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1 Introduction
Using the notion of asymptotically invariant sequences of means on l∞, we obtain a mean
convergence theorem for pointwise convergent sequences of hybrid mappings in Hilbert
spaces. By assuming the strong regularity on the sequences of means, we also obtain a
uniform mean convergence theorem.
In , Baillon [] established a nonlinear ergodic theorem for nonexpansive mappings

in Hilbert spaces. Several results related to Baillon’s ergodic theorem have been obtained
since then; see, for instance, [–] and the references therein. Especially, using the notion
of asymptotically invariant nets of means on semitopological semigroups, Hirano, Kido,
and Takahashi [] and Lau, Shioji, and Takahashi [] generalized Baillon’s ergodic theorem
to commutative and noncommutative semigroups of nonexpansive mappings in Banach
spaces, respectively.
On the other hand, Akatsuka, Aoyama, and Takahashi [] obtained another general-

ization of Baillon’s ergodic theorem for pointwise convergent sequences of nonexpansive
mappings in Hilbert spaces. Their result was applied to the problem of approximating
common fixed points of countable families of nonexpansive mappings. Recently, the au-
thors [] generalized some results in [] for pointwise convergent sequences of hybrid
mappings in the sense of [].
The aim of the present paper is to obtain further generalizations of the results in [, ]

by using a sequence {μn} of means on l∞. In particular, by assuming the strong regularity
on {μn}, we prove a uniform mean convergence theorem (Theorem .) for pointwise
convergent sequences of hybrid mappings in Hilbert spaces.
Our paper is organized as follows. In Section , we recall some definitions and some pre-

liminary results. In Section , we prove mean convergence theorems by using sequences
of means on l∞; see Theorems . and .. In Section , we obtain some consequences
of Theorem .; see Theorems ., ., and .. In Section , we give two applications of
Theorem ..
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2 Preliminaries
Throughout the present paper, every linear space is real. We denote the sets of all non-
negative integers and all real numbers by N and R, respectively. For a Banach space X, the
conjugate space of X is denoted by X*. We denote the norms of X and X* by ‖ · ‖. For a
sequence {xn} of a Banach space X and x ∈ X, strong and weak convergence of {xn} to x are
denoted by xn → x and xn ⇀ x, respectively. For a sequence {x*n} of X* and x* ∈ X*, weak*

convergence of {x*n} to x* is also denoted by x*n
*

⇀ x*. The inner product of a Hilbert space
H is denoted by 〈·, ·〉. For a subset A of a Hilbert space H , the closure of the convex hull of
A is denoted by coA.
Let C be a nonempty subset of a Hilbert space H , and let λ ∈ R. A mapping T : C → H

is said to be λ-hybrid [] if

‖Tx – Ty‖ ≤ ‖x – y‖ + ( – λ)〈x – Tx, y – Ty〉 (.)

for all x, y ∈ C. It is obvious that the following hold: T is -hybrid if and only if it is nonex-
pansive; T is -hybrid if and only if it is nonspreading in the sense of []; T is /-hybrid
if and only if it is a hybrid mapping in the sense of []. It is also known that if T is firmly
nonexpansive, then it is λ-hybrid for all λ ∈ [, ]; see [, Lemma .]. It should be noted
that if T : C →H is λ-hybrid for some λ > , then T is the identity mapping on C. Indeed,
by setting x = y ∈ C in (.), we have

 ≤ ( – λ)‖x – Tx‖. (.)

Since  – λ < , we obtain Tx = x.
We denote the set of all λ-hybrid mappings of C into H by Hλ(C,H). We also denote

by Hλ(C) the set of all λ-hybrid mappings of C into itself. The set of all fixed points of
a mapping T : C → H is denoted by F(T). A mapping T : C → H is said to be quasi-
nonexpansive if F(T) is nonempty and ‖u – Tx‖ ≤ ‖u – x‖ for all u ∈ F(T) and x ∈ C.
It is well known that F(T) is closed and convex if T : C → H is quasi-nonexpansive and
C is closed and convex. It is obvious that if T ∈ Hλ(C,H) for some λ ∈ R and F(T) is
nonempty, then T is quasi-nonexpansive. We denote the identity mapping on C by I or
T, where T : C →H is a mapping.
Let C be a nonempty closed convex subset of a Hilbert space H . Then for each x ∈ H ,

there exists a unique zx ∈ C such that ‖zx – x‖ =miny∈C ‖y – x‖. The metric projection PC

of H onto C is defined by PCx = zx for all x ∈H . For x ∈H and z ∈ C, the following holds:

z = PCx ⇐⇒ sup
y∈C

〈y – z,x – z〉 ≤ . (.)

We know the following lemma.

Lemma . ([, Lemma .]) Let S be a nonempty closed convex subset of a Hilbert space
H and {xn} a sequence of H such that ‖u – xn+‖ ≤ ‖u – xn‖ for all u ∈ S and n ∈ N. Then
{PSxn} converges strongly.

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Let l∞ be the Banach space of all bounded real sequences with supremum norm. For
μ ∈ (l∞)* and f = (f (), f (), . . .) ∈ l∞, the value μ(f ) is also denoted by

[μ]kf (k). (.)

A bounded linear functional μ on l∞ is said to be a mean on l∞ if ‖μ‖ = μ(e) = , where
e = (, , . . .). It is known that if μ is a mean on l∞, then μ(f ) ≤ μ(g) whenever f , g ∈ l∞

satisfy f (k) ≤ g(k) for all k ∈ N. It is also known that the Hahn-Banach theorem ensures
that there exists a mean μ on l∞ such that

[μ]kf (k + ) = [μ]kf (k) (.)

for all f ∈ l∞, where (f (k + )) = (f (), f (), . . . ); see [, Theorem ..]. Such a mean μ is
called a Banach limit. If μ is a Banach limit and f ∈ l∞ is convergent, then μ(f ) = limk f (k).
For p ∈N, the bounded linear operator rp of l∞ into itself is defined by (rpf )(k) = f (k +p)

for all f ∈ l∞ and k ∈ N. The conjugate operator of rp is denoted by r*p; that is, it is the
bounded linear operator of (l∞)* into itself defined by (r*pμ)(f ) = μ(rpf ) for allμ ∈ (l∞)* and

f ∈ l∞. A sequence {μn} ofmeans on l∞ is said to be asymptotically invariant if r*μn–μn
*

⇀

, that is,

lim
n→∞[μn]k

(
f (k + ) – f (k)

)
=  (.)

for all f ∈ l∞. It is also said to be strongly regular if ‖r*μn –μn‖ → , that is,

lim
n→∞ sup

‖f ‖≤

∣∣[μn]k
(
f (k + ) – f (k)

)∣∣ = . (.)

Some examples of strongly regular sequences of means on l∞ are shown in Sections 
and . See [] on asymptotically invariant nets of means and [, –] on the nonlinear
ergodic theory for nonexpansive mappings with asymptotically invariant nets of means.
The following lemma is well known.

Lemma . Let {μn} be an asymptotically invariant sequence of means on l∞ and {μnα }
a subnet of {μn} such that μnα

*
⇀ μ ∈ (l∞)*. Then μ is a Banach limit.

For the sake of completeness, we give the proof.

Proof Since the norm of (l∞)* is weakly* lower semicontinuous and ‖μn‖ =  for each
n ∈ N, we have ‖μ‖ ≤ lim infα‖μnα‖ = . On the other hand, since μnα

*
⇀ μ and μn(e) = 

for each n ∈ N, we obtain μ(e) = limα μnα (e) = . This implies that  = μ(e) ≤ ‖μ‖. Hence,
μ is a mean on l∞.
Fix f ∈ l∞. Since μnα

*
⇀ μ and {μn} is asymptotically invariant, we have

[μ]k
(
f (k + ) – f (k)

)
= lim

α
[μnα ]k

(
f (k + ) – f (k)

)
= . (.)

Thus, μ is a Banach limit. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Let H be a Hilbert space, μ a mean on l∞, and {xn} a bounded sequence of H . Since the
functional y �→ [μ]k〈xk , y〉 belongs to H*, Riesz’s theorem ensures that there corresponds
a unique z ∈H such that

[μ]k〈xk , y〉 = 〈z, y〉 (.)

for all y ∈H ; see [, Theorem ] and [, Section .]. We denote such a point z by

G
({xk},μ)

or Gμ

({xk}). (.)

In other words, it is a unique element of H such that

[μ]k〈xk , y〉 =
〈
G

({xk},μ)
, y

〉
(.)

for all y ∈ H . In this case, it is known that G({xk},μ) ∈ co{xn : n ∈ N}; see [, ] for more
details. It is easy to see that if μ is a Banach limit and {xn} is a sequence of H which con-
verges weakly to p ∈ H , then G({xk},μ) = p. We need the following lemma in the proof of
Theorem ..

Lemma . Let H be a Hilbert space, {xn} a bounded sequence of H , {yn} a strongly con-
vergent sequence of H , and (βn) a convergent sequence of real numbers. Then [μ]n(βn〈xn –
xn+, yn〉) =  for each Banach limit μ.

Proof Let μ be a Banach limit. Set y = limn yn and β = limn βn. Since μ is a Banach limit
and the second and third terms of the right-hand side of the equality

βn〈xn – xn+, yn〉
= β〈xn – xn+, y〉 + β〈xn – xn+, yn – y〉 + (βn – β)〈xn – xn+, yn〉 (.)

tend to , we have [μ]n(βn〈xn – xn+, yn〉) = β[μ]n〈xn – xn+, y〉 = . �

3 Mean convergence theorems
In this section, we showmean convergence theorems for a pointwise convergent sequence
of mappings in

⋃
λ∈RHλ(C).

Throughout this section, we suppose the following conditions:
• C is a nonempty closed convex subset of a Hilbert space H ;
• (λn) is a sequence of real numbers which tends to λ ∈R;
• {Tn} is a sequence of mappings such that Tn ∈ Hλn (C) for all n ∈ N and {Tnx}
converges strongly for all x ∈ C;

• T is a mapping of C into itself defined by Tx = limn Tnx for all x ∈ C;
• {xn} is a sequence of C defined by x ∈ C and xn+ = Tnxn for all n ∈N.
Motivated by [–, ], we first show the following fundamental theorem.

Theorem . If {xn} is bounded, then G({xk},μ) is a fixed point of T for each Banach
limit μ.

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Proof Let μ be a Banach limit. Set z = G({xk},μ). Since z ∈ co{xn : n ∈ N} and C is closed
and convex, we have z ∈ C. By assumption,

M = sup
n∈N

(‖Tnz – Tz‖ + ‖xn+ – Tnz‖
)

(.)

is finite. Since each Tn is λn-hybrid, we have

‖xn+ – Tz‖

= ‖xn+ – Tnz‖ + ‖Tnz – Tz‖ + 〈xn+ – Tnz,Tnz – Tz〉
≤ ‖Tnxn – Tnz‖ +M‖Tnz – Tz‖
≤ ‖xn – z‖ + ( – λn)〈xn – xn+, z – Tnz〉 +M‖Tnz – Tz‖ (.)

for all n ∈N. By Lemma ., we have

[μ]n
(
( – λn)〈xn – xn+, z – Tnz〉

)
= . (.)

By (.), (.), and Tnz → Tz, we obtain

[μ]n‖xn – Tz‖ = [μ]n‖xn+ – Tz‖ ≤ [μ]n‖xn – z‖. (.)

On the other hand, by the definition of z, we also know that

[μ]n‖xn – z‖ = [μ]n
(‖xn – Tz‖ + ‖Tz – z‖ + 〈xn – Tz,Tz – z〉)

= [μ]n‖xn – Tz‖ + ‖Tz – z‖ + 〈z – Tz,Tz – z〉
= [μ]n‖xn – Tz‖ – ‖Tz – z‖. (.)

It follows from (.) and (.) that  ≤ –‖Tz – z‖. Therefore, z is a fixed point of T .
�

Using Lemma . and Theorem ., we next show the following theorem.

Theorem . Suppose that F(T) is nonempty and F(T) =
⋂∞

n= F(Tn). Then {xn} is
bounded, {PF(T)xn} is strongly convergent, and

G
({xk},μ)

= lim
n→∞PF(T)xn (.)

for each Banach limit μ.

Proof Let μ be a Banach limit. It is obvious that T ∈ Hλ(C). Hence, F(T) is a nonempty
closed convex subset of H , and hence PF(T) is well defined. We denote PF(T) by P. Since
each Tn is quasi-nonexpansive and F(T) ⊂ F(Tn), we have

‖u – xn+‖ = ‖u – Tnxn‖ ≤ ‖u – xn‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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for all u ∈ F(T) and n ∈ N. It also follows from (.) that {xn} is bounded. According to
Theorem ., we know that G({xk},μ) is a fixed point of T . Using Lemma . and (.), we
also know that {Pxn} converges strongly to some w ∈ F(T).
Set z =G({xk},μ). By the definition of P and (.), we have

‖Pxn+ – xn+‖ ≤ ‖Pxn – xn+‖ ≤ ‖Pxn – xn‖ (.)

for all n ∈N. On the other hand, it follows from z ∈ F(T) and (.) that

〈z – Pxn,xn – Pxn〉 ≤  (.)

for all n ∈N. This gives us that

〈z –w,xn – Pxn〉
= 〈Pxn –w,xn – Pxn〉 + 〈z – Pxn,xn – Pxn〉
≤ 〈Pxn –w,xn – Pxn〉
≤ ‖Pxn –w‖‖xn – Pxn‖ (.)

for all n ∈N. By (.) and (.), we have

〈z –w,xn – Pxn〉 ≤ ‖Pxn –w‖‖x – Px‖ (.)

for all n ∈N. Consequently, we obtain

‖z –w‖ = [μ]n〈z –w,xn〉 – lim
n→∞〈z –w,Pxn〉

= [μ]n〈z –w,xn〉 – [μ]n〈z –w,Pxn〉
= [μ]n〈z –w,xn – Pxn〉
≤ [μ]n

(‖Pxn –w‖‖x – Px‖
)
= . (.)

Therefore, z = w. �

As a direct consequence of Theorems . and ., we can obtain the following corollary
for a single hybrid mapping.

Corollary . Suppose that x ∈ C and S ∈Hγ (C) for some γ ∈ R.Then the following hold:
(i) if {Snx} is bounded, then F(S) is nonempty and G({Skx},μ) is a fixed point of S for

each Banach limit μ;
(ii) if F(S) is nonempty, then {Snx} is bounded, {PF(S)Snx} is strongly convergent, and

G
({
Skx

}
,μ

)
= lim

n→∞PF(S)Snx (.)

for each Banach limit μ.

Using the notion of an asymptotically invariant sequence of means on l∞, we next show
the following mean convergence theorem.

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Theorem . Suppose that F(T) is nonempty and F(T) =
⋂∞

n= F(Tn). Let {μn} be an
asymptotically invariant sequence of means on l∞. Then the sequence

{
Gμn

({xk})}n∈N (.)

converges weakly to the strong limit of {PF(T)xn}.

Proof By Theorem ., we know that {xn} is bounded and {PF(T)xn} converges strongly to
some w ∈ F(T).
Let {zn} be the sequence defined by zn =Gμn ({xk}) for all n ∈N. Since zn ∈ co{xk : k ∈N}

for all n ∈ N, the sequence {zn} is bounded. Let u be any weak subsequential limit of {zn}.
Then we have a subsequence {zni} of {zn} such that zni ⇀ u. It follows from ‖μni‖ =  that
there exists a subnet {μniα} of {μni} such that μniα

*
⇀ μ ∈ (l∞)*. Since {μni} is asymptoti-

cally invariant, Lemma . implies that μ is a Banach limit.
By Theorem ., we know that

G
({xk},μ)

= lim
n→∞PF(T)xn = w. (.)

This gives us that

〈zniα , y〉 = [μniα]k〈xk , y〉 → [μ]k〈xk , y〉 =
〈
G

({xk},μ)
, y

〉
= 〈w, y〉 (.)

for all y ∈ H . Thus, {zniα} converges weakly to w. On the other hand, since zni ⇀ u and
{zniα} is a subnet of {zni}, we know that zniα ⇀ u. Accordingly, we have u = w. Thus, {zn}
converges weakly to w = limn PF(T)xn. �

As in the proof of [, the corollary of Theorem], we can also show the following uniform
mean convergence theorem in the case when the strong regularity of {μn} is assumed.

Theorem . Suppose that F(T) is nonempty and F(T) =
⋂∞

n= F(Tn). Let {μn} be a
strongly regular sequence of means on l∞. Then the sequence

{
Gr*pμn

({xk})}n,p∈N (.)

converges weakly to the strong limit of {PF(T)xn} as n→ ∞ uniformly in p ∈N.

Proof Set zn,p = Gr*pμn ({xk}) for all n,p ∈ N. It is easy to see that r*pμn is also a mean on
l∞ for all n,p ∈ N, and hence {zn,p} is well defined. By Theorem ., {PF(T)xn} converges
strongly to some w ∈ F(T).
We show that for each y ∈ H and ε > , there exists N ∈N such that n,p ∈ N and n≥ N

imply that |〈zn,p – w, y〉| < ε. Suppose that this assertion does not hold. Then there exist
y ∈H , ε > , a strictly increasing sequence {ni} of N, and a sequence {pi} of N such that

∣∣〈zni ,pi –w, y〉
∣∣ ≥ ε (.)

for all i ∈N.

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Set ηi = r*piμni for all i ∈ N. Then {ηi} is asymptotically invariant. Indeed, if f ∈ l∞, then
we have

∣∣[ηi]k(f (k + ) – f (k)
)∣∣ = ∣∣[r*piμni

]
k

(
f (k + ) – f (k)

)∣∣
=

∣∣[μni ]k
(
f (k +  + pi) – f (k + pi)

)∣∣
=

∣∣[μni ]kf (k + pi + ) – [μni ]kf (k + pi)
∣∣

=
∣∣[r*μni –μni

]
kf (k + pi)

∣∣
≤ ∥∥r*μni –μni

∥∥ · sup
k∈N

∣∣f (k + pi)
∣∣

≤ ∥∥r*μni –μni
∥∥‖f ‖ (.)

for all i ∈N. Thus, it follows from the strong regularity of {μn} and (.) that limi[ηi]k(f (k+
) – f (k)) = . Hence, {ηi} is asymptotically invariant.
By the definitions of {zn,p} and {ηi}, we have zni ,pi =Gηi ({xk}) for all i ∈N. ByTheorem.,

{zni ,pi} converges weakly to w as i → ∞. This contradicts (.). �

As a direct consequence of Theorems . and ., we obtain the following corollary for
a single hybrid mapping.

Corollary . Suppose that x ∈ C, S ∈ Hγ (C) for some γ ∈ R, and F(S) is nonempty. Let
{μn} be a sequence of means on l∞. Then the following hold:

(i) if {μn} is asymptotically invariant, then the sequence {Gμn ({Skx})}n∈N converges
weakly to the strong limit of {PF(S)Snx};

(ii) if {μn} is strongly regular, then the sequence {Gμn ({Sk+px}k)}n,p∈N converges weakly to
the strong limit of {PF(S)Snx} as n→ ∞ uniformly in p ∈N.

4 Consequences of Theorem 3.5
In this section, using the techniques in [, , –], we obtain some consequences of The-
orem .. Throughout this section, we suppose that C,H , (λn), λ, {Tn}, T , and {xn} are the
same as in Section  and

⋂∞
n= F(Tn) = F(T) �= ∅.

We first obtain the following theorem for Cesàro means of sequences.

Theorem . The sequence {(n + )–
∑n

k= xk+p}n,p∈N converges weakly to the strong limit
of {PF(T)xn} as n→ ∞ uniformly in p ∈N.

Proof Let {μn} be the sequence of means on l∞ defined by

μn(f ) =


n + 

n∑
k=

f (k) (.)

for all n ∈N and f ∈ l∞. It is well known that {μn} is strongly regular and

Gr*pμn

({xk}) = 
n + 

n∑
k=

xk+p (.)

for each n,p ∈ N; see, for instance, [, Theorem ., , Theorem ] and [, Section .].
Therefore, Theorem . implies the conclusion. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Remark . In [, Theorem .], it was shown that {zn,} in Theorem . converges
weakly to the strong limit of {PF(T)xn}.

We next obtain the following theorem.

Theorem . Let (ρn) be a sequence of (, ) such that ρn → . Then the sequence {( –
ρn)

∑∞
k= ρk

nxk+p}n,p∈N converges weakly to the strong limit of {PF(T)xn} as n → ∞ uniformly
in p ∈N.

Proof Let {μn} be the sequence of means on l∞ defined by

μn(f ) = ( – ρn)
∞∑
k=

ρk
nf (k) (.)

for all n ∈N and f ∈ l∞. It is well known that {μn} is strongly regular and

Gr*pμn

({xk}) = ( – ρn)
∞∑
k=

ρk
nxk+p (.)

for each n,p ∈ N; see, for instance, [, Theorem .] and [, Section .]. Therefore, The-
orem . implies the conclusion. �

By using a strongly regular matrix introduced in [], we can obtain the following theo-
rem which actually generalizes Theorems . and ..

Theorem . Let (qn,k)n,k∈N be a sequence of real numbers such that
(A) qn,k ≥  for all n,k ∈ N;
(A)

∑∞
k= qn,k =  for all n ∈ N;

(A) limn
∑∞

k=|qn,k – qn,k+| = .
Then the sequence {∑∞

k= qn,kxk+p}n,p∈N converges weakly to the strong limit of {PF(T)xn} as
n→ ∞ uniformly in p ∈N.

Proof Let {μn} be the sequence of means on l∞ defined by

μn(f ) =
∞∑
k=

qn,kf (k) (.)

for all n ∈N and f ∈ l∞. It is well known that {μn} is strongly regular and

Gr*pμn

({xk}) = ∞∑
k=

qn,kxk+p (.)

for each n,p ∈N; see, for instance, [, Theorem .] and [, Theorem ].
For the sake of completeness, we give the proof of this fact. It follows from (A) that

qn, = |qn,| ≤
m∑
k=

|qn,k – qn,k+| + qn,m+ (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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for all n,m ∈ N. It follows from (A) that limk qn,k =  for all n ∈ N. Thus, letting m → ∞
in (.), we have

qn, ≤
∞∑
k=

|qn,k – qn,k+| (.)

for all n ∈N. It also holds that

∥∥r*μn –μn
∥∥ = sup

‖f ‖≤

∣∣μn(rf – f )
∣∣

= sup
‖f ‖≤

∣∣∣∣∣
∞∑
k=

qn,k
(
f (k + ) – f (k)

)∣∣∣∣∣
= sup

‖f ‖≤

∣∣∣∣∣
∞∑
k=

(qn,k – qn,k+)f (k + ) – qn,f ()

∣∣∣∣∣
≤

∞∑
k=

|qn,k – qn,k+| + qn, (.)

for all n ∈N.
By (.), (.), and (A), we have

∥∥r*μn –μn
∥∥ ≤ 

∞∑
k=

|qn,k – qn,k+| →  (.)

and hence {μn} is strongly regular. On the other hand, if n,p ∈N, then we have

[
r*pμn

]
k〈xk , y〉 = [μn]k〈xk+p, y〉 =

∞∑
k=

qn,k〈xk+p, y〉 =
〈 ∞∑
k=

qn,kxk+p, y

〉
(.)

for all y ∈H . Thus, (.) holds. Therefore, Theorem . implies the conclusion. �

5 Applications
In this final section, we give two applications of Theorem .. We first obtain a corollary
for a single λ-hybrid mapping; see Corollary .. We next study the problem of finding
common fixed points of sequences of nonexpansive mappings; see Corollary ..
Throughout this section, we suppose that (βn) is a sequence of (, ) satisfying βn → 

and (qn,k)n,k∈N is the sequence of real numbers defined by q, = , q,k =  (k ≥ ), and

qn,k =

⎧⎪⎪⎨
⎪⎪⎩
n–( – βn) (≤ k ≤ n – );

βn (k = n);

 (k ≥ n + )

for n≥ . The sequence (qn,k)n,k∈N obviously satisfies (A)-(A) in Theorem ..

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H , T ∈ Hλ(C)
for some λ ∈R such that F(T) is nonempty, and (αn) a sequence of [, ) such that αn → .

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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Let {xn} be the sequence of C defined by x ∈ C and

xn+ = αnxn + ( – αn)Txn

for n ∈ N. Then {∑n
k= qn,kxk+p}n,p∈N converges weakly to the strong limit of {PF(T)xn} as

n→ ∞ uniformly in p ∈N.

Proof Let {Tn} be the sequence of mapping of C into itself defined by

Tn = αnI + ( – αn)T (.)

for all n ∈N. Then it is clear that xn+ = Tnxn for all n ∈ N and Tnx → Tx for all x ∈ C. It is
also clear that F(Tn) = F(T) for all n ∈N and hence ∅ �= F(T) =

⋂∞
n= F(Tn).

Since T ∈Hλ(C), we know that

∥∥Tnx – Tny
∥∥ ≤ αn‖x – y‖ + ( – αn)‖Tx – Ty‖

≤ ‖x – y‖ + ( – λ)( – αn)〈x – Tx, y – Ty〉
= ‖x – y‖ + 

(
 –

(
λ + ( – λ)αn

))〈x – Tx, y – Ty〉

for all n ∈ N and x, y ∈ C. Thus, by setting λn = λ + ( – λ)αn for all n ∈ N, we know that
Tn ∈Hλn (C) for all n ∈N. It is clear that λn → λ.
Since qn,k =  for k ≥ n+, it also holds that

∑n
k= qn,kxk+p =

∑∞
k= qn,kxk+p for all n,p ∈N.

Consequently, Theorem . implies the conclusion. �

In order to obtain our final result, we need the following theorem, which was originally
shown in strictly convex Banach spaces.

Lemma. ([, Lemma]) Let C be a nonempty closed convex subset of aHilbert spaceH ,
{Tn} a sequence of nonexpansive mappings of C into H such that

⋂∞
n= F(Tn) is nonempty,

and (γn) a sequence of (, ) such that
∑∞

k= γk = . Then the mapping T =
∑∞

k= γkTk is a
nonexpansive mapping of C into H such that F(T) =

⋂∞
k= F(Tk).

Remark . If Tn(C) ⊂ C for all n ∈ N in Lemma ., then T(C) ⊂ C. Indeed, for each
x ∈ C, we have

Tx = lim
N→∞

∑N
j= γj

N∑
k=

γkTkx ∈ C (.)

and hence T is a self-mapping on C.

As in the proof of [, Theorem .], we can show the following corollary.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H , {Sn} a se-
quence of nonexpansive mappings of C into itself such that F =

⋂∞
k= F(Sk) is nonempty,

and (γn) a sequence of (, ) such that
∑∞

n= γn = . Let {xn} be the sequence of C defined by

http://www.fixedpointtheoryandapplications.com/content/2012/1/193
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x ∈ C and

xn+ =
n∑

k=

γkSkxn +

(
 –

n∑
k=

γk

)
Sn+xn (.)

for n ∈N.Then {∑n
k= qn,kxk+p}n,p∈N convergesweakly to the strong limit of {PFxn} as n→ ∞

uniformly in p ∈ N.

Proof Let {Tn} be the sequence of mappings of C into itself defined by

Tn =
n∑

k=

γkSk +

(
 –

n∑
k=

γk

)
Sn+ (.)

for all n ∈ N. It is clear that xn+ = Tnxn for all n ∈ N. Since each Tn is nonexpansive, we
know that Tn ∈H(C) for all n ∈N.
By Lemma . and Remark ., the mapping T =

∑∞
k= γkSk is a nonexpansive mapping

of C into itself such that F(T) = F . Since F is nonempty by assumption, so is F(T). By
Lemma ., we also know that F(Tn) =

⋂n+
k= F(Sk) and hence we have

∞⋂
n=

F(Tn) =
∞⋂
n=

n+⋂
k=

F(Sk) = F = F(T). (.)

It remains to be seen that Tnx→ Tx for all x ∈ C. Fix x ∈ C. Since F is nonempty, we can
fix p ∈ F . Since ‖p – Skx‖ ≤ ‖p – x‖ for all k ∈ N, we know that L = supk∈N‖Skx‖ is finite.
By

∑∞
k= γk =  and the definitions of T and Tn, we also know that

‖Tx – Tnx‖ =

∥∥∥∥∥
∞∑
k=

γkSkx –
n∑

k=

γkSkx –

(
 –

n∑
k=

γk

)
Sn+x

∥∥∥∥∥
=

∥∥∥∥∥
∞∑

k=n+

γkSkx –

(
 –

n∑
k=

γk

)
Sn+x

∥∥∥∥∥
≤

∞∑
k=n+

γk‖Skx‖ +
(
 –

n∑
k=

γk

)
‖Sn+x‖

≤ L

(
 –

n∑
k=

γk

)
→  (.)

as n→ ∞. Thus, Tnx→ Tx. Consequently, Theorem . implies the conclusion. �
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