
Eur. Phys. J. C (2014) 74:3084
DOI 10.1140/epjc/s10052-014-3084-z

Regular Article - Theoretical Physics

Mueller–Navelet jets in next-to-leading order BFKL: theory
versus experiment

F. Caporale1,2,a, D. Yu. Ivanov3,b, B. Murdaca1,2,c, A. Papa1,2,d

1 Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
2 Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, 87036 Cosenza, Italy
3 Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk, Russia

Received: 1 August 2014 / Accepted: 15 September 2014 / Published online: 9 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We study, within QCD collinear factorization and
including BFKL resummation at the next-to-leading order,
the production of Mueller–Navelet jets at LHC with center-
of-mass energy of 7 TeV. The adopted jet vertices are cal-
culated in the approximation of a small aperture of the jet
cone in the pseudorapidity-azimuthal angle plane. We con-
sider several representations of the dijet cross section, dif-
fering only beyond the next-to-leading order, to calculate a
few observables related with this process. We use various
methods of optimization to fix the energy scales entering
the perturbative calculation and compare our results with the
experimental data from the CMS collaboration.

1 Introduction

The investigation of jet production in perturbative QCD is
an important element of phenomenological studies at LHC.
Many interesting physical topics could be studied in such
experiments.

In these last years, the inclusive hadroproduction of two
jets with large and similar transverse momenta and a big rel-
ative separation in rapidity Y , the so-called Mueller–Navelet
jets [1], has become very popular. It allows discriminating
between BFKL [2–5] dynamics of parton–parton interac-
tion and the standard collinear fixed-order QCD factoriza-
tion, which should work only when Y is not big enough,
Y ∼ 1. If we compare the BFKL dynamics with the fixed-
order DGLAP [6–8] calculation, we expect a larger cross sec-
tion and a reduced azimuthal correlation between the detected
two forward jets. If Y is large, the leading terms in a pertur-
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bative expansion of the cross section (related with forward
amplitude) on the coupling αs are those proportional to pow-
ers of αsY , and they are resummed in the BFKL series. At a
first, naive analysis Mueller–Navelet jets should manifest an
exponential growth with Y , but the hard matrix elements are
convoluted via collinear factorization with the parton distri-
bution functions (PDFs), which damp this behavior.

Taking into account the effects of the PDFs, it is useful to
look for ratios of distributions. Examples of such ratios are
azimuthal angle correlations between the two measured jets,
i.e. average values of cos (nφ), which depend on Y (here
n is an integer and φ is the angle in the azimuthal plane
between the direction of one jet and the opposite direction of
the other jet). Other useful observables are the ratios of two
such cosines, introduced for the first time in Refs. [9,10]. We
expect a decrease of these observables as Y increases, due to
the larger amount of undetected parton radiation in between
the two tagged jets.

It is a well known fact that the next-to-leading order
(NLO) BFKL corrections for the n = 0 conformal spin are
with opposite sign with respect to the leading-order (LO)
result and large in absolute value. This happens both to the
NLO BFKL kernel [11,12], which enters the integral equa-
tion giving the process-independent BFKL Green function,
and to process-dependent NLO impact factors (see, e.g.,
Ref. [13–15], for the case of the vector meson photopro-
duction). The impact factor needed for the BFKL descrip-
tion of the Mueller–Navelet jet production, the so-called for-
ward jet vertex [16–19], is of no exception. For this rea-
son it is strictly necessary to optimize the amplitude by
(i) including some pieces of the (unknown) next-to-NLO
corrections and/or (ii) suitably choosing the values of the
energy and renormalization scales, which, though being arbi-
trary within the NLO, can have a sizeable numerical impact
through subleading terms. A remarkable example of the for-
mer approach is the so-called collinear improvement [20–
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30], based on the inclusion of terms generated by renormal-
ization group (RG), or collinear, analysis, leading to more
convergent kernels. As for the latter approach, the most com-
mon ways to optimize the choice of the energy and renormal-
ization scales are those inspired by the principle of minimum
sensitivity (PMS) [31,32], the fast apparent convergence
(FAC) [33–35] and the Brodsky–LePage–McKenzie method
(BLM) [36].

In an ideal situation, the use of one or the other optimiza-
tion procedure should not change much the prediction for any
of the observables related with a given process. In practice,
this may well not be the case. Then it becomes fundamental
to identify those observables, if any, which show no or a small
sensitivity to the change of optimization procedure. Other-
wise, the preference for one optimization procedure should
be assigned by evaluating the agreement with the experimen-
tal data in a certain setup and, thereafter, should be assumed
to apply also in other setups.

The study of Mueller–Navelet jet production process at
LHC is, in this respect, a paradigmatic case. The first, pio-
neering paper devoted to the study of this process within
full NLO BFKL [37] used kinematical (i.e. non-optimized)
energy scales and considered also as an option the case of
an RG-improved kernel. Here the predictions for differential
cross section and several azimuthal correlations at the design
LHC center-of-mass energy of 14 TeV were built. Later, a
similar analysis was redone [38], using the standard (i.e. non-
RG-improved) kernel, but energy scales optimized according
to the PMS method. Besides, in [38] the analytic expressions
for jet vertices derived in a small-cone approximation [19]
were used. The small-cone approximation allows one to sim-
plify the numerical analysis and is an adequate tool since typ-
ically the difference between it and the exact jet definition is
much smaller than other theoretical uncertainties inherent to
the BFKL approach. A third paper [39] followed the same
approach of Ref. [38], but it adopted an RG-improved ker-
nel and observed a tendency of optimal values of the energy
scales toward “naturalness”.

The appearance of the first CMS data at a center-of-mass
energy of 7 TeV [40] triggered the theoretical analysis in the
same kinematical setup, which showed that the use of a RG-
improved kernel with non-optimized energy scales does not
lead to agreement with the experiment [41], but nice agree-
ment is found at the larger values of Y when BLM-optimal
energy scales are used instead [42], both in pure BFKL and
RG-improved calculations. Recently some effects subleading
to the BFKL approach, dubbed as “violation of the energy-
momentum conservation”, were studied in the context of the
Mueller–Navelet jet production process [43].

The aim of the present paper is to supplement the nice
results achieved in Refs. [41,42] with some further informa-
tion. In particular, we will try to answer, at least partially, the
following questions:

• Are there observables weakly sensitive (or insensitive
indeed) to the optimization procedure?

• Do other optimization schemes, such as PMS and FAC,
reproduce the CMS experimental data as well as BLM, if
necessary by modifying the amplitude with the inclusion
of some of the unknown next-to-NLO corrections?

• Does the BLM method reproduce experimental data also
for the total Mueller–Navelet cross section as it does for
azimuthal correlations?

The paper is organized as follows: in the next section
we will give the kinematics and the basic formulas for
the Mueller–Navelet jet process cross section, present the
different, NLO-equivalent representations of the amplitude
adopted in this work and briefly recall the PMS, FAC, and
BLM optimization methods; in Sect. 3 we will present our
results; finally, in Sect. 4 we will draw our conclusions and
discuss some issues which we believe to be important in con-
fronting the theoretical predictions with experimental data.

2 The Mueller–Navelet jet process

We consider the production of Mueller–Navelet jets [1] in
proton–proton collisions

p(p1)+ p(p2) → jet(kJ1)+ jet(kJ2)+ X , (1)

where the two jets are characterized by high transverse
momenta, �k2

J1
∼ �k2

J2
� �2

QCD and large separation in
rapidity; p1 and p2 are taken as Sudakov vectors satisfying
p2

1 = p2
2 = 0 and 2 (p1 p2) = s.

In QCD collinear factorization the cross section of the
process (1) reads

dσ

dxJ1 dxJ2 d2kJ1 d2kJ2

=
∑

i, j=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2 fi (x1, μF )

× f j (x2, μF )
dσ̂i, j (x1x2s, μF )

dxJ1 dxJ2 d2kJ1d2kJ2

,

(2)

where the i, j indices specify the parton types (quarks
q = u, d, s, c, b; antiquarks q̄ = ū, d̄, s̄, c̄, b̄; or gluon g),
fi (x, μF ) denotes the initial proton PDFs; x1,2 are the lon-
gitudinal fractions of the partons involved in the hard sub-
process, while xJ1,2 are the jet longitudinal fractions; μF

is the factorization scale; dσ̂i, j (x1x2s, μF ) is the partonic
cross section for the production of jets and x1x2s ≡ ŝ is the
squared center-of-mass energy of the parton–parton collision
subprocess (see Fig. 1).

In the BFKL approach [2–5], the cross section of the hard
subprocess can be written as (see Ref. [38] for the details of
the derivation)
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Fig. 1 Mueller–Navelet jet production process

dσ

dyJ1 dyJ2 d|�kJ1 | d|�kJ2 |dφJ1 dφJ2

= 1

(2π)2

[
C0 +

∞∑

n=1

2 cos(nφ) Cn

]
, (3)

where φ = φJ1 − φJ2 − π and the cross section C0 and the
other coefficients Cn are given by

Cn ≡
∫ 2π

0
dφJ1

∫ 2π

0
dφJ2 cos[n(φJ1 − φJ2 − π)]

× dσ

dyJ1 dyJ2 d|�kJ1 | d|�kJ2 |dφJ1dφJ2

= xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν

(
xJ1 xJ2 s

s0

)ᾱs (μR)χ(n,ν)

×α2
s (μR)c1(n, ν, |�kJ1 |, xJ1)c2(n, ν, |�kJ2 |, xJ2)

×
[

1 + αs(μR)

(
c(1)1 (n, ν, |�kJ1 |, xJ1)

c1(n, ν, |�kJ1 |, xJ1)

+ c(1)2 (n, ν, |�kJ2 |, xJ2)

c2(n, ν, |�kJ2 |, xJ2)

)
+ ᾱ2

s (μR) ln

(
xJ1 xJ2 s

s0

)

×
(
χ̄(n, ν)+ β0

8CA
χ(n, ν)

(
− χ(n, ν)

+10

3
+ ln

μ4
R

�k2
J1

�k2
J2

))]
. (4)

Here ᾱs(μR) ≡ αs(μR)Nc/π , with Nc the number of colors,

β0 = 11

3
Nc − 2

3
n f (5)

is the first coefficient of the QCD β-function,

χ (n, ν) = 2ψ (1)− ψ

(
n

2
+ 1

2
+ iν

)

−ψ
(

n

2
+ 1

2
− iν

)
(6)

is the LO BFKL characteristic function,

c1(n, ν, |�k|, x) = 2

√
CF

CA
(�k 2)iν−1/2

⎛

⎝CA

CF
fg(x, μF )

+
∑

a=q,q̄

fq(x, μF )

⎞

⎠ (7)

and

c2(n, ν, |�k|, x) =
[

c1(n, ν, |�k|, x)

]∗
, (8)

are the LO jet vertices in the ν-representation. The remaining
objects are related with the NLO corrections of the BFKL
kernel (χ̄(n, ν)) and of the jet vertices in the small-cone
approximation (c(1)1,2(n, ν, |�kJ2 |, xJ2)) in the ν-representation.
Their expressions are given in Eqs. (23), (36) and (37) of
Ref. [38].

The representation (4) is valid both in the leading loga-
rithm approximation (LLA), which means resummation of
leading energy logarithms, all terms (αs ln (s))n , and in the
next-to-leading approximation (NLA), which means resum-
mation of all terms αs (αs ln (s))n . The scale s0 is artificial.
It is introduced in the BFKL approach at the time to perform
the Mellin transform from the s-space to the complex angu-
lar momentum plane and cancels in the full expression, up to
terms beyond the NLA.

Equation (4) represents just one of infinitely many repre-
sentations of the coefficients Cn . One can consider alterna-
tive representations, aiming at catching some of the unknown
next-to-NLA corrections. Introducing for the sake of brevity
the definitions

Y = ln
xJ1 xJ2 s

|�kJ1 ||�kJ2 |
, Y0 = ln

s0

|�kJ1 ||�kJ2 |
,

the representations we will use in this work are the following:
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• The so-called exponentiated representation,

Cexp
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)

[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)

(
χ(1)(n,ν)+ β0

8C A
χ(n,ν) log

μ4
R

�k2
J1

�k2
J2

)]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 + αs (μR)

(
c(1)1 (n, ν)

c1 (n, ν)
+ c(1)2 (n, ν)

c2 (n, ν)

)]
, (9)

where the dependence on |�kJi | and xJi in c(1)1,2 has been omitted for simplicity and

χ(1) (n, ν) = χ̄ (n, ν)+ β0

8CA
χ (n, ν)

(
−χ (n, ν)+ 10

3

)
,

with χ̄(n, ν) given by Eq. (23) in Ref. [38].
• The exponentiated representation with an extra term, irrelevant in the NLA, given by the product of the NLO corrections

of the two jet vertices,

Csq
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)
[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)

(
χ(1)(n,ν)+ β0

8C A
χ(n,ν) log

μ4
R

�k2
J1

�k2
J2

)]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 + αs (μR)

(
c(1)1 (n, ν)

c1 (n, ν)
+ c(1)2 (n, ν)

c2 (n, ν)

)
+ α2

s (μR)

(
c(1)1 (n, ν)

c1 (n, ν)

c(1)2 (n, ν)

c2 (n, ν)

)]
.

(10)

• The exponentiated representation with an RG-improved kernel,

CRG
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)
[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)

(
χ(1)(n,ν)+ β0

8C A
χ(n,ν) log

μ4
R

�k2
J1

�k2
J2

)
+χRG (n,ν)

]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 + αs (μR)

(
c(1)1 (n, ν)

c1 (n, ν)
+ c(1)2 (n, ν)

c2 (n, ν)

)]
, (11)

where χ(1)RG(n, ν) is given in Eqs. (13)–(15) of Ref. [39].
• A combination of the previous two representations,

CRG+sq
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)
[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)

(
χ(1)(n,ν)+ β0

8C A
χ(n,ν) log

μ4
R

�k2
J1

�k2
J2

)
+χRG (n,ν)

]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 + αs (μR)

(
c(1)1 (n, ν)

c1 (n, ν)
+ c(1)2 (n, ν)

c2 (n, ν)

)
+ α2

s (μR)

(
c(1)1 (n, ν)

c1 (n, ν)

c(1)2 (n, ν)

c2 (n, ν)

)]
.

(12)
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3 Numerical results

In this section we present our results for the dependence
on Y = yJ1 − yJ2 of the coefficients Cn and of their ratios
Rnm ≡ Cn/Cm . Among them, the ratios of the form Rn0

have a simple physical interpretation, being the azimuthal
correlations 〈cos(nφ)〉.

In order to match the kinematical cuts used by the CMS
collaboration, we will consider the integrated coefficients
given by

Cn =
∫ y1,max

y1,min

dy1

∫ y2,max

y2,min

dy2

∫ ∞

kJ1,min

dkJ1

×
∫ ∞

kJ2,min

dkJ2δ (y1−y2−Y ) Cn
(
yJ1 , yJ2 , kJ1 , kJ2

)
, (13)

with y1,min = y2,min = 0, y1,max = y2,max = 4.7,
kJ1,min = kJ2,min = 35 GeV, and their ratios Rnm ≡ Cn/Cm .
We fix the jet cone size at the value R = 0.5 and the
center-of-mass energy at

√
s = 7 TeV. We use the PDF set

MSTW2008nlo [44] and the two-loop running coupling with
αs (MZ ) = 0.11707.

As discussed in the Introduction, to improve the stability
of the perturbative series, which is particularly relevant in
the BFKL framework, several methods have been devised
for the optimal choice of the several energy scales entering
the above expressions. We will use the following:

• principle of minimal sensitivity (PMS) [31,32],
• fast apparent convergence (FAC) [33–35],
• Brodsky–LePage-McKenzie (BLM) method [36].

3.1 PMS

We used an adaptation of the standard PMS method, as usual
in our works, valid when more than one energy scale is
present. The optimal choices for μR and s0 are those values
for which the physical observable under examination exhibits
the minimal sensitivity under variation of both these scales.

We applied the method to the four representations given
in Eqs. (9)–(12). As for the optimal choice of the third scale,
the factorization scale μF , we considered the following two
options:

(i) let μF follow the same fate as the renormalization scale
μR ,

(ii) fix μF at |�kJ1 | in the vertex of the jet 1 and at |�kJ2 | in the
vertex of the jet 2.

This leads us to consider the eight following possibilities:

NLA1, [Cexp
n ]μF =μR (Eq. (9) + option (i); dark green

in Fig. 2)
NLA2, [Cexp

n ]μF =kJi
(Eq. (9) + option (ii); green
in Fig. 2)

NLA3, [Csq
n ]μF =μR (Eq. (10) + option (i); violet

in Fig. 2)
NLA4, [Csq

n ]μF =kJi
(Eq. (10) + option (ii); magenta
in Fig. 2)

NLA5, [CRG
n ]μF =μR (Eq. (11) + option (i); blue in Fig. 2)

NLA6, [CRG
n ]μF =kJi

(Eq. (11) + option (ii); cyan in Fig. 2)

NLA7, [CRG+sq
n ]μF =μR (Eq. (12) + option (i); black in Fig. 2)

NLA8, [CRG+sq
n ]μF =kJi

(Eq. (12) + option (ii); gray in Fig. 2)

Following Refs. [13–15,38,39], in our search of the opti-
mal values for the Y0 and μR , we considered integer values
for Y0 in the range 0÷6 and values forμR given by multiples

of
√

|�kJ1 ||�kJ2 |,

μR = nR

√
|�kJ1 ||�kJ2 | , (14)

with the integer nR in the range 1 ÷ 9.
We looked for stationary points of the coefficient Cn in

the Y0 − nR plane, then the ratios Cn/Cm were obtained
indirectly by using the optimal results for the coefficients Cn

and Cm . In particular, following Ref. [40], we studied the
ratios R10, R20, R30, R21, and R32. We carried out this anal-
ysis for all the representations NLAi , i=1,...,8, listed above.
The results are reported in Tables 1, 2, 3, 4 and 5 and in
Fig. 2. For the sake of brevity, we do not show in these

Table 1 C1/C0 in the LLA and in the NLA according to the eight different representations discussed in the text; results obtained with the PMS
method

Y LLA NLA1 NLA2 NLA3 NLA4 NLA5 NLA6 NLA7 NLA8

3 0.6845 1.0099 0.9261 0.9762 0.9558 1.0129 0.8970 0.9756 0.9642

4 0.5544 0.9112 0.8772 0.8891 0.8915 0.9052 0.8962 0.8721 0.8811

5 0.4273 0.8563 0.8332 0.8564 0.8477 0.8433 0.8183 0.8609 0.8207

6 0.3195 0.7972 0.7837 0.7799 0.7802 0.7497 0.7637 0.7736 0.7589

7 0.2342 0.7248 0.7291 0.7433 0.7224 0.7060 0.7185 0.7226 0.7037

8 0.1679 0.7205 0.6889 0.7169 0.6803 0.6951 0.7281 0.6911 0.6508

9 0.1192 0.8292 0.7023 0.7262 0.6889 0.7066 0.7596 0.6894 0.7581

123



3084 Page 6 of 12 Eur. Phys. J. C (2014) 74:3084

Table 2 C2/C0 in the LLA and in the NLA according to the eight different representations discussed in the text; results obtained with the PMS
method

Y LLA NLA1 NLA2 NLA3 NLA4 NLA5 NLA6 NLA7 NLA8

3 0.5519 0.8448 0.8205 0.8059 0.8262 0.8454 0.7949 0.7402 0.8301

4 0.4024 0.7838 0.7107 0.6974 0.6997 0.7738 0.7045 0.6924 0.6932

5 0.2791 0.6418 0.6130 0.6207 0.6132 0.6794 0.6028 0.6343 0.5956

6 0.1864 0.6100 0.5287 0.5316 0.5233 0.5781 0.5154 0.5191 0.5080

7 0.1207 0.5014 0.4536 0.4999 0.4584 0.4890 0.4440 0.4475 0.4758

8 0.0762 0.4509 0.3966 0.4514 0.3932 0.4372 0.4353 0.4017 0.4130

9 0.0479 0.5071 0.4665 0.4489 0.4164 0.4503 0.4942 0.3974 0.4572

Table 3 C3/C0 in the LLA and in the NLA according to the eight different representations discussed in the text; results obtained with the PMS
method

Y LLA NLA1 NLA2 NLA3 NLA4 NLA5 NLA6 NLA7 NLA8

3 0.4667 0.9030 0.7143 0.6218 0.6686 0.7447 0.6920 0.6180 0.6891

4 0.3199 0.6816 0.5534 0.5021 0.5424 0.6785 0.5737 0.4944 0.5373

5 0.2075 0.5178 0.4907 0.4494 0.4391 0.5258 0.4279 0.5121 0.4286

6 0.1281 0.4428 0.4481 0.3577 0.4401 0.3874 0.3403 0.3443 0.3422

7 0.0767 0.3497 0.3430 0.3071 0.2810 0.3912 0.3320 0.2966 0.2819

8 0.0451 0.3107 0.3260 0.2658 0.2378 0.3073 0.3466 0.2526 0.2833

9 0.0264 0.3475 0.3289 0.2605 0.3217 0.2977 0.2951 0.2470 0.3414

Table 4 C2/C1 in the LLA and in the NLA according to the eight different representations discussed in the text; results obtained with the PMS
method

Y LLA NLA1 NLA2 NLA3 NLA4 NLA5 NLA6 NLA7 NLA8

3 0.8063 0.8366 0.8859 0.8256 0.8644 0.8346 0.8862 0.7588 0.8610

4 0.7258 0.8602 0.8102 0.7844 0.7849 0.8549 0.7861 0.7939 0.7868

5 0.6531 0.7494 0.7357 0.7247 0.7234 0.8055 0.7366 0.7368 0.7257

6 0.5835 0.7651 0.6746 0.6815 0.6707 0.7710 0.6749 0.6711 0.6693

7 0.5154 0.6917 0.6221 0.6725 0.6346 0.6926 0.6180 0.6193 0.6762

8 0.4541 0.6258 0.5757 0.6296 0.5780 0.6290 0.5979 0.5813 0.6346

9 0.4015 0.6115 0.6643 0.6181 0.6044 0.6373 0.6506 0.5765 0.6031

Table 5 C3/C2 in the LLA and in the NLA according to the eight different representations discussed in the text; results obtained with the PMS
method

Y LLA NLA1 NLA2 NLA3 NLA4 NLA5 NLA6 NLA7 NLA8

3 0.8456 1.0689 0.8705 0.7716 0.8092 0.8808 0.8706 0.8349 0.8301

4 0.7951 0.8696 0.7786 0.7199 0.7752 0.8768 0.8143 0.7141 0.7750

5 0.7437 0.8068 0.8006 0.7240 0.7161 0.7740 0.7098 0.8073 0.7196

6 0.6871 0.7260 0.8477 0.6729 0.8411 0.6702 0.6602 0.6633 0.6736

7 0.6355 0.6975 0.7563 0.6144 0.6130 0.7999 0.7477 0.6629 0.5924

8 0.5910 0.6892 0.8221 0.5889 0.6048 0.7030 0.7961 0.6287 0.6859

9 0.5513 0.6853 0.7050 0.5803 0.7726 0.6611 0.5971 0.6213 0.7467

tables the optimal values of Y0 − nR , but simply observe
that they are quite sparse in the given intervals, with more
recurrent values for Y0 in the range 2 ÷ 5 and for nR in the
range 2 ÷ 6.

We can see that the theoretical predictions overshoot data
at all values of Y in the cases of C1/C0 and C2/C0 and at the
smaller Y for C3/C0, while there is agreement, at least for
some of the eight options, for the ratios C2/C1 and C3/C2.
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Fig. 2 Y dependence of several azimuthal correlations and some of their ratios. The results were obtained with the PMS method. The dashed line
gives the LLA BFKL result; the colored broken lines give the NLA BFKL result for the eight options NLAi , i = 1, . . . , 8 considered (see text)
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Table 6 C0, C1, and C1/C0 in the representation NLA1 with the FAC method; columns three, four, six, and seven give the optimal values for Y0

and μR/

√
|�kJ1 ||�kJ2 |

Y C0 Y0 nR C1 Y0 nR C1/C0

3 2,584.9 2 3.1 – – – –

4 928.303 2 2.7 – – – –

5 291.053 3 2.9 249.865 3 2.9 0.8585

6 75.0725 3 2.7 60.1738 3 2.3 0.8015

7 13.8129 3.5 2.9 10.5419 3 1.9 0.7632

8 1.23915 4 3.3 0.918584 3 1.9 0.7413

9 0.0135918 5 4.7 0.00993695 4 3.1 0.7311

3.2 FAC

This method consists in fixing the renormalization scale μR

at the value for which the highest-order correction term is
exactly zero. In our case, the application of this method
requires an adaptation, since there is a second energy param-
eter to take care of, Y0.

We applied it to the representation labeled by NLA1 and,
for each Y0 in a finite set of integer and half-integer values in
the range 0-6, we found the value ofμR such that the highest-
order correction term of a certain coefficient Cn is exactly
zero. Then a stationary point was searched for varying Y0 in
the given set.

This method in general did not allow to find clear regions
of stability. Nevertheless, we report some of our results in
Table 6, for the sake of comparison with the other methods.

3.3 BLM

This method consists in choosing the scale μR such that
it makes vanish completely the β0-dependence of a given
observable.

Also in this case we considered only the representation
labeled by NLA1, i.e. the exponential representation with
μF = μR . We implemented the BLM procedure in a slightly

different way from Ref. [42]. As a matter of fact, we realized
that a clear-cut way to implement this procedure in the present
case is not obvious. We rather implemented two variants of
the BLM method, dubbed (a) and (b), and give here all the
relevant formulas, but we refer to a separate publication for
details [45].

The variant (a) is given by

Cexp−BLMa
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)
[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)
(
χ̄ (n,ν)− Tβ

C A
χ(n,ν)− β0

8C A
χ2(n,ν)

)]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 − 2

π
αs (μR) T β + αs (μR)

(
c̄(1)1 (n, ν)

c1 (n, ν)
+ c̄(1)2 (n, ν)

c2 (n, ν)

)]
, (15)

with μR fixed at the value

(μBLM
R )2 = kJ1kJ2 exp

[
2

(
1 + 2

3
I

)
− 5

3

]
; (16)

the variant (b) is given by

Cexp BLMb
n = xJ1 xJ2

|�kJ1 ||�kJ2 |
∫ +∞

−∞
dν e

(Y−Y0)
[
ᾱs (μR)χ(n,ν)+ᾱ2

s (μR)
(
χ̄ (n,ν)− Tβ

C A
χ(n,ν)

)]

×α2
s (μR) c1 (n, ν) c2 (n, ν)

[
1 +αs (μR)

(
β0

4π
χ (n, ν) − 2

T β

π

)
+αs (μR)

(
c̄(1)1 (n, ν)

c1 (n, ν)
+ c̄(1)2 (n, ν)

c2 (n, ν)

)]
, (17)

with μR fixed at the value

(μBLM
R )2 = kJ1kJ2 exp

[
2

(
1 + 2

3
I

)
− 5

3
+ 1

2
χ (ν, n)

]
.

(18)

In Eqs. (15) and (17), we have

T = T β + T conf ,

T β = −β0

2

(
1 + 2

3
I

)
,

T con f = CA

8

[
17

2
I + 3

2
(I − 1) ξ +

(
1 − 1

3
I

)
ξ2 − 1

6
ξ3
]
,
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Table 7 C0, C1, C2, and C3 in the representation NLA1 with the BLM method, in both variants, (a) and (b)

Y C0 C1 C2 C3

(a) (b) (a) (b) (a) (b) (a) (b)

3 1,923.63 2,267.12 1,748.79 2,180.83 1,396.35 1,860.73 1,134.31 1,578.51

4 655.133 814.956 519.296 726.72 350.134 567.018 247.806 451.898

5 199.761 252.277 131.701 206.239 72.1016 146.97 43.2426 109.352

6 49.8729 64.3728 27.7208 47.901 11.8022 31.1006 5.80593 21.5774

7 10.0237 11.7626 4.22846 7.99795 1.35074 4.73926 0.53499 3.0664

8 0.96161 1.05596 0.32681 0.67637 0.07604 0.36776 0.02299 0.22453

9 0.01078 0.01119 0.00322 0.00742 0.00053 0.00385 0.00012 0.00224

Table 8 C1/C0, C2/C0, C3/C0, C2/C1, C3/C2 in the representation NLA1 with the BLM method, in both variants (a) and (b)

Y C1/C0 C2/C0 C3/C0 C2/C1 C3/C2

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

3 0.9091 0.9619 0.7259 0.8207 0.5897 0.6963 0.7985 0.8532 0.8123 0.8483

4 0.7927 0.8917 0.5344 0.6958 0.3783 0.5545 0.6742 0.7802 0.7077 0.7970

5 0.6593 0.8175 0.3609 0.5826 0.2165 0.4335 0.5475 0.7126 0.5997 0.7440

6 0.5558 0.7441 0.2366 0.4831 0.1164 0.3352 0.4258 0.6493 0.4919 0.6938

7 0.4218 0.6799 0.1348 0.4029 0.0534 0.2607 0.3194 0.5926 0.3961 0.6470

8 0.3399 0.6405 0.0791 0.3483 0.0239 0.2126 0.2327 0.5437 0.3024 0.6105

9 0.2986 0.6634 0.0492 0.3441 0.0112 0.2005 0.1649 0.5187 0.2280 0.5826

where I = −2
∫ 1

0 dx ln(x)
x2−x+1

� 2.3439 and ξ is a gauge

parameter, fixed at zero, while c̄(1)i /ci is the NLO impact
factor defined as in Eqs. (9)–(12) with the terms proportional
to β0 removed.

The results are reported in Tables 7 and 8 and in Fig. 3.
We can see that, except for the ratio C1/C0, the agreement
with experimental data is very good, for both variants, at the
larger values of Y .

4 Discussion

In this paper we have studied several, equivalent within the
NLA, representations of the coefficients entering the defini-
tion of cross section, azimuthal decorrelations and ratios of
azimuthal decorrelations, and have compared them with the
corresponding CMS experimental data at the center-of-mass
energy of 7 TeV.

We have considered three different procedures to optimize
the perturbative series (PMS, FAC, and BLM, the latter in two
variants) and found that:

• the FAC method does not lead to any sensible result for
most observables;

• the ratios C2/C1 and C3/C2 are quite well reproduced
basically by all representations treated with the PMS
method;

• the BLM method, implemented in the exponentiated rep-
resentation, reproduces quite well all the ratios studied
in this work, in the region Y � 6; we see, however, a
sizeable difference in the theoretical prediction of the
value of C0 between the two variants (a) and (b); also
in Ref. [42] an important effect on the cross section is
reported when the BLM method is implemented together
with an RG-improved kernel, than with the standard non-
RG-improved kernel.

We believe that the information we gathered in this work
can be of help in preparing new predictions for the same
observables considered the increased collision energy of
LHC after the LS1. In particular, it could be useful for esti-
mates of theoretical uncertainties. Our numerical analysis
shows that these uncertainties are rather large, in general
due to very large NLA BFKL corrections in the considered
kinematical range. In particular, the plots in Fig. 2 demon-
strate that, within the PMS method, results obtained using
different representations of the NLA BFKL amplitude are
quite different one from the other. We stress that this type
of uncertainty is often not considered and in the NLA BFKL
analysis one uses just some prescribed representation of NLA
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Fig. 3 Y dependence of several azimuthal correlations and some of their ratios. The results were obtained with the two variants of the BLM
method. The dashed line gives the LLA BFKL result
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BFKL amplitude. We believe that one should be aware of this
“representation” uncertainty, until the time will come when
some deeper insight into the physics of effects beyond NLA
BFKL will allow to choose a definite representation of NLA
BFKL amplitude. Perhaps, the BLM optimization procedure
gives a hint toward the right direction, because theoretical
predictions derived with BLM [42] turned to be in a rather
good agreement with CMS data. Our own BLM calculations
presented in Fig. 3 support this statement, though, compar-
ing our results with the plots of Ref. [42], we see that our
predictions lies somewhat beyond the range of the theoret-
ical uncertainty bound accepted there. Most probably this
difference is related with the above mentioned “representa-
tion uncertainty”, indeed our BLM amplitudes in Eqs. (15)
and (17), in contrast with [42], do not include the product of
the two NLO impact factor terms.

Meanwhile, it might also be useful to address, on the
experimental side, some possible issues which could be
sources of mismatch with the way in which Mueller–Navelet
jets are defined in theory and that are not easy to reveal in
the comparison with theoretical predictions, for being the
latter affected in their turn by systematic effects of the same
amount. Below we list a few.

• In data analysis defining the Y value for a given final state
with two jets, the rapidity of one of the two jets could be
so small, say |yJi | � 2, that this jet is actually produced
in the central region, rather than in one of the two forward
regions. The longitudinal momentum fractions of the par-
ent partons that generate a central jet are very small, and
one can naturally expect sizable corrections to the vertex
of this jet, due to the fact that the collinear factorization
approach used in the derivation of the result for jet ver-
tex is not designed for the region of small x . We believe
that a combined theoretical approach that uses collinear
factorization for the forward and kt -factorization for the
central jets should be more relevant in such kinematics.

• The other issue is related with the experimental event
selection for Mueller–Navelet jet analysis in a situation
when more that two jets are detected in one single event.
In particular, let us consider events with three jets in
the final state, two of them being forward in one direc-
tion (with large positive rapidities, say, y1 and y2 with
y1 > y2), and the third being forward in the other direc-
tion (with large negative rapidity, say, y3). Traditionally,
as in the current CMS analysis, such event is selected
as a single Mueller–Navelet jet, where the two selected
Mueller–Navelet jets are those having the largest inter-
val in rapidity. In our example, these are the jets with
rapidities y1 and y3, so that Y = y1 − y3. This selection
method is convenient for the experimental analysis, but it
does not match the definition of Mueller–Navelet jets in
the theoretical NLA BFKL calculations. Examining the

derivation of the NLA jet vertex [16–18], one can see that
what is calculated in the theory is an inclusive jet produc-
tion in the forward region, with some prescribed values
of rapidity and transverse momentum �k, where possible
additional parton radiation is attributed to the inclusive
hadron system X . Returning to our example of event with
three detected jets, we see that in order to match the theory
it should lead to the selection of two separate Mueller–
Navelet jets events (i.e. it should be counted twice): a
pair of Mueller–Navelet jets with rapidities y1 and y3

(then Y = y1 − y3) and another pair of Mueller–Navelet
jets with rapidities y2 and y3 (then Y = y2 − y3). This
mismatch between experimental event selection and the-
ory appears in NLA BFKL and could be important due
to very large value of NLA BFKL corrections. The issue
may be clarified either from the experimental side, chang-
ing the Mueller–Navelet jet selection criterion, or from
the theoretical side, which could require the generation
of separate jet events with Monte Carlo methods.

• The use of symmetric cuts in the values of kJi ,min maxi-
mizes the contribution of the Born term in C0, which is
present for back-to-back jets only and is expected to be
large, therefore making less visible the effect of the BFKL
resummation in all observables involving C0. The use of
asymmetric cuts can reduce the contribution of the Born
term and enhance effects with additional undetected hard
gluon radiation, which makes the visibility of the BFKL
effect clearer in comparison to the descriptions based on
the fixed-order DGLAP approach.

• The experimental determination of the Mueller–Navelet
total cross section, C0, would provide for a yardstick
which could help choosing a definite NLA representa-
tion.
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