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Abstract An effective method of construction of a linear

estimator of AUC in the finite interval, optimal in the

minimax sense, is developed and demonstrated for five PK

models. The models may be given as an explicit C(t) rela-

tionship or defined by differential equations. For high

variability and rich sampling the optimal method is only

moderately advantageous over optimal trapezoid or stan-

dard numerical approaches (Gauss-Legendre or Clenshaw-

Curtis quadratures). The difference between the optimal

estimator and other methods becomes more pronounced

with a decrease in sample size or decrease in the vari-

ability. The described estimation method may appear use-

ful in development of limited-sampling strategies for AUC

determination, as an alternative to the widely used

regression-based approach. It is indicated that many alter-

native approaches are also possible.

Keywords AUC � Optimal sampling theory � Limited

sampling strategy � Quadrature � Estimation � Minimax �
Bioequivalence

Introduction

The estimation of integral of a function, or area under the

curve (AUC), plays an important role in biomedicine

including in pharmacokinetic (PK) or toxicokinetic studies

that are designed to estimate the integral of concentration

of the investigated compound in plasma or tissue taken

over time in a given interval.

AUC ¼
Z t2

t1

C tð Þdt

Within the framework of linear compartmental models

AUC established after an intravenous administration is

used to calculate the drug clearance. Regardless of which

one of the possible linear models is valid, the result is

determined solely by the drug dose and AUC. This is one

of the reasons for AUC to be a central concept of the so-

called model-independent pharmacokinetics. Regulatory

institutions use AUC as a measure of extent of absorption

in order to assess a bioequivalence of different formula-

tions of the same drug [1–3].

Many authors have addressed the problem of practical

determination of AUC. A few papers contain reviews of

numerous algorithms designed to estimate this parameter

[4, 5]. Their authors do not pay any particular attention to

the choice of sampling times, assuming they are given a

priori, maybe following a certain traditional pattern. On the

other hand, several authors have investigated the optimal

designs which should yield the most accurate results using

specific approaches.

The optimal sampling is especially important if the

number of measured concentrations is limited due to

ethical and economical reasons. Duffull et al. searched for

the optimal design with limited sampling for the log-

trapezoid rule applied to the two-exponential equation [6].

A vast number of authors (MEDLINE reports about 200

papers [7]) developed limited sampling strategies for

estimating AUC either of specific drugs, for instance

cyclosporine [8, 9] or midazolam [10], or in the general

situation [11].
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Katz and D’Argenio found optimal sampling times for

estimating the integral of bi- and triexponential equations

using the trapezoid rule [12]. In their original form these

results are of limited usefulness, since the authors have

assumed fixed values of parameters of those equations. In

practice such parameters are more or less uncertain (if they

were certain then the exact AUC would also be known and

no estimation would be necessary). The present paper

extends, in several directions, the ideas of that work.

Namely, the aims of this work are threefold:

1. Find an optimal sample schedule design for trapezoid

rule under parameter uncertainty.

2. Find an optimal quadrature within the class of linear

combination (LC) quadrature approximations [13].

This is to be achieved by simultaneous adjustment of

both sampling design and coefficients (weights) of

quadrature.

3. Evaluate obtained quadratures for five common PK

models by means of simulation.

In order to reach these aims it is required to:

1. set up transparent criteria of optimality;

2. state necessary assumptions to make the problem

tractable;

3. express it as an optimization problem (in this case a

minimax problem);

4. invent an approach to practically solve this optimiza-

tion problem;

5. implement it (as a numerical analysis task);

6. plan and execute optimum searches and simulations;

7. evaluate the results.

These points would be reported in the following sections

after introducing the necessary background.

Method

Background: theory of point estimation

While concepts to be introduced here are quite general

elements of a statistical decision theory, the presentation

will focus on their application to the theory of point esti-

mation or, even more specifically, to the estimation of AUC

in PK models. Let h be a vector of standard (primary) PK

parameters. True AUC may be expressed as a function of

these parameters, AUCðhÞ.
An estimator of an unknown quantity is a function of

observations that in some way approximates that quantity.

As any experiment suffers from various nuisance factors,

the observations do not follow any deterministic model

exactly. Thus the estimation can be imperfect. One may

intuitively expect that certain estimators can perform better

than others. However, if one would like to transform this

intuition into a scientific method, a rigorous criterion is

needed that would enable comparison of estimators.

Towards this end, a statistical theory of point estimation

[14] introduces a loss function LðQ̂; hÞ to assess the pre-

cision of an estimator Q̂. A loss function is always non-

negative and it should yield 0 if an estimation is exact, i.e.

if Q̂ ¼ AUCðhÞ: A quadratic loss function

LðQ̂; hÞ ¼ Q̂� AUC hð Þ
� �2

is a typical choice, and it is one of two that will be considered

here. The intuition behind this concept is rather simple: a

wrong estimation causes a loss. The worse the estimate is, the

higher the loss will be. Or: the closer the estimator value to

the true AUC is, the lower the loss will be.

Another important concept is that of risk function. It is

defined as an expectation of a loss. The expectation is taken

over a joint probability distribution of all ei.

R hð Þ ¼ E LðQ̂; hÞ
� �

The expectation of a continuous random variable X is

defined as the first moment of its probability density

function uðxÞ:

E X½ � ¼
Z

xuðxÞdx

While this definition might appear somewhat abstract, the

expectation has quite simple interpretation, due to a fun-

damental law of statistics: The Law of Large Numbers. If

one repeatedly observes a quantity that is random, then the

average result should tend to the expectation of that

quantity (for a rigorous formulation of that law refer to any

textbook on statistics, e.g. [15]). Thus, if one were to repeat

estimation with a given estimator, then the average loss

should tend to that estimator’s risk.

Estimators may be compared on a basis of their risk.

Unfortunately, there is no estimator which is better than

any other estimator for any parameter vector h [14].

Nonetheless, an optimal estimator in that sense (called a

uniformly optimal estimator) could be found if some

restrictions were applied to the class of considered esti-

mators. Perhaps the most popular one is the case of unbi-

ased estimators with quadratic loss function. They are

called minimum variance unbiased estimators (MVUE).

There can be little benefit from MVUE in pharmacoki-

netics, however, as unbiased estimators do not exist for

standard PK models with usual parameters (or, at least,

they remain unknown).

Despite these problems, a good or even the best esti-

mator, according to reasonable criteria, can be constructed

in a somewhat different manner. The choice between two
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standard solutions depends on whether h is treated as a

random variable with known distribution or as an unknown

parameter. In the first case an estimator that minimizes

expectation of the risk (over h distribution) is searched for.

It corresponds to a Bayesian approach. In the second case a

maximum possible risk is minimized. That is a minimax

problem.

The former approach requires a knowledge of statistical

distribution of PK parameters, while in the second method

one needs to only know the range of those parameters. In

what follows, the latter choice is analysed in detail.

Approach of Katz and D’Argenio

The trapezoid rule may be expressed by the following

equation

Q ¼
Xn

i¼0

wiCðtiÞ; ð1Þ

where

w0 ¼
t1 � t0

2
; wi ¼

tiþ1 � ti�1

2
; i ¼ 1; . . .; n� 1;

wn ¼
tn � tn�1

2
:

ð2Þ

In practice, an integral is calculated based on measured

concentrations. Assume the integrand follows a certain PK

model with a parameter vector h. Thus, what is measured

can be expressed by the equation:

Ĉi ¼ C ti; hð Þ þ ei

where ei is a random error. The result

Q̂ ¼
Xn

i¼0

wiĈi

is therefore a random variable. It may be considered as a

linear estimator of an unknown integral AUC.

In their paper Katz and D’Argenio proposed ‘‘selecting

observation times so to minimize the expected value of the

squared difference between the estimator and the exact

value of the integral’’. These authors assumed specific

parameters of a multiexponential equation (i.e. they fixed

h) and numerically found a minimum over a vector of

sampling times, t:

min
t

EðQ̂� AUCÞ2: ð3Þ

In terms of previous subsection a sampling schedule that

minimizes the risk of trapezoid rule estimator was found.

In order to include a variance model of ei they used the

decomposition of the expectation of the squared error into a

variance of estimator and its squared bias

E Q̂� AUC
� �2
h i

¼ V Q̂
� �
þ AUC � E Q̂

� �� �2
; ð4Þ

the well-known result (for derivation see, for instance,

Lehmann [14] or Katz and D’Argenio [12]). If all ei are

independently distributed with the mean 0 and variance r2
i ,

then

E Q̂
� �
¼
Xn

i¼0

wiC tið Þ ð5Þ

V Q̂
� �
¼
Xn

i¼0

w2
i r

2
i ð6Þ

Note that detailed knowledge of the statistical distribution

of ei is not required; any distribution with existing and

known variance can be accepted. One way to make r2
i

known is to express it as a function of C. The hetero-

schedastic model with a constant coefficient of variation

(cv) is often assumed in PK models. It will be followed in

the present study.

ri ¼ cvC ti; hð Þ ð7Þ

As the specific values of parameters need to be assumed,

AUC may be calculated based on them and there is no need

to use concentrations at all. Katz and D’Argenio made a

rudimentary analysis of how the precision of the trapezoid

method in an optimal setting changes while changing some

(not all) parameters. It may be done in a more systematic

manner within the framework of minimax approach and

this will be one extension the present paper makes to the

ideas of Katz and D’Argenio.

Optimal sample schedule design

Using the minimax approach the minimization of the risk

for a given h should be replaced by minimization of the

maximum risk that can be obtained for any possible vector

of parameters. Thus the problem in Eq. 3 should be

rewritten as

min
t

max
h

RðhÞ ¼ min
t

max
h

E Q̂� AUCðhÞ
� �2
h i

:

For highly variable drugs it might be more useful to min-

imize a relative rather than an absolute error. This corre-

sponds to the division of the loss function L by the squared

AUCðhÞ.

LrðQ̂; hÞ ¼
Q̂� AUC hð Þ
� �2

AUC hð Þ½ �2

An optimum based on the above loss function (let it be

called relative, in contrast to an absolute function L) will be

analysed in the present study. The corresponding risk
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function will be denoted by RrðhÞ and an expression for the

required optimum takes on the form:

min
t

max
h

RrðhÞ ¼ min
t

max
h

E
Q̂� AUCðhÞ

AUC hð Þ

 !2
2
4

3
5:

In bioequivalence studies AUC is being compared on a

logarithmic scale; equivalently the comparison focuses on

ratios and not differences of AUC values. Also, in clinical

application, an estimation error of 10 units is certainly

more important if the true AUC equals 50 units than in a

case when it is as large as 300. In both situations use of a

relative risk would be preferable over an absolute risk.

Substituting Eqs. 5 and 6 into Eq. 4 and taking into

account Eq. 7 yields a useful expression for the risk

function that is a subject of minimax optimization:

RrðhÞ ¼ c2
v

Xn

i¼0

w2
i ½Cðti; hÞ�2þ

(
þ AUCðhÞ �

Xn

i¼0

wiCðti; hÞ
" #2

9=
;

= AUCðhÞ½ �2

ð8Þ

This is a nested problem: there is a maximization overh within

a minimization over t. It means that for each trial sampling

schedule the maximization inh has to be conducted and finally

that sampling schedule which yielded the smallest maximum

is to be chosen. An optimization is constrained on both levels:

PK parameter values should stay within a reasonable range;

sampling times should be arranged in ascending order and

they should be included in the integration interval. This con-

strained optimization problem cannot be solved analytically

and an application of numerical algorithms is required. The

optimization seems to be one of the most difficult branches of

numerical analysis. There is always the possibility that the

solution found would appear suboptimal. In order to minimize

this possibility, the advanced methods are required using as

much information as is available. This is especially important

on an inner level: unstable results may mislead outer level

optimization routine and thwart convergence.

The necessary information includes first and second

derivatives of the inner objective in h, since they describe

important geometrical properties of the hypersurface along

which the maximum is searched for. The first derivative,

i.e. the gradient, is a local measure of the descent of the

surface, while the second derivative (the Hessian) is a

measure of the local curvature. More details are given in a

subsection on numerical methods.

Optimal quadrature design

Another dimension in which the described approach can be

improved on is the choice of a quadrature. Trapezoid and

log-trapezoid rules are the simplest approaches to

determine AUC. Their drawbacks were frequently indi-

cated [16, 17]. In the present work not only sampling points

are free parameters. Some additional freedom is allowed

regarding the choice of a quadrature. This may be done by

considering a certain class of quadratures parameterized in

a reasonable manner. Here the class of LC methods, as

previously introduced by the present author [13], will be

considered.

The LC-type quadrature by definition has the form given

by Eq. 1, but wi can now be arbitrary; they do not need to

satisfy Eq. 2. ti are knots of the quadrature and wi are its

weights.

Surprisingly, many approaches used in pharmacokinet-

ics belong to this class. In particular, linear trapezoidal,

hyperbolic trapezoidal [18], Lagrange [19] and spline [4]

methods all are of the LC type. The same applies to other

popular general methods of numerical analysis, like New-

ton-Côtes, Gauss-Legendre (GL) or Clenshaw-Curtis (CC)

quadratures [20].

Allowing weights vector w as well as knots vector t to be

manipulated, results in a final statement for the minimum

that should be reached by the optimal method:

min
w;t

max
h

RrðhÞ ¼ min
w;t

max
h

E
Q̂� AUCðhÞ

AUCðhÞ

 !2
2
4

3
5:

Equation 8 remains valid.

In this problem a maximization over h is nested within a

minimization in both t and w. The dimension of search

space of outer minimization is twice as large as it is for the

optimal trapezoid problem from previous subsection. The

optimization task is thus more difficult than in the previous

case, and gradient and Hessian of inner maximization, as

discussed in the preceding subsection, may prove even

more useful.

Examples chosen for evaluation

Five examples of hypothetical models were analyzed:

1. one-compartment linear model with first-order absorp-

tion, single dose;

2. one-compartment linear model with first-order absorp-

tion, steady state;

3. two-compartment linear model with iv bolus

administration;

4. one-compartment model with iv bolus administration

and Michaelis-Menten elimination;

5. one-compartment model with first-order absorption

and Michaelis-Menten elimination.

An interval from t1 ¼ 0 to t2 ¼ 24h was chosen for AUC.

The dosing interval (s) for model 2 also matched that
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interval: s ¼ 24h. For each model either ranges or fixed

values of parameters were assumed. They are given in

Table 1 along with the resultant AUC range. It is explained

in the Appendix why some parameters can be fixed and

which of them to choose.

Three levels of coefficient of variation were assumed:

10%, 5% and 0% (no random error). They were combined

with three sample sizes chosen for presentation: n ¼ 2, 4

and 6. This is a range of sample sizes considered, among

others, while developing limited sampling strategies. As it

will be seen, at greater samples the difference between

different approaches becomes less evident.

Numerical methods

MATLAB 7.11 (R2011b) software (The MathWorks, Inc.)

with Minimization Toolbox [21, 22] was used to perform

the required computations. A set of M-files written for that

purpose is available as supplementary material to this

paper. In order to obtain a solution to the minimax problem

the ‘fmincon’ procedure from Minimization Toolbox was

used on two levels of recursion. This is a general-purpose

constrained nonlinear minimization procedure. It contains a

variety of optimization algorithms that can be chosen by

the user. At outer level (minimization in w and t) an active-

set optimization was chosen, the choice of which implies

application of sequential quadratic programming (SQP)

algorithm. This algorithm belongs to the quasi-Newton

family and it can perform better, if derivatives of the

objective function are available. It is explained in the

Appendix, how the gradient of maximum risk can be

computed.

At the inner level (maximization of risk in h) a trust-

region-reflective algorithm was preferred. It requires both

gradient (first-order derivatives) and Hessian (second-order

derivatives) of the objective (in this case the risk function

itself) in model parameters.

If a concentration-time dependence and AUC can be

expressed in a closed-form by model parameters, then the

exact calculation of derivatives imposes no significant

difficulty. This is the case with linear compartment models.

In the case of one-compartment nonlinear model, with

Michaelis-Menten elimination and bolus iv input,C(t) can-

not be expressed in a closed-form, but it may be repre-

sented by an implicit function. By theorem on implicit

function derivative, differentiation of C(t) in this case does

not introduce true complications either. Moreover, there is

a closed-form expression for an AUC given C(t) at integral

limits [17]. However, in order to keep the software as

simple as possible, this solution has not actually been used.

Conversely, the same solution has been applied to model 4,

as it is described just below for model 5.

Table 1 Model parameter

ranges and fixed values
Model Equation Parameter(h or AUC) Range or fixed value

1 C ¼ A e�ket � e�kat
� �

ka ½ðln 2Þ=4; 3 ln 2�
ke ½ðln 2Þ=12; ðln 2Þ=4�
A ¼ FDka

Vd ka�keð Þ 20

AUC [56, 250]

2 C ¼ A e�ke t

1�e�kes � e�ka t

1�e�kas

� �
ka ½ðln 2Þ=4; 3 ln 2�
ke ½ðln 2Þ=12; ðln 2Þ=4�
A ¼ FDka

Vd ka�keð Þ 20

AUC [58, 337]

3 C ¼ A1e�k1t þ A2e�k2t k1 ½0:5 ln 2; 6 ln 2�
k2 ½ðln 2Þ=4; ðln 2Þ=24�
a ¼ A2=A1 [0.8, 1.25]

A1 10

AUC [50, 245]

4 dC
dt
¼ � VmC

KMþC
KM [2, 20]

Vm [0.2, 1]

C0 ¼ Cð0Þ 10

AUC [70, 221]

5 dC
dt
¼ � VmC

KMþC
þ Ae�kat KM [2, 5]

Vm [0.4, 0.7]

ka ½ðln 2Þ=2; ln 2�
A ¼ FDka

Vd
5

AUC [52, 232]
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For the one-compartment nonlinear model, with

Michaelis-Menten elimination and first-order input no

closed-form solution exists, and a differential equation of

the model has to be numerically solved. The MATLAB

procedure ‘ode113’, implementing a variable order Adams-

Bashforth-Moulton method was used to that purpose (for

Table 2 Properties and performance of the linear quadrature, optimal in the minimax sense, compared to the optimal trapezoid and GL or CC

approaches for Model 1

n cv½%� Method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Objective
p

Bias RMSRE Maximum deviance Maximum relative deviance

6 10 optimal 4.53E-2a .349 4.34E-

2

-36.0b -.1797

opt. trap. 4.67E-2 -.324 4.48E-

2

-35.6 -.1912

GL 5.79E-2 .741 5.12E-

2

38.8 .2203

5 optimal 2.40E-2 -.392 2.31E-

2

-18.6 -.0933

opt. trap. 2.57E-2 -.769 2.39E-

2

-19.8 -.0973

GL 3.33E-2 .641 2.61E-

2

19.5 .1015

0 optimal 2.03E-4 0.009 1.12E-

4

0.03 2.03E-4

opt. trap. 1.64E-2 -1.033 8.19E-

3

-4.08 -1.64E-2

GL 1.90E-2 0.662 6.46E-

3

1.98 1.89E-2

4 10 optimal 5.73E-2 -0.870 5.45E-

2

49.2 .2187c

opt. trap. 5.86E-2 -1.230 5.57E-

2

46.3 -.2116

CC 8.84E-2 -3.600 6.81E-

2

-47.8 -.2601

5 optimal 2.80E-2 0.041 2.65E-

2

-22.1 .1086

opt. trap. 3.26E-2 -0.860 2.88E-

2

-28.8 -.1187

CC 6.99E-2 -3.462 4.27E-

2

-27.3 -.1696

0 optimal 2.00E-3 0.003 1.03E-

3

0.49 -.0020

opt. trap. 2.13E-2 0.219 1.07E-

3

-4.22 -.0208

CC 6.26E-2 -3.896 2.96E-

3

-6.00 -.0624

2 10 optimal 0.085 -2.23 0.076 -61.1 .2943

opt. trap. 0.137 -8.42 0.109 -88.8 -.3933

GL 0.244 13.87 0.143 73.8 .5326

5 optimal 0.050 -0.049 0.039 27.3 .1626

opt. trap. 0.116 -6.693 0.073 -51.2 .2537

GL 0.225 13.948 0.118 47.7 .3716

0 optimal 0.070 -4.36 0.042 -17.4 -.0698

opt. trap. 0.108 -6.07 0.056 -26.8 -.1076

GL 0.218 13.95 0.109 21.7 .2176

a objective for the optimal method not significantly less than for the optimal trapezoid
b the maximum absolute deviance inferior for the optimal method
c the maximum relative deviance inferior for the optimal method
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detailed description of all numerical algorithms used refer to

MATLAB documentation [21, 22]). In addition to the

required C(t) values, a differential equation solver can also

yield a value of AUC along with derivatives of both C(t) and

AUC. The necessary details are given in the Appendix.

For each combination of model, sample size and cv an

optimal minimax method was found. Moreover, an optimal

trapezoid method and either Gauss-Legendre or Clenshaw-

Curtis approximation (whichever performed better) were

also found.

Table 3 Properties and performance of the linear quadrature, optimal in the minimax sense, compared to the optimal trapezoid and GL or CC

approaches for Model 2

n cv½%� Method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Objective
p

Bias RMSRE Maximum deviance Maximum relative deviance

6 10 optimal 5.19E-2 1.18 4.85E-

2

54.7 -.2273

opt. trap. 6.12E-2 -1.95 5.11E-2 52.2 -.2287

GL 5.78E-2 0.65 5.05E-

2

56.2 -.2273

5 optimal 2.27E-2 0.037 2.20E-

2

-22.5 .0877

opt. trap. 2.40E-2 -0.614 2.29E-

2

-23.3 .0920

GL 3.32E-2 0.649 2.61E-

2

26.8 .1183

0 optimal 6.37E-4 0.035 3.65E-

4

-0.21 6.37E-4

opt. trap. 7.80E-3 -0.572 4.31E-

3

-2.53 7.78E-3

GL 1.87E-2 0.675 6.04E-

3

1.98 1.86E-2

4 10 optimal 5.41E-2 0.024 5.20E-

2

51.3 .2070

opt. trap. 6.36E-2 -1.963 5.89E-

2

-68.0 -.2453

CC 8.74E-2 -3.517 6.98E-

2

66.2 -.2647

5 optimal 2.95E-2 0.32 2.84E-

2

-27.2 -.1115

opt. trap. 3.30E-2 -1.70 3.14E-

2

-32.8 -.1328

CC 6.86E-2 -3.40 4.60E-

2

-32.4 -.1739

0 optimal 1.94E-3 0.004 9.77E-

4

0.64 .0019

opt. trap. 4.41E-2 -2.702 2.09E-

2

-10.84 -.0440

CC 6.12E-2 -3.341 2.75E-

2

-5.99 -.0611

2 10 optimal 0.083 2.16 0.076 103 -.3376

opt. trap. 0.210 -0.46 0.122 108 .5854

GL 0.239 13.82 0.137 101 .5536

5 optimal 0.049 -2.31 0.041 -41.2 -.1815

opt. trap. 0.190 0.26 0.089 68.9 .3288

GL 0.219 13.75 0.109 61.3 .3652

0 optimal 0.026 1.50 0.014 8.3 .0255

opt. trap. 0.183 0.46 0.076 31.0 .1825

GL 0.212 13.77 0.043 21.6 .2115
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The trapezoid method was subject to the following

restriction: the last knot always had to be placed at the end

of the time interval. On the other hand a linear extrapola-

tion to the time zero was allowed for models with C0 [ 0.

This asymmetry was due to the fact that the trapezoid

method with a linear extrapolation to t ¼ s no longer

belongs to the LC class. An extrapolation to t ¼ 0 does not

introduce that problem [13].

Table 4 Properties and performance of the linear quadrature, optimal in the minimax sense, compared to the optimal trapezoid and GL or CC

approaches for Model 3

n cv½%� Method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Objective
p

Bias RMSRE Maximum deviance Maximum relative deviance

6 10 optimal 4.53E-2 0.787 4.30E-

2

32.7 .1712

opt. trap. 6.01E-2 -0.602 4.74E-

2

-31.2 .2071

GL 5.74E-2 -0.329 4.89E-

2

-36.9 -.1995

5 optimal 2.28E-2 0.312 2.22E-

2

15.1 .0960

opt. trap. 3.81E-2 -0.197 2.52E-

2

13.8 .1122

GL 3.32E-2 -0.334 2.48E-

2

-15.3 .1114

0 optimal 1.35E-3 0.027 6.24E-

4

0.29 -.0013

opt. trap. 3.33E-2 -0.439 1.34E-

2

3.16 .0328

GL 1.96E-2 -0.333 5.06E-

3

-0.99 -.0190

4 10 optimal 5.47E-2 0.810 5.30E-

2

-44.3 -.2187

opt. trap. 7.80E-2 -1.105 5.93E-

2

-40.4 .2808

CC 9.17E-2 1.937 6.49E-

2

40.2 .2897

5 optimal 2.84E-2 0.084 2.79E-

2

20.1 .1083

opt. trap. 5.32E-2 -0.986 3.29E-

2

-21.0 .1346

CC 6.69E-2 1.849 3.27E-

2

20.7 .1616

0 optimal 5.72E-3 0.024 2.47E-

3

1.22 .0057

opt. trap. 4.18E-2 -0.833 1.59E-

2

4.44 .0417

CC 5.62E-2 1.890 2.21E-

2

3.34 .0551

2 10 optimal 0.104 2.573 0.083 57.5 .3339

opt. trap. 0.120 -0.503 0.095 -61.1 .4148

GL 0.227 -8.866 0.122 -55.2 -.4542

5 optimal 0.075 1.948 0.046 33.6 .1917

opt. trap. 0.085 -0.130 0.052 -28.6 .2180

GL 0.218 3.908 0.104 -29.3 .3566

0 optimal 0.062 -1.174 0.021 6.76 .0603

opt. trap. 0.070 -0.042 0.026 -8.22 .0663

GL 0.215 -8.841 0.097 -13.97 -.2121
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Table 5 Properties and performance of the linear quadrature, optimal in the minimax sense, compared to the optimal trapezoid and GL or CC

approaches for Model 4

n cv½%� Method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Objective
p

Bias RMSRE Maximum deviance Maximum relative
deviance

6 10 optimal 4.52E-2 -1.117 4.39E-
2

37.1 .1821

opt. trap. 5.76E-2 0.458 4.28E-
2

33.2 .1982

GL 5.61E-2 0.073 4.50E-
2

-32.6 .1987

5 optimal 2.28E-2 -.5892 2.22E-
2

-17.7 -.0937

opt. trap. 3.39E-2 .2958 2.17E-
2

16.4 .1040

GL 2.81E-2 .0079 2.25E-
2

-16.7 .0942

0 optimal 5.05E-5 4.16E-3 2.40E-
5

.0058 -4.63E-5

opt. trap. 4.01E-3 -5.84E-2 6.66E-
4

.2843 -3.04E-3

CC 5.63E-5 -2.40E-5 2.18E-
6

-.0039 -5.15E-5

4 10 optimal 6.54E-2 1.779 5.69E-
2

42.4 .2615

opt. trap. 8.60E-2 0.488 5.59E-
2

41.3 .2950

GL 6.79E-2 0.028 5.40E-
2

42.2 .2429

5 optimal 3.32E-2 1.211 2.83E-
2

-20.5 -.1076

opt. trap. 4.43E-2 0.143 3.11E-
2

19.1 .1312

GL 3.39E-2 0.046 2.69E-
2

-23.0 -.1095

0 optimal 3.63E-4 3.82E-2 2.29E-
4

.0614 -3.59E-4

opt. trap. 6.43E-3 -1.50E-1 1.63E-
3

-.6145 -6.30E-3

GL 6.54E-4 -2.96E-4 2.58E-
5

-.0404 -5.16E-4

2 10 optimal 0.089 6.001 8.35E-
2

66.7 .3400

opt. trap. 0.103 -0.173 8.72E-
2

-68.1 .3920

GL 0.110 0.088 7.37E-
2

55.8 .3252

5 optimal 4.52E-2 3.778 4.37E-
2

33.1 .1683

opt. trap. 5.56E-2 -0.054 4.36E-
2

-31.3 -.1739

GL 6.56E-2 0.087 3.72E-
2

-28.3 .1598

0 optimal 7.01E-3 0.882 5.55E-
3

1.43 .0070

opt. trap. 2.40E-2 -0.065 2.70E-
3

2.18 .0238

GL 4.11E-2 0.041 2.04E-
3

2.77 .0393
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Simulations

In order to evaluate results, for each case 20,000 PK ran-

dom profiles were simulated. PK parameters were

uniformly drawn from their ranges. Based on them con-

centrations were calculated according to assumed models

and Gaussian random noise with assumed cv was subse-

quently applied. Using those samples a bias, a root mean

Table 6 Properties and performance of the linear quadrature, optimal in the minimax sense, compared to the optimal trapezoid and GL or CC

approaches for Model 5

n cv½%� Method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Objective
p

Bias RMSRE Maximum deviance Maximum relative

deviance

6 10 optimal 4.40E-2 -0.202 4.22E-

2

-28.3 .1559

opt. trap. 4.52E-2 -1.567 4.45E-

2

-31.1 -.1635

GL 5.54E-2 -0.030 4.85E-

2

30.3 .1881

5 optimal 2.24E-2 -0.251 2.16E-

2

-13.5 -.0876

opt. trap. 2.49E-2 -1.229 2.36E-

2

-15.2 -.0956

GL 2.77E-2 -0.019 2.40E-

2

15.5 .1110

0 optimal 4.67E-5 -0.0004 2.21E-

5

9.43E-2 4.65E-5

opt. trap. 1.47E-2 -1.3228 1.05E-

2

-2.827 1.47E-2

GL 5.03E-4 0.0133 1.45E-

4

0.026 4.90E-4

4 10 optimal 5.39E-2 0.325 5.14E-

2

-39.2 .2087

opt. trap. 6.00E-2 -2.808 5.80E-

2

-38.9 -.2236

GL 6.64E-2 0.357 5.73E-

2

-38.0 .2132

5 optimal 2.73E-2 0.641 2.65E-

2

19.1 .1082

opt. trap. 3.69E-2 -2.358 3.32E-

2

-21.6 -.1324

GL 3.54E-2 0.433 2.92E-

2

-22.3 .1142

0 optimal 6.87E-4 -0.021 3.76E-

4

0.14 6.85E-4

opt. trap. 2.61E-2 -2.271 1.80E-

2

-5.26 -2.60E-2

GL 1.42E-2 0.466 4.90E-

3

0.75 1.40E-2

2 10 optimal 0.078 0.64 0.074 -50.5 .3123

opt. trap. 0.144 -11.78 0.120 -66.4 .4163

GL 0.203 10.42 0.123 58.9 .4326

5 optimal 0.045 1.37 0.039 30.3 .1656

opt. trap. 0.128 -11.87 0.101 -48.9 -.2419

GL 0.180 10.39 0.099 40.0 .2712

0 optimal 4.02E-3 0.12 2.17E-

3

-0.88 .0040

opt. trap. 1.23E-1 -11.96 9.41E-

2

-22.93 -.1220

GL 1.72E-1 10.41 8.96E-

2

12.10 .1633
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squared relative error (RMSRE), minimum and maximum

absolute errors and their relative counterparts were

estimated.

While the present approach has been developed with

mild assumptions on statistical distribution of h and e, for

simulation purposes a particular distribution had to be

chosen. In order to perform a more demanding evaluation,

one may use for h a distribution that results in a harder test

than normal distribution or log-normal distribution, which

are usually applied. A (multidimensional) uniform distri-

bution creates the opportunity to scan a parameter space. It

is a common choice in a Monte-Carlo optimum search.

The main rationale for simulations was to investigate

those aspects of performance of optimal methods that do

not comprise the criteria of optimality. The statistical

parameters (RMSRE, bias, etc.) provide simple measures

for that purpose. In addition they facilitate a simple check

of results. The following inequality is to be expected for

any method:

RMSRE\
ffiffiffiffiffiffiffiffi
Obj

p
;

where Obj, the objective, is the maximum risk found at

chosen knots and weights. Moreover, in a case without

random noise, the maximum observed relative deviance

cannot be greater than the square root of the objective

unless the optimization failed. This relation may be

reversed in the presence of random error.

These inequalities are discussed in detail in the

Appendix.
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Fig. 1 Performance of the investigated methods for Model 1 with n=6 and cv ¼ 0:10. Panels depict true vs estimated AUC by (a) optimal,

(b) optimal trapezoid, and (c) Gauss-Legendre methods. Panel (d) displays knots and weights of these methods (one bar of optimal method is

hidden behind bars of other methods)
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Results

The results of the optimum method search and the related

simulations are compiled in Tables 2, 3, 4, 5, and 6.

Footnote labels in the body of Table 2 are referred to in the

Discussion. They indicate examples of specific behaviour

of results.

A few representative plots showing the quality of the

predictions can be found in Figs. 1, 2, and 3. These plots

show each simulated case as a small gray dot. Its abscissa

equals to the true AUC value, i.e. calculated based on PK

parameters values assumed in the simulation, and its

ordinate represents the result of estimation. As it is quite

common that maximum risk is reached at the extremal

values of some or all parameters the special points simu-

lated for these extremal values are indicated by open square

symbols (h). Open triangles indicate those points at which

the maximum estimation error appeared: / and . are for

maximum relative under- and overestimates, respectively;

while O and M are for maximum absolute under- and

overestimated results in a plot. In these figures, on separate

plots, the knots and weights of all three methods are also

depicted. The position of each bar is that of a knot while its

height represents a value of weight.

Figure 4 contains sample spaghetti plots for all models

at cv ¼ 0:1 and n ¼ 4. Each 200th PK profile (of 20,000) is

shown along with the corresponding concentrations mea-

sured at knots of investigated methods. Yet another manner

of comparison of methods is displayed in Fig. 5. It contains

a ‘‘mean’’ profile for Model 1, i.e. a profile simulated at

midpoint values of PK parameters. The symbols are plotted

at knots of the corresponding methods. The area covered by

each symbol is proportional to its contribution to the total

AUC.
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Fig. 2 Performance of the investigated methods for Model 2 with n=2 and cv ¼ 0:05. Panels depict true vs estimated AUC by (a) optimal,

(b) optimal trapezoid, and (c) Gauss-Legendre methods. Panel (d) displays knots and weights of these methods
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Discussion

The objective for the optimal method was not always sig-

nificantly less than for the optimal trapezoid (Table 2, foot-

note a). For a richer sampling (n ¼ 6) and higher variability

(cv ¼ 0:1) the maximum risk of all methods was comparable:

the objective of the optimal method was never lower than

30% of the worst method’s objective. On the other hand for

cv ¼ 0 the objectives differed to even more than five orders

of magnitude. Differences also appeared to be more pro-

nounced with a decrease in the sample size. It can also be

confirmed by inspection of the Figures: patterns on Fig. 1

(richer sampling, higher variability) are rather similar across

all three methods, while on Fig. 2 (very sparse sampling) and

Fig. 3 (no variability, in addition) patterns are quite different.

Several maximum absolute deviances appeared to be

inferior for the optimal method (Table 2, footnote b).

Furthermore, it happened that the maximum relative devi-

ance observed was worse for an optimal method than for one

of the other methods (Table 2, footnote c). There was no

contradiction in this, since the neighbourhood of such h, at

which other methods would perform worse than the optimal

one, might simply has been missing in the simulation.

There was no clear superiority of either bias or RMSRE

for the optimal method in comparison to other methods.

Also, one cannot clearly indicate which one of the alter-

native methods had lower risk across the investigated

models.

Even for as large a sample as n ¼ 6, the maximum

relative deviance was of order of 20% for any method at

cv ¼ 0:10. Assuming the deviance of 20% is at the limit of

usefulness, it could be provided in most cases also for n ¼
2 and cv ¼ 0:05 using the optimal method with relative

risk.
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Fig. 3 Performance of the investigated methods for Model 2 with n=2 and cv ¼ 0 (no random error). Panels depict true vs estimated AUC by

(a) optimal, (b) optimal trapezoid, and (c) Gauss-Legendre methods. Panel (d) displays knots and weights of these methods
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Fig. 4 Spaghetti plots for n ¼ 4 and cv ¼ 0:05 across models 1–5
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Inequality 18 discussed in the Appendix was satisfied for

samples with cv [ 0, confirming that random errors out-

weigh quadrature errors. For samples with cv ¼ 0 inequality

17 was satisfied, indicating successful optimization.

The precise definition of the optimal AUC estimation

method depends on the choice of risk function, considered

class of quadratures, and the interpretation of the PK

parameters vector (Bayesian or minimax estimation). The

present paper contains an analysis of the specific combi-

nation of these factors: quadratic loss function, LC

quadratures, and minimax estimator. It was demonstrated

how much progress may be made by transition from the

simple trapezoid method to the optimal LC quadrature in

the above sense.

That LC-quadratures are distinguished may be argued as

follows: In the framework of linear pharmacokinetics they

guarantee linearity of the AUC estimates. With non-linear

quadratures the calculation of risk function can be quite dif-

ficult and it may require full knowledge of probability distri-

bution of random errors. Also, an application of numerical

integration algorithms, including Monte-Carlo, might be

necessary. Likewise, the minimax approach enables more

general treatment than the Bayesian framework, since the

latter depends on the prior distribution of model parameters,

which is not necessarily known. On the other hand, in order to

successfully apply the present method, the appropriate PK

model has to be identified beforehand and the range of certain

PK parameters as well as cv should be estimated.

Thus prior investigation of the drug on the target pop-

ulation is required. Along with observed clearer superiority

on small samples it suggests that developing of limited

sampling strategies may constitute an area of application

for this approach.

At this point one may wonder, why not simply fit the

model to the data and use obtained PK parameters to cal-

culate AUC? Although it is possible in principle, it is an

indirect solution, and as such it does not need to be optimal.

To illustrate this the following analogy can be developed:

Gauss-Legendre quadrature of order n (i.e. having n

knots) is exact for any polynomial of an order up to 2n� 1.

For instance, if a polynomial value is known at three

properly chosen knots, this polynomial can be exactly

integrated, provided its order is 5 or less. But no polyno-

mial coefficients can be determined for polynomials of an

order � 3. In fact, there is a continuum of polynomials,

passing through those given points, with the same integral;

a few of them are depicted in Figure 6.

While it is believed that the case discussed herein is an

important one, it is by no means the only one that deserves

analysis. In particular, non-linear quadratures are certainly

worth investigation, despite the difficulties indicated above,

as they are more general. The widely used log-trapezoid rule

is a very simple instance of such a quadrature.

The AUC in the finite interval is more appropriate to the

steady state. Amisaki gives an important insight into the

problem of integration in the infinite interval [23]; this

topic also appears to be worth further analysis.

Conclusions

Optimal linear minimax estimator of AUC in the finite

interval can be effectively constructed for PK models,
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regardless of whether they are given by an explicit

C(t) relationship or defined by the differential equations.

The developed method may also be applied in other dis-

ciplines, where estimation of integrals from sparse and

noisy data is essential.

The optimal method may appear significantly better than

other considered methods for low variability samples. On

the other hand, for larger samples with higher variability it

is less advantageous and it may be replaced by the simpler

method. In particular, GL and CC algorithms may then be

considered, since their weights and knots do not depend on

the model nor the range of model parameters.

There is no optimal AUC estimator in the universal

sense, but what is meant by ’optimal’ depends on so many

factors that it appears that the answer to the question in the

title should be positive.

The benefits of the minimax estimator with the LC

quadrature and constant cv may be summarized as follows:

1. To obtain the estimator one does not need to know PK

parameters distribution; no covariance matrix is nec-

essary. Only a reasonable range of parameters should

be determined.

2. Detailed knowledge on experimental error is also

unimportant. Zero mean and constant cv conditions

suffice.

3. A construction of the estimator does not involve

multidimensional integrals and their numerical

approximations.

4. A constant cv condition with a relative risk simplifies

the estimator construction process, even for nonlinear

models. This is discussed in the first subsection of the

Appendix.

5. In a sense, this estimator is more conservative than the

Bayesian approach, since it minimizes an error in the

worst possible scenario and not in an average situation

as does the Bayesian approach.

As a closing remark a comment on the methodology

being used for elaborating limited-sampling strategy for a

number of drugs [6, 8–10] can be given. Formally, the

applied quadrature differs from the LC type only by an

additional constant term (the intercept), but the inter-

pretation is quite different. Linear regression is postu-

lated between AUC and concentrations measured at

knots. The weights have the meaning of multiple

regression coefficients. It might appear, that some kind of

maximum likelihood estimator of AUC is constructed in

this way. Note however, that postulate of linear depen-

dency is not necessarily true in PK applications. The

present paper also uses linear quadrature, but does not

assume it is exact in the absence of random errors, as the

linear regression approach does.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix

Reducing the search space

General considerations

Consider two parameter vectors, h and h0, both in the assumed

parameter range, such that there exists j so that for any t

Cðt; h0Þ ¼ jCðt; hÞ: ð9Þ

Then, in the case of constant cv, Rðh0Þ ¼ j2RðhÞ and

Rrðh0Þ ¼ RrðhÞ.
Thus, if there exists a subset H0, of the parameter range

H, such that for any h in H there exists h0 in H0 so that

Eq. 9 holds with j� 1, then the search space H can be

reduced to H0.
From practical reasons H is chosen as a multidimen-

sional interval (or combination of such intervals):

H ¼ h : hmin;i� hi� hmax;i; i ¼ 1. . . dimðhÞ
	 


If H0 can be chosen so that for some i, hi is fixed, then a

dimension of search space will be reduced. This may sig-

nificantly decrease the computing time.

Application to PK models

In the case of linear PK models Eq. 9 is satisfied auto-

matically. For models 1 and 2 let the parameter range be

chosen as

H ¼ ½ka min; ka max� � ½ke min; ke max� � ½Amin;Amax�

and H0 as

H0 ¼ ½ka min; ka max� � ½ke min; ke max� � fAmaxg:

For model 3 the choices might be

H ¼½k1 min; k1 max� � ½k2 min; k2 max� � ½Amin;Amax�
� ½pmin; pmax�

and

H0 ¼½k1 min; k1 max� � ½k2 min; k2 max� � fAmaxg
� ½pmin; pmax�:

For model 4 one can write

dðjCÞ
dt
¼ �j

VmC

KM þ C
¼ �ðjVmÞðjCÞ

jKM þ jC
:
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This implies that if CðtÞ is a solution of model equation

with parameters KM and Vm and initial condition

Cð0Þ ¼ C0, then jCðtÞ is a solution of the same equation

with model parameters (including initial concentration)

multiplied by j. It may be viewed as a result of change in

mass unit by factor j. If one chooses H0 as

H0 ¼½kKM min;KM max� � ½kVm min;Vm max�
� fC0 maxg

where k ¼ C0 min=C0 max, then the choice for H might be

H ¼H0 [ ½KM min;KM max� � ½Vm min;Vm max�
� ½C0 min;C0 max�:

Finally, for model 5 one obtains

H0 ¼½kKM min;KM max� � ½kVm min;Vm max�
� ½ka min; ka max� � fAmaxg

and

H ¼ H0[½KM min;KM max� � ½Vm min;Vm max�
� ½ka min; ka max� � ½Amin;Amax�:

Outer objective derivative derivation

Let MðxÞ ¼ maxh Rðh;xÞ, where x is a vector combined

from t and w. The hðmÞ that maximizes R clearly depends on

x, so one can write:

MðxÞ ¼ R hðmÞðxÞ;x
� �

Thus

dMðxÞ
dxk

¼
XdimðhÞ

i¼1

oR

ohðmÞi

dhðmÞi

dxk

þ oR

oxk

If at the maximizer oR

ohðmÞ
i

6¼ 0, it implies that hðmÞi must be at

one of its bounds. Assuming that oR

ohðmÞ
i

is continuous in x, it

will remain non-zero after an infinitesimal change in xk

and therefore the maximizer will remain at its bound. It

means that
ohðmÞ

i

oxk
¼ 0. A maximizer may also be in the

interior of H implying that oR

ohðmÞ
i

¼ 0. In any case

oR

ohðmÞi

ohðmÞi

oxk

¼ 0

and

dMðxÞ
dxk

¼ oR

oxk

Treatment of models defined by differential equations

In order to obtain AUC along with CðtÞ as well as their

derivatives in parameters the model differential equation

dCðt; hÞ
dt

¼ f C t; hð Þ; h; tð Þ ð10Þ

has to be supplemented with additional equations, the first

of them being:

dAUCðt; hÞ
dt

¼ Cðt; hÞ; ð11Þ

where AUCðt; hÞ is calculated in the time interval from 0 to

t.

Define:

giðt; hÞ ¼
dCðt; hÞ

dhi

Giðt; hÞ ¼
dAUCðt; hÞ

dhi

hijðt; hÞ ¼
d2Cðt; hÞ

dhidhj

Hijðt; hÞ ¼
d2AUCðt; hÞ

dhidhj

Then

dgi

dt
¼ d

dhi

dC

dt
¼ d

dhi

f C t; hð Þ; h; tð Þ

¼ of

oC

dC

dhi

þ of

ohi

what may be written as the subsequent equations:

dgi

dt
¼ of

oC
gi þ

of

ohi

ð12Þ

and, in the similar way:

dGi

dt
¼ gi ð13Þ

Finally, for the Hessian one obtains:

d

dt

d2C

dhidhj

¼ d2

dhidhj

dC

dt
¼ d2

dhidhj

f C t; hð Þ; h; tð Þ

which yields the following equations:

dhij

dt
¼ o2f

oC2
gigj þ

o2f

oCohi

gj þ
o2f

oCohj

giþ

þ of

oC
hij þ

o2f

ohiohj

ð14Þ

and

dHij

dt
¼ hij ð15Þ
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The differential Eqs. (10 – 15) with initial conditions:

Cð0; hÞ ¼ C0ðhÞ;
AUCð0; hÞ ¼ 0;

gið0; hÞ ¼
oC0

ohi

;

Gið0; hÞ ¼ 0;

hijð0; hÞ ¼
o2C0

ohidhj

;

Hijð0; hÞ ¼ 0;

if solved, form the complete data needed by the optimi-

zation procedure.

In the case of iv administration, if C0 is chosen as a

model parameter (along with KM and Vm), so that h ¼
ðKM ;Vm;C0Þ then

f ðC; h; tÞ ¼ � VmC

KM þ C

and

oC0

oh
¼ ð0; 0; 1Þ

For the first-order absorption with no initial concentration

h ¼ ðKM;Vm; ka;AÞ where A ¼ FDka=Vd

f ðC; h; tÞ ¼ � VmC

KM þ C
þ A exp �katð Þ

and

oC0

oh
¼ ð0; 0; 0; 0Þ

Inequalities

In practice, the expectation of a random variate is always

less than its maximal possible value. In most cases it

should also be less than the maximum value observed, even

for a sample of moderate size. Thus the following

inequality must hold:

EhRrðhÞ\ max
h

RrðhÞ ð16Þ

and also, almost certainly:

max
h sample

RrðhÞ ¼ max
h sample

EeLrðQ̂; hÞ
� max

h sample

e sample

LrðQ̂; hÞ: ð17Þ

On the other hand, randomly drawn vectors h may miss the

maximizer:

max
h

RrðhÞ� max
h sample

RrðhÞ: ð18Þ

MSRE estimates an expectation of the risk and for a large

sample it should provide a good approximation. On aver-

age, inequality 16 should also hold for expectation replaced

by MSRE. The relation between objective and maximum

observed loss is more complicated, because inequalities 17

and 18 work in opposite directions. If the coefficient of

variation cv is very small, or there is no random error at all,

the inequality in 17 may be replaced by an equal sign and

inequality 18 becomes important. In a more realistic situ-

ation and with a sample large enough one may expect that

random error will dominate the quadrature error, as Katz

and D’Argenio pointed out. Then inequality 17 should

prevail.

Taking square roots of these inequalities one may

summarize them as

RMSRE\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ObjðhðmÞÞ

q
\ max

h sample

e sample

jAUC � Q̂j
AUC ð19Þ

unless the cv is 0 or very small, in which case the second

inequality sign may be reversed.

Supplementary material

Additional documentation to this paper is available as

electronic supplementary material. It consists of a set of

Matlab M-files implementing minimax optimization, and

plots of all simulations for Model 1. There are also several

sample job configuration files used by a Matlab code.

Interested readers may modify the Matlab code and/or

configuration files to develop their own models.
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