscosity model is

closely dependent on both Rs and lob while undersaturated

Fig. 5 Predicted versus

experimentally measured

saturated oil viscosity

Table 2 Accuracy of developed saturated crude oil viscosity model

in comparison with different published correlation

Models AARE (%) COC (%)

GP-based model 9.37 99.35

Beggs and Robinson 16.79 98.90

Chew and Connally 25.15 97.07

Khan et al. 17.82 98.40

Naseri et al. 34.34 93.75
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Table 3 Minimum and maximum values for the used data in building and validating the new undersaturated crude viscosity model

Building data Validation data

Pressure (psi) Pb (psi) lob (cp) lo (cp) Pressure (psi) Pb (psi) lob (cp) lo (cp)

Minimum 400 317 0.37 0.38 1000 317 0.37 0.38

Maximum 3495 2530 4.43 5.6 3200 2530 4.43 5.73

Fig. 6 Undersaturated crude

viscosity model in C??

language
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viscosity model is highly dependent on lob. The fig-

ures show the negative impact of RS and the positive

impact of lob on saturated crude viscosity and the high

positive impact of lob on undersaturated crude viscosity.

Conclusion

Two models were developed to estimate saturated and

undersaturated crude oil viscosity. Genetic programming

approach was used to develop these two models using

Fig. 7 Predectied versus

experimentally measured

undersaturated oil viscosity

Table 4 Accuracy of developed model in comparison with different

methods in predicting the undersaturated crude oil viscosity

Models AARE (%) COC (%)

GP-based model 1.64 99.78

Vazquez and Beggs 4.97 99.34

Khan et al. 1.73 99.86

Kartoatmodjo and Schmidt 5.96 99.84

Hossain et al. 2.18 99.91

Bergman and Sutton 1.84 99.89
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experimental measurements. The models efficiency was

tested against som commonly used correlations, and based

on the results obtained, the following are concluded:

• Saturated viscosity model developed using solution

gas–oil ratio (Rs) and dead crude viscosity (ld) as input
variables provided good accuracy in predicting the

experimental measurements and outperforms the other

tested correlations with AARE of 9.37%.

• Undersaturated viscosity model developed using reser-

voir pressure (P) and crude bubble point pressure (Pob)

and crude viscosity at bubble point pressure (lob) as

inputs provided good accuracy in predicting the exper-

imental measurements and outperforms the other tested

correlations with AARE of 1.64%.

• The developed saturated model sensitivity analysis

indicates the equivalent impact of dead crude viscosity

(ld) and solution gas–oil ratio (Rs) but in opposite

trend.

• The developed undersaturated model sensitivity anal-

ysis indicates the high positive impact of crude

viscosity at bubble point (lob) and small negative

impact of bubble point pressure (Pob) and trivial

positive impact of reservoir pressure (P).
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