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1 Introduction

The measured properties of the Higgs boson discovered at the LHC [1, 2] are compatible

with the Standard Model (SM) [3]. However, there is room for alternative explanations

of the Higgs boson and electroweak symmetry breaking in models with extended Higgs

sectors. The two-Higgs doublet model (2HDM) is a particularly interesting framework to

be studied. In a large part of its parameter space it is compatible with experimental data,

it can originate from more fundamental theories like the MSSM, and it predicts a multitude

of observable effects by which it can be studied and constrained.

Here we focus on the muon anomalous magnetic moment aµ = (gµ−2)/2 in the 2HDM.

This is one of the most useful precision observables to provide complementary, non-collider

constraints of extensions of the SM [4–6]. After significant recent progress on all aspects
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of the SM prediction, there is a stable 3–4 σ deviation between the SM prediction and the

Brookhaven measurement [7],

aExp−SM
µ =

{
(28.7± 8.0)× 10−10[8],

(26.1± 8.0)× 10−10[9],
(1.1)

using the indicated references for the hadronic vacuum polarization contributions.1

Several recent studies [36–42] have shown that the 2HDM has viable parameter regions

in which this (or at least most of this) deviation is explained. The existing studies evaluate

aµ in the 2HDM using one-loop and particular two-loop diagrams, so-called Barr-Zee dia-

grams. Such Barr-Zee diagrams were first considered in ref. [43] and for aµ in the 2HDM

in refs. [44–47]; the most complete calculation is presented in ref. [38]. Here we present

and document the full two-loop calculation of aµ in the 2HDM, including Barr-Zee and

non-Barr-Zee diagrams.

Our calculation is motivated in two ways. Firstly, the 2HDM one-loop contributions

are suppressed by two additional powers of the small muon Yukawa coupling. Thus the

one-loop contributions are parametrically smaller than the two-loop contributions. In this

sense our calculation completes the leading-order prediction of a2HDM
µ .

Secondly, new aµ experiments are planned at Fermilab and JPARC [48–50]. These

promise to reduce the experimental uncertainty significantly, in particular the Fermilab

measurement plans to obtain

∆aFermilab
µ = 1.6× 10−10. (1.2)

This highlights the need for reliable and accurate theory predictions also in extensions of the

SM. In the electroweak SM, the full two-loop calculation has been done in refs. [11, 51–54].

In other models, such as the MSSM, several classes of two-loop contributions have been

evaluated [54–61]. It has been found that each class can give rise to significant corrections,

and an analysis of the remaining MSSM theory uncertainty has shown that the future

experimental precision can only be matched by a complete two-loop computation [62, 63].

This paper is divided as follows: in section 2 we review the 2HDM and introduce the

phenomenological constraints adopted in our analysis. In section 3 the complete renormal-

ized 2HDM two-loop contributions to aµ is presented. Each part of the computation is

documented in a series of plots and/or analytic formulas. We perform a numerical analysis

of our result in section 4, showing that the complete two-loop bosonic contribution can

amount to (2 · · · 4)× 10−10, i.e. at the level of the precision of the planned Fermilab exper-

iment. We present our conclusion in section 5. Appendix A contains all analytic formulas

of the renormalized bosonic two-loop contributions to aµ while in appendix B we discuss

the cancellation of MA dependence in Y A
l sector.

1The numbers take into account the most recent refinements on the QED [10] and electroweak [11]

contributions. For further recent theoretical progress on QED and hadronic contributions and reviews, see

refs. [12–30], and [31–35], respectively.
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2 Two-Higgs Doublet Model

2.1 The model and its parameters

The two-Higgs-Doublet Model (2HDM) is an extended Standard Model (SM) with two

complex scalar doublets

φj =

(
a+
j

1√
2
(vj + bj + icj)

)
, j = 1, 2. (2.1)

Both scalar doublets are assigned with the same hypercharge as the SM doublet. The

vacuum expectation value (VEV) of the SM, v, is recovered by the relation v2 = v2
1 + v2

2.

The most general form of the Higgs potential V (φ1, φ2) depends on eleven physical param-

eters [64]. In this work, we consider the CP-conserving case in which all parameters are

real. We also impose an approximate Z2 symmetry which demands that two parameters,

commonly called λ6 and λ7, vanish, while the soft Z2 symmetry breaking term m2
12 is al-

lowed. This restricts the quartic couplings to five (denoted by λ1,2,3,4,5) while the quadratic

couplings are given by three parameters (m2
11, m2

22, and m2
12) [64, 65]

V (φ1, φ2) = m2
11φ
†
1φ1 +m2

22φ
†
2φ2 −m2

12

(
φ†1φ2 + φ†2φ1

)
+
λ1

2

(
φ†1φ1

)2
+
λ2

2

(
φ†2φ2

)2
+ λ3φ

†
1φ1φ

†
2φ2

+ λ4φ
†
1φ2φ

†
2φ1 +

λ5

2

[(
φ†1φ2

)2
+
(
φ†2φ1

)2
]
. (2.2)

Through a rotation with angle tan β ≡ tβ ≡ v2/v1, we can choose new scalar doublets

(Φv,Φ⊥) as (
Φv

Φ⊥

)
=

(
cosβ sinβ

− sinβ cosβ

)(
φ1

φ2

)
. (2.3)

In the new basis only the doublet Φv contains the VEV and the Goldstone bosons, and the

components are explicitly

Φv =

(
G+

1√
2
(v + S1 + iG0)

)
, Φ⊥ =

(
H+

1√
2
(S2 + i A)

)
. (2.4)

H± corresponds to the charged Higgs bosons and A to the neutral CP-odd one. S1 and

S2 are not mass eigenstates, but they are related to the CP-even neutral mass eigenstates

h,H through a new mixing angle α as(
H

h

)
=

(
cos(β − α) − sin(β − α)

sin(β − α) cos(β − α)

)(
S1

S2

)
. (2.5)

If β−α = π
2 , the two mass eigenstates are completely separated in each scalar doublet and

the neutral CP-even Higgs boson h has just the same interactions as the SM Higgs boson,

hSM. We call this the SM-limit, following ref. [65]. The LHC data allow a small deviation

η [66], which we define as

β − α =
π

2
− η. (2.6)

In this work we present the results away from the SM-limit, where η 6= 0.
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Seven of the eight parameters, m2
11,m

2
22,m

2
12, λ1, · · · , λ5, introduced in the 2HDM

potential eq. (2.2) can be replaced with physical parameters such as the scalar boson

masses, Mh, MH , MA, MH± , the mixing angles, β, α, the VEV, v [64, 65]. The tree-level

relations for the λi can be written as

λ1 =
M2
Hc

2
α +M2

hs
2
α −m2

12tβ
v2c2

β

, (2.7)

λ2 =
M2
Hs

2
α +M2

hc
2
α −m2

12t
−1
β

v2s2
β

, (2.8)

λ3 =
(M2

H −M2
h)cαsα + 2M2

H±sβcβ −m2
12

v2sβcβ
, (2.9)

λ4 =
(M2

A − 2M2
H±)sβcβ +m2

12

v2sβcβ
, (2.10)

λ5 =
m2

12 −M2
Asβcβ

v2sβcβ
, (2.11)

where cα = cosα, sα = sinα, cβ = cosβ, and sβ = sin β. We are still left with one more

free parameter m2
12, or equivalently λ1. It is convenient to define the quantity Λ5, which

absorbs m2
12 or λ1, as

Λ5 ≡
2

v2

m2
12

sinβ cosβ
. (2.12)

The equivalent relation in terms of λ1 can be written up to η1-order as2

Λ5 =
2

t2β

(
M2
h

v2
− λ1

)
+ 2

M2
H

v2
+ 4

η

tβ

(
M2
H −M2

h

v2

)
. (2.13)

All the previous relations hold at tree level and might be modified at higher orders, de-

pending on the chosen renormalization scheme for the Higgs sector parameters. Renor-

malization schemes for the 2HDM Higgs sector parameters have been discussed recently in

refs. [69, 70]. For our purposes it will turn out that the tree-level relations are sufficient.

We complete the discussion of the 2HDM by introducing the fermionic sector. The

Yukawa coupling is model-dependent. In the present paper we focus on the Aligned 2HDM.

The Aligned 2HDM is very general and contains the usual type I, II, X and Y models as

special cases: see table 1.

In the Aligned 2HDM it is only required that the mass matrices and the Yukawa

coupling matrices in the most general Yukawa Lagrangian are proportional to each other

with proportionality constant, ζf [68]. The aligned Yukawa Lagrangian reads

LY =
√

2H+
(
ū[VCKMy

A
d PR + yAu VCKMPL]d+ ν̄yAl PRl

)
−
∑
S,f
S f̄ySf PRf + h.c., (2.14)

2Λ5 corresponds to λ5 in the 2HDM model file of FeynArts [67].

– 4 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
7

Type I Type II Type X Type Y

ζu cotβ cotβ cotβ cotβ

ζd cotβ − tanβ cotβ − tanβ

ζl cotβ − tanβ − tanβ cotβ

Table 1. Relation between the Yukawa aligned parameters ζf and the usual type I, II, X, and Y

models.

where PR,L = 1
2(1 ± γ5), and VCKM is the Cabibbo-Kobayashi-Maskawa matrix. The

Yukawa coupling matrices are defined as

ySf =
Y Sf
v
Mf , (2.15)

where Mf denotes the diagonal 3 × 3 fermion mass matrix. We have f = u, d, l and

S ∈ {h,H,A}. The generation independent coefficients Y S
f are specific for each model.

In the Aligned 2HDM, Y Sf are dependent on (β − α) and ζf , and we have [68]

Y h
f = sin(β − α) + cos(β − α)ζf ,

Y H
f = cos(β − α)− sin(β − α)ζf ,

Y A
d,l = −ζd,l, Y A

u = ζu. (2.16)

Since we focus on small deviations from the SM-limit, i.e. small η, it is useful to expand

the coefficients of eq. (2.16) for small η,

Y h
f = 1 + ηζf , Y H

f = −ζf + η,

Y A
f = −ΘA

f ζf , ΘA
d,l = 1, ΘA

u = −1. (2.17)

The parameters ζl,u,d are constrained by experimental results of other physical processes.

The detailed explanation on the allowed parameter regions is given in section 2.2. Types

I, II, X, Y are recovered by assigning specific values of the aligned parameters ζf as listed

in table 1.

2.2 Constraints

Following the presentation of ref. [36], we introduce some constraints to restrict the allowed

parameter region. They are mainly theoretical and electroweak (EW) constraints. As

theoretical constraints, we consider the requirements of stability, and perturbativity that

the scalar potential must retain. Regarding EW constraints, we assure that the allowed

range for masses of the new scalars does not violate the experimental measured values of

EW precision observables such as M2
W or sin θW .

2.2.1 Theoretical constraints

The theoretical constraints faced by the 2HDM are of two different natures. The first is

related to the stability of the potential, requiring that a vacuum minimum exists and that
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this minimum is the global minimum of the system. The second is related to perturbativity,

requiring that none of the couplings exceeds a given maximal value. For the CP-conserving

potential eq. (2.2), all these requirements are translated into relations between the different

λi introduced on the potential as below [64, 71, 72]:

• Stability

λ1,2 > 0, λ3 ≥ −
√
λ1λ2, λ3 + λ4 − |λ5| ≥ −

√
λ1λ2. (2.18)

• Global minimum

m2
12

(
m2

11 −m2
22

√
λ1/λ2

)(
tβ − (λ1/λ2)1/4

)
> 0. (2.19)

• Perturbativity

|λi| < λmax. (2.20)

As refs. [36, 71], we adopt λmax = 4π. In the phenomenological analysis we employ

eqs. (2.7)–(2.11) to translate the constraints of eqs. (2.18)–(2.20) into those on the physical

mass parameters. Since we do not assume the 2HDM to be necessarily a fundamental

theory valid up to very high energy scales, we require the validity of the above conditions

only for the tree-level parameters. For constraints from requiring conditions on running,

high-scale parameters see particularly ref. [71].

2.2.2 Electroweak and experimental constraints

Regarding electroweak precision data, we will include the constraints on the Peskin-Takeuchi

parameters S, T and U [73, 74]

S = −0.03± 0.10, T = 0.01± 0.12, U = 0.05± 0.10. (2.21)

To implement them in our phenomenological analysis, we use 2HDMC-1.7.0 [75, 76] to

restrict the allowed parameter space on the masses of the scalars. We also include the

model-independent constraint obtained by LEP on the mass of the charged scalar [74]

MH± ≥ 80 GeV. (2.22)

3 2HDM two-loop contributions

The purpose of our study is to present the complete two-loop 2HDM contribution to aµ.

The renormalized two-loop result a2HDM,2
µ is the sum of the one-loop contribution a2HDM,1

µ ,

two-loop bosonic and fermionic contributions and a shift from using the Fermi constant

a2HDM,2
µ = a2HDM,1

µ + aB
µ + aF

µ + a∆r-shift
µ . (3.1)

The actual renormalized two-loop contributions, aB
µ and aF

µ , are obtained from the sum of

the appropriate two-loop and one-loop counterterm diagrams. The one-loop contribution

– 6 –
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and a∆r-shift
µ are discussed in section 3.1, the counterterm parts in section 3.2. The bosonic

and fermionic results are presented in section 3.3 and section 3.4, respectively.

In the EW SM, it is sufficient to evaluate the full result only up to order m2
µ/M

2
W

and neglect higher order terms of O(m4
µ). In the 2HDM, however, there are potentially

non-negligible terms of this order. Hence we evaluate a2HDM,1
µ up to O(m4

µ), but at the

two-loop level terms up to O(m2
µ) are sufficient. We furthermore expand the results in the

small parameter η = α−β+π/2 up to the order η, and we set the mass of the Higgs boson

h to the mass of the observed Higgs boson, Mh = MhSM .

Our calculational procedure is based on the one described in refs. [54, 55] using

TwoCalc [77] for evaluating two-loop integrals and in-house routines for reduction to master

integrals, large mass expansion, and analytical simplification.

3.1 One-loop contribution

The 2HDM one-loop result is expressed as [78–80]

a2HDM,1
µ =

GF m
2
µ

4
√

2π2

∑
S

(Y Sl )2
m2
µ

M2
S
FS

(
m2
µ

M2
S

)
, (3.2)

where S ∈ {h,H,A,H±}. GF is the muon decay constant. The Y Sl are given in eq. (2.17).

For each Higgs boson the loop-function FS is defined as

Fh/H(x) =

∫ 1

0
du

u2(2− u)

1− u+ xu2
' − ln(x)− 7

6
+O(x), (3.3)

FA(x) =

∫ 1

0
du

−u3

1− u+ xu2
' ln(x) +

11

6
+O(x), (3.4)

FH±(x) =

∫ 1

0
du
−u(1− u)

1− (1− u)x
' −1

6
+O(x). (3.5)

The right column shows the approximations in the small x limit [36].

The numerical values and signs of the different contributions can be easily read off

from the following approximation, using x̂S ≡ MS
100 GeV , and neglecting terms of order η,

a2HDM,1
µ '

(
ζl

100

)2

10−10

{
3.3 + 0.5 ln(x̂H)

x̂2
H

− 3.1 + 0.5 ln(x̂A)

x̂2
A

− 0.04

x̂2
H±

}
. (3.6)

At this point we also remark that the EW SM one-loop result is evaluated in terms of

the muon decay constant GF ,

aEW(1)
µ =

GF m
2
µ

8
√

2π2

(
5

3
+

1

3
(1− 4s2

W)2

)
. (3.7)

GF is related to the input parameter of the on-shell renormalization scheme as

GF
1 + ∆r

=
π α√

2 s2
WM

2
W

. (3.8)
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Mass renormalization constants: δM2
W , δM2

Z , δmµ

Field renormalization constants: δZAA, δZZA, δZL
µ , δZR

µ

Tadpole renormalization constants: δTh, δTH

Table 2. Renormalization constants.

As a result of this, if the on-shell scheme is used to define the counterterms for the two-loop

calculation, there is an additional contribution a
EW(1)
µ × (−∆r); see also [11, 51–54].

The extra contribution for the 2HDM is then given by

a∆r-shift
µ = aEW(1)

µ × (−∆r2HDM), (3.9)

where ∆r2HDM is the extra 2HDM contribution to ∆r. It is discussed in detail in [81, 82].

In accordance with ref. [82] we verified that in all the parameter space relevant for our

analysis ∆r2HDM is at most of the order of 10−3, and thus |a∆r-shift
µ | ≤ 2× 10−12.

3.2 Counterterm contribution

The 2HDM counterterm diagrams involve the renormalization constants in table 2. These

renormalization constants are defined in the on-shell renormalization scheme [83, 84]. In

terms of these the electric charge renormalization constant δZe is derived as

δZe = −1

2

(
δZAA +

sW

cW
δZZA

)
, (3.10)

where δZAA is the photon field renormalization constant and δZZA the photon-Z mixing

renormalization constant. For the mass and field renormalization constants several useful

statements can be made. They are obtained from self-energy diagrams with external SM

particles. In the expansion in η up to O(η1) each mass and field renormalization constant

can be decomposed into the SM and additional 2HDM contributions. These additional

2HDM contributions to the renormalization constants are obtained by computing the loop

diagrams containing the new scalar bosons in the 2HDM. For these renormalization con-

stants the fermionic contributions are the same in both the SM and 2HDM. Therefore the

additional 2HDM contributions from these diagrams arise entirely from the bosonic parts.

The tadpole renormalization constants should be treated separately. The tadpole

renormalization constants are determined in such a way that the one-point Green func-

tions of the CP-even Higgs fields vanish. In the CP-conserving 2HDM there are two

tadpole renormalization constants, δTh and δTH , whereas in the SM we have one tadpole

renormalization constant δTSM. The contributions from gauge(g) and Goldstone(G) bosons

and fermions(f) are related to the SM counterpart by simple rescaling of couplings as

δT
(g/G/f)
h = sin(β − α)δT

(g/G/f)
SM , δT

(g/G/f)
H = cos(β − α)δT

(g/G/f)
SM . (3.11)

However, the Higgs loops of the tadpole diagrams are proportional to the triple Higgs

couplings, are tβ-dependent, and do not satisfy such a simple relation.

– 8 –
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✖

γ

µ νµ

G±
G±

W

µ

(a)

✖
γ

µ µ

S Z

µ

(b)

✖

γ

µ νµ

H±
G±

W

µ

(c)

Figure 1. Counterterm Feynman diagrams.

We now turn to the counterterm diagrams. Figure 1 shows sample diagrams. It is

convenient to classify the 2HDM counterterm diagrams into three groups. The first group

encompasses the SM-like counterterm diagrams without Higgs boson inside. The second

group contains the counterterm diagrams with neutral physical Higgs bosons. The third

group consists of the counterterm diagram with G±-H± mixing counterterm vertex. In the

following we explain them one after the other and provide the explicit results.

• SM-like counterterms without physical Higgs bosons.

The first group encompasses the SM counterterm diagrams which do not contain phys-

ical Higgs bosons. The results of SM counterterm diagrams are found in ref. [51, 52].

The additional 2HDM contributions from these counterterm diagrams are obtained

by applying the corresponding additional 2HDM renormalization constants. This

is straightforward for all diagrams except figure 1a. This diagram is the only one

which contains the tadpole renormalization constants. In the following we explain

the cancellation of the gauge and Goldstone boson contributions as well as the fermion

contributions.

The additional 2HDM contribution from this diagram is the difference between the

2HDM and SM results,

aCT(GG)
µ =

(δt2HDM
GG − δtSM

GG)

v

α

96πs2
W

m2
µ

M4
W

{
2 + ε

(
3− 2L(M2

W )
)}
, (3.12)

where

L(M2) ≡ γE − ln(4π) + ln(M2/µ2). (3.13)

The counterterm vertices of the G±-G± propagator for the SM and 2HDM are

δtSM
GG = δTSM, δt

2HDM
GG = cos(β − α) δTH + sin(β − α) δTh. (3.14)

Hence, from eqs. (3.11) and (3.14) we find that the tadpole renormalization constants

with gauge/Goldstone bosons and fermion loops drop out from the result, eq. (3.12).

Consequently no new 2HDM contributions are obtained from the fermion, gauge bo-

son, and Goldstone boson loops. The additional 2HDM contribution of figure 1a and

all other diagrams of this group arises from the physical Higgs boson loop contribu-

tions to the tadpole, field and mass renormalization constants.

– 9 –
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• Counterterm with neutral Higgs bosons.

The second group of counterterm diagrams is shown in figure 1b. These diagrams

are dependent on Yukawa coupling and proportional to δZZA, which is the same in

both the SM and the 2HDM. The difference arises from the Yukawa coupling and

the second neutral CP-even 2HDM Higgs boson. The fermionic loop contribution to

δZZA are zero, therefore the diagrams of this group do not contribute to the fermion

contributions.

The additional 2HDM contribution is obtained when the SM Higgs boson contribution

is subtracted from the 2HDM results, a
CT(H)
µ + a

CT(h)
µ − aCT(hSM)

µ , where the explicit

result of figure 1b for an arbitrary scalar field S is

aCT(S)
µ = CS Y

S
l

α

32π

(1− 4 s2
W)

c3
W s3

W

m2
µ

(M2
S −M2

Z)2
δZZA

×
{
M2
Z −M2

S +M2
S ln(M2

S/M
2
Z)

+
ε

2

(
3(M2

Z −M2
S) + 3M2

S L(M2
S)−M2

S L(M2
S)2

− (M2
S + 2M2

Z) L(M2
Z) +M2

S L(M2
Z)2
)}
. (3.15)

S can be any of the neutral Higgs bosons in the SM and the 2HDM: hSM, h, H. The

contribution of the CP-odd neutral Higgs A is zero. The coefficient, CS , is derived

from the gauge coupling. It is 1 for the SM Higgs hSM, sin(β−α) for h and cos(β−α)

for H. Y Sl is derived from the Yukawa coupling constant and listed in eq. (2.17). For

the SM Higgs hSM, Y hSM
l = 1.

• Counterterm diagram with G±-H± mixing.

The third group consists of the diagram of figure 1c which is proportional to the

G±-H± mixing counterterm vertex. This counterterm diagram does not appear in

the SM. The explicit analytic result reads

aCT(GH)
µ =

δtHG
v

α

16πs2
W

m2
µ

MW (M2
W −M2

H±)3
ζl

×
{

(M4
H± −M4

W )
(
1 + εL(M2

W )
)

−M2
H±M

2
W ln(M2

H±/M
2
W )
(
2 + ε[3− L(M2

H±)− L(M2
W )]
)

+
ε

2
(M2

H± −M2
W )(M2

H± + 5M2
W )

}
, (3.16)

where δtHG = cos(β−α) δTh− sin(β−α)δTH . ζl-dependency arises from the charged

Higgs boson coupling to the muon in the Aligned 2HDM. Figure 1c is the only

counterterm diagram which contributes to the fermionic two-loop result.
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γ

µ µ µ

γ/Z γ/Z

(a)

γ

µ νµ µ

W W

(b)

γ

µ µ µ

S γ/Z

(c)

γ

µ νµ µ

S± W

(d)

Figure 2. Generic 2-boson Feynman diagrams. The gray loops denote any bosonic loop.

γ

µ µ νµ

S W

G±

W

µ

(a)

γ

µ µ νµ

S W W

µ

(b)

γ

µ µ µ

S Z Z

µ

(c)

γ

µ µ µ

Z S Z

µ

(d)

Figure 3. 3-boson Feynman diagrams are mediated either with W or Z bosons. They contain

only the neutral physical CP-even Higgs bosons.

3.3 Bosonic loop contribution

3.3.1 2-boson and 3-boson diagrams

We classify the bosonic two-loop diagrams according to the number of bosons coupling to

the muon line. With this criterion it is possible to group the diagrams into 2-boson and 3-

boson types. The 2-boson type denotes all diagrams in which two internal bosons couple to

the muon line. The generic diagrams of the 2-boson diagrams are shown in figure 2. Gray

circles in figure 2 denote all possible bosonic loops. These 2-boson diagrams contain the so-

called Barr-Zee diagrams, which have already been computed and intensively discussed in

the literature [38, 47, 55–58]. The 2-boson diagrams also contain self-energy type diagrams

in which the external photon couples to the muon line.

The 3-boson diagrams have a more complicated structure and involve three internal

bosons which couple to the muon line. Figure 3 shows all 3-boson diagrams which con-

tribute to the difference between the 2HDM and the SM. In addition, diagrams with four

bosons coupling to the muon line exist but do not contribute to the difference between the

SM and 2HDM at the order of O(m2
µ).

We especially computed the 3-boson diagrams shown in figure 3 for the first time.

Figures 3a and 3b are dependent on the W boson and figures 3c and 3d on the Z boson.

While computing the diagrams in figure 3, we should pay attention to two interactions.

One is the muon Yukawa coupling to the neutral scalar bosons, h or H, and the other is

the Higgs-gauge interaction of the two neutral Higgs bosons. The gauge interaction to H

is suppressed by η. In the SM-limit the contribution from this interaction becomes zero,

whereas the gauge interaction to h recovers the SM value. The explicit result of figures 3a

and 3b reads

aW,Sµ = CSY
S
l

α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{
3

ε
− 6L(M2

W )− 55

2
+

32

yS
− 4π2

3

(
4 + 3yS
y2
S

)
−
(

35 +
32

yS

)
ln(yS) +

(
6 +

32

y2
S

+
24

yS
− 32yS

)
Li2(1− yS)

+

(
10 + 70yS − 32y2

S
(yS − 4)yS

)
Φ(
√
yS , 1, 1)

}
, (3.17)
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where S ∈ h,H, and yS ≡ M2
S

M2
W

. Φ(x, y, z) is defined in appendix A. We have Ch = 1,

Y h
l = 1 + ηζl for h and CH = η, Y H

l = η − ζl for H up to O(η). For the SM Higgs

boson, Y hSM
l = 1, and ChSM = 1. The divergent part of eq. (3.17) drops out in the final

result of the difference of the SM and 2HDM. Note that the result of figure 3b alone is

finite. In the off-SM scenario, η 6= 0, the result of figure 3 for S = h results in additional

EW contributions.

The additional 2HDM contribution from the diagrams of figures 3a and 3b is obtained

when the SM Higgs boson result of eq. (3.17) is subtracted from the sum of the h and H

contributions, aW,hµ +aW,Hµ −aW,hSMµ . After employing the known SM parameters we obtain

the numerical result

aW,Hµ + aW,hµ − aW,hSMµ = (3 · · · − 4.6)× 10−12 ηζl, (3.18)

for 50 < MH < 500 GeV and Mh = MhSM = 125 GeV. The maximum value of eq. (3.18)

for a fixed ηζl is |−5.1ηζl|×10−12 for MH ∼ 950 GeV. Eq. (3.18) vanishes when MH = Mh.

For the case of Z boson dependent non Barr-Zee diagrams, figures 3c and 3d, the

analytic result for an arbitrary Higgs boson S reads

aZ,Sµ = CSY
S
l

α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

(
fa(xS) + s2

W(1− 2s2
W)fb(xS)

)
, (3.19)

fa(xS) =
3(4− xS)

xS
− π2

2

(
4 + 3xS
x2
S

)
− 3(4 + xS)

xS
ln(xS)

+
12 + 9xS − 3x3

S
x2
S

Li2(1− xS) +
3(2 + xS)

xS
Φ(
√
xS , 1, 1), (3.20)

fb(xS) =
π2(8 + 6xS − 12x4

S + 3x5
S)

x2
S

+
6(−8 + 2xS + 3x2

S)

xS

+
12(4 + xS + 3x2

S)

xS
ln(xS) + 9(−4 + xS)x2

S ln(xS)2

+
12(−4− 3xS + 4x3

S − 12x4
S + 3x5

S)

x2
S

Li2(1− xS)

+
6(4 + 2xS − 6x2

S + 3x3
S)

xS
Φ(
√
xS , 1, 1), (3.21)

and xS ≡ M2
S

M2
Z

. CS and Y Sl for h and H are the same as in eq. (3.17).

Like eq. (3.18) the additional 2HDM contribution from the diagrams of figures 3c

and 3d is obtained as

aZ,Hµ + aZ,hµ − aZ,hSMµ = (5.6 · · · − 5.6)× 10−13ηζl, (3.22)

for 50 < MH < 500 GeV and Mh = MhSM = 125 GeV. When MH > 125 GeV, eq. (3.22)

becomes negative. The W boson result is approximately a factor 10 larger than the Z

boson result; it can become significant for large values of ζl and η.
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3.3.2 Analytic results

In this section we present the complete renormalized bosonic 2HDM contribution. The

bosonic result is expanded with respect to the parameter η introduced in section 2, and

terms up to η1 are taken. In the SM-limit, η → 0, the interactions of h to the gauge bosons

or fermions become just those of the SM.

For the discussion of the complete result we do not use the 2-boson and 3-boson sepa-

ration. Instead, we divide the renormalized bosonic contribution into two parts. One part,

aEW add.
µ , is defined by the Feynman diagrams containing only gauge/Goldstone/h bosons,

i.e. purely SM-like diagrams. The other part is defined by those diagrams which include at

least one of the new 2HDM Higgs bosons, H,A,H±. This part can be again divided into

Yukawa-dependent and Yukawa-independent parts. Considering this classification we can

write the bosonic contribution as

aB
µ = aEW add.

µ + anon-Yuk
µ + aYuk

µ , (3.23)

where anon-Yuk
µ denotes Yukawa-independent 2HDM Higgs contributing part and aYuk

µ the

Yukawa-dependent part. In the following we explain each of the contributions explicitly.

• aEW add.
µ

We start with the computation of aEW add.
µ . The additional 2HDM EW contribution,

aEW add.
µ is obtained by subtracting the Feynman diagram result with SM physical

Higgs boson hSM from the 2HDM diagrams which include only h. The diagrams of

figure 2c and figure 3 with S = h contribute to this difference at the order ηζl due to

the different Yukawa couplings in the two models. The diagrams of figures 2a and 2b

as well as figure 2d with charged Goldstone boson, S± = G± and with h in the gray

loop also contribute to aEW add.
µ , however only starting at the order η2; hence we

neglect them. The only counterterm diagram contributing to aEW add.
µ is the diagram

of figure 1b with h.

After summing up the two-loop and the counterterm results and employing the SM

parameters we obtain finally the complete result

aEW add.
µ = 2.3× 10−11 η ζl. (3.24)

The sign of aEW add.
µ is dependent on η ζl. Even though η must be small, the appear-

ance of ζl can enhance the contribution of aEW add.
µ .

• anon-Yuk
µ

Now we turn to anon-Yuk
µ in eq. (3.23). It comes from the Feynman diagrams without

Yukawa couplings containing at least one of the new 2HDM physical Higgs bosons,

H,A,H±. The Feynman diagrams of figures 2a and 2b with H/A/H± in the gray

loops contribute to anon-Yuk
µ .

anon-Yuk
µ is dependent on parameters, MH , MA, and MH± , but not on tβ and Λ5. It

also does not gain terms linearly dependent on the parameter η. We should stress

that anon-Yuk
µ is the only part dependent on MA in the bosonic contributions. The

explicit analytic result is found in appendix A.
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(a) MA = 10 GeV (b) MA = 50 GeV

(c) MA = 100 GeV (d) MA = 200 GeV

Figure 4. Plots of anon-Yuk
µ for different values of MA = 10, 50, 100, 200 GeV. The results should

be multiplied by a factor 10−10. The contour line value for fixed MH and MH± decreases as MA

increases. As MA becomes larger, anon-Yuk
µ becomes more sensitive to the difference of the neutral

and charged Higgs boson masses: compare the right-bottom areas of the plots. For a given MA

value |anon-Yuk
µ | increases as MH± −MH becomes larger.

Figure 4 shows the change of anon-Yuk
µ for different MA values. For MA < 100 GeV

and MH ,MH± > 100 GeV, anon-Yuk
µ has the same sign of the difference between MH

and MH± . anon-Yuk
µ depends mainly on the difference between the masses of the three

Higgs bosons. In the largest part of the parameter space in the figure, anon-Yuk
µ is

negative and amounts up to −2 × 10−10.

• aYuk
µ

The terms contained in aYuk
µ in eq. (3.23) are from those diagrams with Yukawa

contributions and the corresponding counterterms. Among the 2-boson diagrams the

Feynman diagrams of figures 2c and 2d with S = H and S± = H± contribute to

aYuk
µ . The diagrams of figure 2c also contribute if S = h and the gray loop contains at

least one of the new physical 2HDM Higgs bosons. These diagrams include triple or
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quartic scalar boson couplings. The 3-boson diagrams of figure 3 with H contribute

to aYuk
µ , too.

Clearly, all diagrams with H or H± and gauge bosons are suppressed by η but

enhanced by ζl. The diagrams without gauge bosons involve triple Higgs couplings

and are of particular interest. A closer look at the triple Higgs coupling constants

helps to analyze the tβ-dependency. The triple Higgs couplings constants in the

2HDM are

gh,H±,H∓ ∝
{
v

(
Λ5 −

M2
h

v2
− 2

M2
H±

v2

)
+ η

(
tβ −

1

tβ

)
v

2

(
2
M2
h

v2
− Λ5

)}
, (3.25)

gH,H±,H∓ ∝
{(

tβ −
1

tβ

)
v

2

(
Λ5 − 2

M2
H

v2

)
+ η

(
Λ5 −

M2
H

v2
− 2

M2
H±

v2

)}
. (3.26)

The triple Higgs coupling constants show that the tβ-dependency comes only in the

form of (tβ − 1
tβ

), which leads to a large tβ-enhancement. In the actual Feynman

diagrams with triple Higgs couplings, the coupling eq. (3.25) appears multiplied with

Y h
l , and the coupling eq. (3.26) is multiplied with Y H

l and Y A
l . This allows to read

off which combinations of the parameters ζl, η, Λ5 appear in these diagrams. With

these considerations, we can rewrite aYuk
µ as

aYuk
µ = a0

0,0 + a0
0,z

(
tβ −

1

tβ

)
ζl + a0

5,0 Λ5 + a0
5,z

(
tβ −

1

tβ

)
Λ5ζl

+

(
a1

0,0

(
tβ −

1

tβ

)
+ a1

0,z ζl + a1
5,0

(
tβ −

1

tβ

)
Λ5 + a1

5,z Λ5ζl

)
η. (3.27)

The notation is such that the terms with superscript 0 are independent of η, the

terms with superscript 1 are linear in η. The subscript z denotes terms enhanced

by ζl, the subscript 5 denotes terms ∝ Λ5. All terms here arise from diagrams with

triple Higgs couplings except the a1
0,z term. The results of the 3-boson diagrams

eqs. (3.17) and (3.19) for H are included in a1
0,z. The parameter dependence of each

coefficient aki,j is rather simple. a0
0,0 and a0

5,0 are dependent only on MH± and the rest

dependent only on MH and MH± . In appendix A we present the explicit expression

of the coefficients aki,j as well as anon-Yuk
µ , and in appendix B we show that there is

no dependence on MA.

The plots in figure 5 show the complete mass dependence of the coefficients a0
i,j . a

0
0,0

and a0
5,0 arise from the Feynman diagrams containing the muon Yukawa interaction

to h and the η-independent part of eq. (3.25), therefore are dependent only on MH±

and neither enhanced by tβ nor by ζl. In contrast, a0
0,z and a0

5,z arise from diagrams

involving the triple Higgs coupling eq. (3.26) and appear enhanced by large tβ and

ζl in eq. (3.27).

The plots in figure 6 show the change of a1
0,0, a1

0,z, a
1
5,0 and a1

5,z, the η-suppressed

terms. The coefficient a1
0,z, which gets contributions from a larger class of diagrams,

can be numerically larger than the other coefficients.
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(a) a00,0 (b) a00,z

(c) a05,0 (d) a05,z

Figure 5. Plots of the η0-order coefficients, a0i,j in eq. (3.27). The values of contour lines should

be multiplied by 10−12. The values of these plots are not suppressed by η. a00,0 and a05,0 are only

dependent on MH± . On the given parameter space a00,0 is negative whereas a05,0 positive. As MH±

increases, |a00,0| increases, but |a05,0| decreases. Although the magnitudes of |a00,z| and |a05,z| are

smaller than those of a00,0 and a05,0, they are enhanced by large tβ and ζl.

3.4 Fermionic loop contribution

In this section we present the fermionic loop contribution to aµ. Due to the higher order

muon mass suppression (considering terms up to m2
µ order), all diagrams contain only

one scalar boson, which interacts with the incoming/outgoing muon and the fermion in

the inner loop. Thus, the result is always proportional to the product of two Yukawa

couplings Y Sl Y
S
f .

The fermionic two-loop Feynman diagrams contain either neutral or charged Higgs

bosons. Figure 7a shows the generic diagrams for neutral Higgs bosons while figure 7b

is related to charged bosons. When the external photon couples with the muon line we

obtain self-energy type diagrams, and the sum of these vanishes. The remaining diagrams

are Barr-Zee diagrams.
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(a) a10,0 (b) a10,z

(c) a15,0 (d) a15,z

Figure 6. Plots of a10,0, a10,z, a
1
5,0 and a15,z. The results must be multiplied by a factor 10−12.

Terms with these coefficients in eq. (3.27) are suppressed by η. a10,0 and a15,0 are enhanced by large

tβ whereas a10,z and a15,z by ζl.

γ

µ µ µ

S γ/Z

f

(a)

γ

µ νµ µ

H± W

f

f ′

(b)

γ

µ νµ µ
H± W

G±f
f ′

(c)

Figure 7. (a)Generic two-loop diagram with fermion loops and neutral Higgs bosons. The photon

can couple with any charged particle inside. When the photon couples with the fermion loop, we

obtain Barr-Zee diagrams. (b) Generic fermionic two-loop diagram with charged Higgs bosons.

Barr-Zee diagrams are diagrams where the photon generates an effective photon-vector-scalar in-

teraction. (c) γ W G± vertex diagram with charged Higgs bosons.
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Our result for neutral Higgs bosons is coincident with previous analysis3 [38, 44, 45],

and the explicit form is

aF, N
µ =

∑
S={h,H,A}

∑
f={u,d,l}

[
fSf (MS ,mf )

]
Y Sf Y

S
l

≡
∑

S={h,H,A}

∑
f={u,d,l}

[
fγS (MS ,mf ) + fZS (MS ,mf )

]
Y Sf Y

S
l , (3.28)

where

fγS (MS ,mf ) =
α2m2

µ

4π2M2
W s

2
W

(
Q2
fN

f
c

)(m2
f

M2
S

)
FS(MS ,mf ), (3.29)

fZS (MS ,mf ) =
α2m2

µ

4π2M2
W s

2
W

(
−N

f
c Qfg

l
vg
f
v

s2
Wc

2
W

)

×
m2
f

(M2
S −M2

Z)
[FS(MS ,mf )−FS(MZ ,mf )] . (3.30)

For S = {h,H} we have

FS(MS ,mf ) = −2 + ln

(
M2
S

m2
f

)
−
(
M2
S − 2m2

f

M2
S

)
Φ(MS ,mf ,mf )

M2
S − 4m2

f

, (3.31)

and for S = A

FS(MS ,mf ) =
Φ(MS ,mf ,mf )

M2
S − 4m2

f

. (3.32)

A sum over all types of fermions is implicit. Qf denotes the charge of the respective fermion

f , and Nf
c the color factor. We also define gfv ≡ T3

2 −Qfs2
W, and Φ(MS ,mf ,mf ) is defined

in appendix A. Both γ and Z bosons contribute to the fermionic loop result with neutral

Higgs bosons. However, the result from the Z boson is suppressed by factor gfv , which is

−1/4 + s2
W ∼ −0.02 for leptons, compared to the result from the diagrams with photon.

Hence the Z contributions are always smaller than those of the photon.

Now we turn to the fermionic two-loop contributions with charged Higgs bosons.

Figures 7b and 7c show the corresponding Feynman diagrams. Especially the result of

figure 7c is divergent, the corresponding counterterm diagram is shown in figure 1c. The

renormalized two-loop result is obtained by summing up the two-loop and the counterterm

diagrams. These diagrams were computed in the context of SUSY models long ago [56, 57]

in which case a type II structure for the Yukawas needed to be assumed. In the case of a

general model (Aligned Model, for instance) the analysis was only recently performed [38].

We also recover the analytic result presented in [38, 56, 57], explicitly

aF,C
µ =

∑
f={u,d,l}

fH
±

f (MH± ,Mf )Y A
f Y

A
l , (3.33)

3We report a minus sign difference to the result presented in [44] regarding the Z boson contribution.

– 18 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
7

where Mf corresponds to pairs of fermions masses as Mu = {(mu,md), (mc,ms), (mt,mb)},
Md = Mu, Ml = {(me, 0), (mc, 0), (mt, 0)}, and eq. (3.33) contains an implicit sum over

pairs. We neglect neutrino masses and generation mixing. We define

fH
±

f (MH± ,Mf ) =
α2m2

µ

32π2M2
W s

4
W

Nf
c m2

f

(M2
H± −M2

W )

[
FH±f (Mf )− (MH± →MW )

]
, (3.34)

FH±l (Ml) = xl + xl (xl − 1)

[
Li2(1− 1/xl)−

π2

6

]
+

(
xl −

1

2

)
ln(xl), (3.35)

FH±d (Md) = −(xu − xd) +

[
c̄

y
− c

(
xu − xd

y

)]
Φ(x

1/2
d , x1/2

u , 1)

+ c

[
Li2

(
1− xd

xu

)
− 1

2
ln(xu) ln

(
xd
xu

)
Φ(x

1/2
d , x1/2

u , 1)

]
+ (s+ xd) ln(xd) + (s− xu) ln(xu), (3.36)

FH±u (Mu) = FH±d (xu, xd) (Qu → 2 +Qu, Qd → 2 +Qd)

− 4

3

(
xu − xd − 1

y

)
Φ(x

1/2
d , x1/2

u , 1)

− 1

3

[
ln2(xd)− ln2(xu)

]
, (3.37)

and

xf ≡
m2
f

M2
H±

, y ≡ (xu − xd)2 − 2 (xu + xd) + 1, s ≡ (Qu +Qd)

4
,

c ≡
[
(xu − xd)2 −Quxu +Qdxd

]
, c̄ ≡ [(xu −Qu)xu − (xd +Qd)xd] . (3.38)

Summing the results of eqs. (3.28) and (3.33) and subtracting the corresponding SM-Higgs

contribution gives the full renormalized two-loop 2HDM fermionic contribution

aF
µ =

∑
f={u,d,l}

[ ∑
S={h,H,A}

fSf (MS ,mf )Y Sf Y
S
l + fH

±
f (MH± ,Mf )Y A

f Y
A
l − fhSMf (MhSM ,mf )

]
.

(3.39)

After applying the Aligned 2HDM Yukawa coupling constants in eq. (2.17) we can rewrite

eq. (3.39) with ζf , and the result reads

aF
µ =

∑
f={u,d,l}

 ∑
S={H,A}

ΘSf f
S
f (MS ,mf )ζfζl + ΘA

f f
H±
f (MH± ,Mf )ζfζl


+

∑
f={u,d,l}

[
η
(
fhf (Mh,mf )− fHf (MH ,mf )

)
(ζf + ζl)

]
, (3.40)

where ΘA
u = −1, otherwise ΘSf = 1. Each function f if (Mi) in eq. (3.40) is dependent on

only one mass parameter, MS , and this enables us to analyze the individual Higgs boson

contributions to the fermionic loop contribution in figure 8. The first line of eq. (3.40)

contains terms bilinear in the ζf , and they are shown in the first three plots of figure 8.
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Figure 8. Fermionic contributions to aµ. The blue/red/green line refers to diagrams proportional

to ζu/ζd/ζl, respectively. The first three graphs (a)–(c) show the contributions with H, A, H± at

order η0. The plot (d) shows the corrections at η order from diagrams with CP-even bosons.

fH fA fH
±

ζuζl − − −
ζdζl − + −
ζ2
l − + +

mH < mh mh < mH

ηζu + −
ηζd + −
ηζl + −

Table 3. Relation between signs of the aligned parameters and the functions depicted in figure 8.

The terms in the second line are proportional to ζfη and are illustrated in the fourth plot,

figure 8d.

In all cases the contribution from the top loop (blue line) is significantly larger, as

expected by the factor m2
t /(M

2
S −M2

B) in the analytic formulas (MB is the mass of the

internal gauge boson involved). However, as discussed in section 4, ζu is constrained to be

at most ζu ' 1, meaning that the tau loop, enhanced by ζ2
l , plays the decisive role. Another

characteristic shared by figures 8a–8c is that they all decrease with the mass of the scalars.

Figure 8d shows the contribution proportional to η which comes from diagrams involving

CP-even scalar bosons. As presented in eq. (3.40) there is a difference between the h and H

results, explaining why the η1 contribution vanishes as MH approaches Mh. For all plots,

we have rescaled aµ to the aligned parameters. Finally, in all graphs the contributions can

be both positive or negative. The signs depend on the alignment parameters and can be

read off from table 3.
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4 Numerical analysis

In this section we present the numerical analysis of our result. Our aim is to study how

large the bosonic contribution, fully computed for the first time, can be. We will show

that there are regions of the parameter space in which aB
µ amounts to (2 · · · 4) × 10−10.

Although always smaller than the fermionic contribution, it proves to be relevant for a

precise determination of the 2HDM contribution to the muon anomalous magnetic moment.

We also analyze the impact of deviations from the SM-limit by studying different values

for the expansion parameter η.

For the analysis we choose physical free input parameters, the masses of the different

scalars (MH , MA, MH±), the alignment parameters (ζl,u,d), tβ , the expansion parameter

η, and Λ5. As presented in section 2, the last parameter can be expressed in terms of λ1,

which is directly constrained by stability and perturbativity. Therefore, for the numerical

analysis, it will be useful to replace the parameter Λ5 with λ1. For ζf we adopt the

parameter range in ref. [42]

0 < |ζu| < 1.2, 0 < |ζd| < 50, 0 < |ζl| < 120, (4.1)

and the rest of the parameters satisfy

125 < MH < 500 GeV, MA < 500 GeV, 80 < MH± < 500 GeV,

1 < tβ < 100, 0 < |η| < 0.1, 0 < λ1 < 4π. (4.2)

Since we want to study the impact of the SM-limit deviation to aµ, hereafter we will choose

specific values for η and compare how the results differ.

We perform a scan over the above region, computing for each point the value of the

full aµ as well the contribution only due to two-loop bosonic Feynman diagrams. Our

results of the full scan are depicted as blue points in the plots of figures 9a–9c (for the

three values η = 0, η = 0.1, η = −0.1). We then apply the further experimental/theoretical

constraints discussed in section 2.2. The surviving sample points are depicted as red points

in figures 9a–9c.

As can be readily seen, although the values for the full aµ can be large, the contribution

from aB
µ can amount to (2 · · · 4)×10−10. One can also notice a difference in behavior between

the SM-limit case and the one in which η is negative. In the latter case, one observes that

the range of values for aB
µ is significantly larger, spreading over the x-axis, while in the

former it is constrained inside the region with absolute value 2 × 10−10.

Figure 9d shows the influence of the upper limit on the parameters λi. The blue points

in this plot are defined like the blue points of figure 9c, except that now 0 < λ1 < 1. The

black points of figure 9d satisfy in addition |λi| < 1 for all i = 1 · · · 5. Like in the previous

plots, the red points are the allowed points after all other constraints are applied. We find

that the possible range of aB
µ is only slightly smaller. Hence very large values of the quartic

couplings λi are not essential to obtain significant aB
µ . We show only the plot for η = −0.1,

but the discussion is valid for other values of η as well.

In order to obtain a better insight into the bosonic contribution, we choose a sample

point for which the muon anomaly can be explained and vary the parameters affecting
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(a) η = 0 (b) η = 0.1

(c) η = −0.1 (d) η = −0.1, λ1 < 1

Figure 9. Scatter plots showing possible values for aµ and aBµ evaluated at different η values. For

plots (a)–(c), blue dots represent points in the general allowed parameter space eq. (4.2) while red

dots represent the remaining ones after the constraints are applied. Green and yellow triangles are

representative points discussed in the text. In plot (d), we show the influence of the maximal value

allowed for the quartic couplings. Blue dots represent points in a modified allowed parameter space

(the range of λ1 in eq. (4.2) is replaced to 0 < λ1 < 1) while black dots represent the remaining

ones after imposing that all quartic couplings, λi (i = 1 · · · 5), are less than 1. Red dots are the

surviving sample points after the further electroweak/theoretical constraints are applied.

mainly aB
µ . For comparison with the previous analysis [36], we consider as starting value a

parameter space point allowed by the type X model.

In the type X model, the explanation to the aµ deviation comes mainly from fermionic

contributions containing a tau loop. The reason is that, in this model, only the Yukawa

coupling of leptons is enhanced, see table 1. In the Aligned Model, a type X scenario is

recovered if ζu = ζd = 1/tβ , and ζl is identified as −tβ . In ref. [36], it was found that the

anomaly could be explained for low values of the CP-odd scalar mass (MA < 100 GeV),

large tβ , and values of the masses of the CP-even and charged scalar of the order of 200 GeV.

In that reference, the type X model was considered and only fermionic contributions were

included. Therefore, it is particularly simple to translate parameter points to the Aligned
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2HDM, by identifying tβ as −ζl. After these considerations, we choose as representative

point the one defined by4

MA = 50 GeV, MH = MH± = 200 GeV, ζl = −100, ζu = ζd = 0.01. (4.3)

In the Aligned model, the values for tβ , λ1, and η remain free. The first two are only

related to the bosonic contribution via triple Higgs couplings, η affects the bosonic and

fermionic contributions. Figure 10 shows the results from varying these three parameters,

and thus particularly the impact of the bosonic contribution to aµ. In all plots we depict

a2HDM,2
µ on the upper graph, and aB

µ on the lower one. The upper plots contain as a reference

line the value for aµ used in [36], which takes into account only fermionic contributions for

η = 0. The η-dependence is depicted by red lines (η = 0), blue lines (η = 0.1), and green

lines (η = −0.1). We proceed to explain each of the graphs individually.

Figures 10a–10b show the behavior as a function of tβ for λ1 = 4π.5 As expected from

the scatter plots, the variation of aB
µ is in the range (2 · · · 4)× 10−10, and the contribution

can either be negative or positive. The behavior can be understood by analyzing the

formula for Λ5, eq. (2.13), the general formula for aB
µ , eq. (3.23), and the values of the

different coefficients, figures 4–6.

There are two regions: small tβ and large tβ . For small tβ , Λ5 is dominated by

the negative term proportional to λ1 and several bosonic contributions are suppressed by

(tβ − 1/tβ) which vanishes as tβ → 1. This explains the linear behavior in figure 10c and

the peak in figure 10b.

For large tβ , Λ5 ' 2M2
H/v

2 ' 1.32, and the prefactor (tβ − 1/tβ) ' tβ . This explains

the linear behavior of the contributions for tβ > 20 in figure 10a and the independence of

λ1 in figure 10d.

Regarding the η-dependence, the dominant terms depending on η are aEW add.
µ ,

eq. (3.24), and a1
0,z, figure 6b. For the present parameter region, the coefficients of η ζl

are approximately (2.3− 1) × 10−11. This explains that shifting η by 0.1 decreases aB
µ by

10−10 in all plots.

In order to compare our analysis of figure 10 with the scatter plots of figure 9, we

show three representative points in figure 9. The first, in green, is the representative point

just discussed for the large tβ region (tβ = 100, λ1 arbitrary). The other two, yellow and

dark yellow, are related to the small tβ region and have tβ = 2 and two different values of

λ1, λ1 = 4π (yellow) and λ1 = 2π (dark yellow). As can be seen, the green triangle for

η = −0.1 and η = 0 is close to the border of the constrained sample depicted in red while,

for η = 0.1, the green triangle is well inside the allowed area. It is instructive to notice

that, for negative values of η, there is a considerable sample of allowed points with similar

4It should be noticed that any other point considered in [36] for which aµ is explained at 1 σ level could

be chosen as well. The behavior of all plots as well as all further discussions remain essentially the same.

Furthermore the recent references [39, 42] also considered τ -decay as a parameter constraint in the 2HDM,

which disfavors a significant part of the preferred parameter space. Nevertheless, reference [42] found the

general parameter region represented by eq. (4.3) to be viable.
5The analysis is unaltered for other choices to λ1, only the absolute value of the bosonic contribution

is modified.
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(a) (b)

(c) (d)

Figure 10. Plots showing the behavior of a2HDM,2
µ , and aBµ . Each red/blue/green line is for

η = 0/0.1/− 0.1. tβ varies for (a) and (b), and λ1 for (c) and (d). We consider the representative

mass parameter point in eq. (4.3). λ1 = 4π for (a) and (b). We employ tβ = 2 and tβ = 100 for (c)

and (d) respectively.

values for aB
µ ' (2 · · · 3)× 10−10. This behavior is explained by observing figures 10a–10d

which show that for any value of λ1 there is a large interval for tβ , 40 < tβ < 100, allowing

aB
µ > 2× 10−10. This situation should be contrasted with the small tβ region, represented

by the yellow triangles. While the η = −0.1 case still has a considerable amount of points

with similar values, the (η = 0, 0.1) cases represent rare points in the constrained sample

for λ1 = 4π, and points close to the border of the allowed area for λ1 = 2π. The explanation

can be found in figures 10b–10c which show that values for aB
µ similar to the ones of the

light yellow triangle can only be obtained for a small range of tβ , 1 < tβ < 5, and large

values of λ1, λ1 ' 4π. These observations explain why the scatter plot for negative η,

figure 9c, has more allowed points with values for |aB
µ | of order (2 · · · 4)×10−10 if compared

with the other cases.
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(a) (b)

Figure 11. Plots showing the behavior of a2HDM,2
µ , and aBµ . Each red/blue/green line is for

η = 0/0.1/ − 0.1. MH± and MH vary in (a) and (b) respectively. We set λ1 = 4π, and tβ = 100.

The inside regions between the dashed lines are allowed by constraints. The purple line is a reference

value as explained in the text.

Finally we discuss the plots of figure 11. In both cases we study the behavior of a2HDM,2
µ

and aB
µ as functions of one of the masses of the scalars (MH± , and MH respectively) where

the region delimited by the dashed lines is allowed by theoretical and EW constraints. The

other mass and aligned parameters are kept fixed as in the representative point eq. (4.3).

Regarding tβ , we choose tβ = 100, corresponding to a type X parameter point. Since

we are in the large tβ limit, λ1 has no significant influence. We adopt λ1 = 4π. As can

be seen in figure 11a, there is a slight mass dependence in a2HDM,2
µ . To illustrate the

mass dependence we first remark that, for the parameter region we are considering, only

the coefficients enhanced by ζl and tβ are important, namely a0
0,z and a0

5,z. Using the

definitions in appendix A and considering the large tβ region, one has

aB
µ |η=0 ' (a0

0,z + Λ5a
0
5,z)ζltβ

=

[
−b(xH , 0)− Λ5

2

] [
F0
m(xH , xH±) + F±m(xH , xH±)

]
ζltβ

' −6.3× 10−7M2
H

[
F0
m(xH , xH±) + F±m(xH , xH±)

]
ζltβ , (4.4)

where xS ≡M2
S/M

2
Z , and we used Λ5 ' 2M2

H/v
2. The term containing the functions F0

m,

F±m is always positive and depends on the inverse of the scalar masses.

Therefore, if MH is kept fixed and MH± increases, |aB
µ | will decrease, explaining the

behavior observed in figure 11a. In contrast, if MH± is kept fixed and MH increases, the

explicit dependency on M2
H coming from Λ5 and the coefficient b(xH , 0) leads to an increase

of aB
µ with MH in figure 11b.

Regarding the full aµ, we verified that the fermionic contributions essentially do not

depend on MH± due to the small ζu, but they depend on MH . As can be noticed analyzing

the plots of figure 8 and table 3, the fermionic contributions from H diagrams are negative
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and decrease in modulus with MH . Therefore, the net result will be an increase in aµ as

observed in figure 11b.

Finally, it can also be noticed that the plots for non-zero values of η tend to the case

η = 0 as MH approaches Mh. This behavior can be understood by observing that in this

case the two mass-degenerate CP-even scalars together behave exactly SM-like.

5 Conclusion

We presented the full two-loop 2HDM contributions to aµ, providing the complete analytic

result and a numerical analysis. We confirmed the previous results of the fermion-loop and

the bosonic Barr-Zee type contributions. We calculated the remaining diagrams including

all 3-boson diagrams, which involve three internal boson couplings to the muon line.

The analytic results are expressed in terms of physical parameters. The full bosonic

result depends on the three additional Higgs boson masses, tβ , sinα, the alignment pa-

rameter ζl and the quartic scalar coupling λ1. We always expand in the small parameter

η = α−β+π/2, the deviation from the SM-limit. The bosonic contributions are especially

dependent on tβ and λ1, whereas fermionic ones are not. This dependency arises from the

triple Higgs couplings in the bosonic Feynman diagrams.

We split the bosonic result into several parts, see eq. (3.23) and eq. (3.27). Each term

has a straightforward dependence on tβ and ζl and depends only on a subset of masses.

The compact analytic expression of each term is provided in appendix A. We documented

the parameter dependence in a series of figures in section 3.3.

We also confirmed the previous result of the fermionic contribution. Particularly,

we presented its analytic form without one-dimensional integral relations in section 3.4

and gave an overview of the numerical behavior. The fermionic result involves all three

alignment parameters ζl,u,d, but the leading contributions are the ζl dependent terms.

We also investigated the impact of the scenario with a deviation from the SM-limit of

the Higgs couplings, η = α−β+π/2 6= 0. For this case, we obtain additional contributions

from the SM-like Higgs boson, aEW add.
µ . This term is proportional to η ζl and gives the

dominant η-dependent bosonic contributions. Its coefficient is dependent only on the SM

parameters and can be found in eq. (3.24).

In the numerical evaluation we confirmed that the fermionic 2HDM contribution can

be of the order of the deviation eq. (1.1). A series of plots shows that in parameter

regions with large fermionic contributions, the complete bosonic result can yield additional

contributions in the range (2 · · · 4)× 10−10, i.e. at the level of the precision of the planned

Fermilab experiment. Allowing the SM-like Higgs couplings to deviate from the SM-limit,

i.e. η 6= 0, and non-zero values of λ1, can slightly increase the bosonic contributions.
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A Analytic results

Here we provide the full analytic result of the complete renormalized bosonic two-loop

contributions aB
µ , in the decomposition of eq. (3.23). We begin with required loop function

(defined first in ref. [86]):

Φ(m1,m2,m3) =
λ

2

[
2 ln(α+) ln(α−)− ln

(
m2

1

m2
3

)
ln

(
m2

2

m2
3

)

− 2Li2(α+)− 2Li2(α−) +
π2

3

]
, (A.1)

λ =
√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

2m
2
3 − 2m2

3m
2
1 , (A.2)

α± =
m2

3 ±m2
1 ∓m2

2 − λ
2m2

3

. (A.3)

The coefficient anon-Yuk
µ of the contribution without Yukawa couplings is given by

anon-Yuk
µ =

α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{(
xA − xH
xA − xH±

)
T +

2 (xA, xH) + T −2 (xH , xH±)

+

(
xA − xH
xA − xH±

)
T4(xA, xH±) + T4(xH , xA) + T5(xH± , xH) + T5(xH± , xA)

+ T +
2 (xH± , xH) + T +

2 (xH± , xA) + T6(xA, xH±) + T6(xH , xH±)

+ T7(xA, xH) + T7(xH± , xH±)(1− 2c2
W)2 + T8(xA, xH±) + T8(xH , xH±)

− 16

3
c2

Ws
2
W(1 + 8c2

W − 8c4
W) +

8c4
Ws

4
W

5xH±
+ f2xH± − f3x

2
H±

+ f1(x2
A + x2

H) + f3xH±(xA + xH) + f4(xA + xH)− f5xAxH

+ T1(xA, xH±) + T1(xH , xH±) + T0(xA, xH±) + T0(xH , xH±)

}
. (A.4)

The abbreviations appearing in anon-Yuk
µ are

T0(u, ω) =
9

c4
W

(u− ω)(c2
W(u− ω)(u+ 2ω)− (u− ω)3 + c4

Wω)

c4
W + (u− ω)2 − 2c2

W(u+ ω)

× Φ(
√
u,
√
ω, cW), (A.5)

T1(u, ω) =
9

c4
W

(u− ω)(c2
Wω − (u− ω)2)Li2(1− u/ω), (A.6)

T ±2 (u, ω) = ln(u)

(
6u2 + c2

W(u− xH±) + 2c4
W(u− xH±)

2(u− ω)

+ f6
(u− xH±)2(3c4

W + 3c2
W(u− xH±) + (u− xH±)2

c2
W(u− ω)

± f7
3u2(u− xH±)

(xA − xH)(u− ω)
− f8

3u(u− xH±)2

2(u− ω)

− f9
3u(u− xH±)

2(u− ω)

)
, (A.7)
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T4(u, ω) =
(u− ω) ln(u)

4
f5(xA(3 + 2xH)− x2

A + 3xH − x2
H − 3), (A.8)

T5(u, ω) = ln(u)

(
3

2
u+

f6

c2
W

((u− ω)3 + 3c2
W(u− ω)2 + 3c4

W(u− ω))

−3

2
f8u(u− ω)− c2

W

2
− c4

W

)
, (A.9)

T6(u, ω) =
9

2

(
(u− ω)(u2 − 2uω + ω(ω − c2

W))

c4
W

ln
(u
ω

)
ln

(
ω

c2
W

)
+

ln(c2
W)

c2
W

(2u2 + u(c2
W − 4ω)− ω(c2

W − 2ω))

)
, (A.10)

T7(u, ω) = f5(2(u+ ω)− (u− ω)2 − 1) ln

(S1(u, ω)

2
√
uω

)
×
(
u+ ω − 1− 4uω

S1(u, ω)

)
, (A.11)

S1(u, ω) = u+ ω − 1 +
√

1 + (u− ω)2 − 2(u+ ω), (A.12)

T8(u, ω) = 2f6(4uω − (u+ ω − c2
W)2) ln

(S2(u, ω)

2
√
uω

)
×
(

(u+ ω)

c2
W

− 4uω

c2
WS2(u, ω)

− 1

)
, (A.13)

S2(u, ω) = u+ ω − c2
W +

√
(u+ ω − c2

W)2 − 4uω. (A.14)

The following coefficients depend only on known SM parameters; we provide therefore also

approximate numerical values:

f1 =
7

2
− 25

2c2
W

+ 4c2
W − 4c4

W = −12, (A.15)

f2 = 2(17− 24c2
W + 56c4

W − 128c6
W + 64c8

W) = −9.1, (A.16)

f3 =
25− 32c2

W + 4c4
W

c2
Ws

2
W

= 15, (A.17)

f4 =
13

2
− 15c2

W + 10c4
W = −0.9, (A.18)

f5 =
c2

W(5− 16c2
W + 8c4

W)

s2
W

= −9, (A.19)

f6 =
7− 14c2

W + 4c4
W

4c2
Ws

2
W

= −2, (A.20)

f7 = 1− 6c2
W + 4c4

W = −1.2, (A.21)

f8 =
13− 20c2

W + 4c4
W

c2
Ws

2
W

= −0.7, (A.22)

f9 = 7− 12c2
W + 8c4

W = 2.5. (A.23)
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The coefficients of the Yukawa-dependent terms in eq. (3.27) are given by

a0
0,0 = b(xHSM

, xH±)F0
m(xHSM

, xH±), (A.24)

a0
0,z = −b(xH , 0)

[
F0
m(xH , xH±) + F±m(xH , xH±)

]
, (A.25)

a0
5,0 = F0

m(xHSM
, xH±), (A.26)

a0
5,z = −1

2

[
F0
m(xH , xH±) + F±m(xH , xH±)

]
, (A.27)

a1
0,0 = b(xH , 0)F0

m(xH , xH±)− (xH → xHSM
), (A.28)

a1
0,z = −

[
b(xH , xH±)

(
F0
m(xH , xH±) + F±m(xH , xH±)

)
−F3(xH , xH±)− (xH → xHSM

)

]
+ F2(xH), (A.29)

a1
5,0 =

F0
m(xH , xH±)

2
− (xH → xHSM

), (A.30)

a1
5,z = −F0

m(xH , xH±)−F±m(xH , xH±)− (xH → xHSM
). (A.31)

The appearing abbreviations are given by

b(u, ω) =
απ

c2
W(−1 + c2

W)
(u+ 2ω), (A.32)

F0
m(u, ω) =

α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

(
1

απ

c2
W(−1 + c2

W)

(u+ 2ω)

)
F1(u, ω), (A.33)

F±m(u, ω) =
α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

(
−9(−1 + c2

W)

απ

)(T9(u, ω)

2
+ T10(u, ω)

)
, (A.34)

F1(u, ω) = −72c2
W(−1 + c2

W)
u+ 2ω

u
− 36c2

W(−1 + c2
W)

u+ 2ω

u
ln(ω)

+ 9(−8c4
W − 3u+ 2c2

W(4 + u))
(u+ 2ω)

2(u− 1)u
ln(u)

− 9(3− 10c2
W + 8c4

W)
ω(u+ 2ω)

(4ω − 1)(u− 1)
Φ(
√
ω,
√
ω, 1)

+ 9(8c4
W + 3u− 2c2

W(4 + u))
ω(u+ 2ω)

(4ω − u)(u− 1)u2
Φ(
√
u,
√
ω,
√
ω), (A.35)

T9(u, ω) = −2
(
c4

Wω + c2
W

(
u2 + uω − 2ω2

)
− (u− ω)3

)
Φ (
√
u,
√
ω, cW)

(c2
W − ω)

(
c4

W − 2c2
W(u+ ω) + (u− ω)2

)
+

2c4
W

(
u2 − 4uω + 2ω2

)
Φ (
√
u,
√
ω,
√
ω)

ω2
(
ω − c2

W

)
(u− 4ω)

− 2
(
c2

Wu(u− 2ω) + ω(u− ω)2
)

Li2
(
1− u

ω

)
ω2

, (A.36)
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T10(u, ω) =
u2 − c2

Wω − 2uω + ω2

2(c2
W − ω)

ln
(ω
u

)
ln

(
ω

c2
W

)
+
c2

W(c2
W + 2u− 2ω)

2(c2
W − ω)

ln

(
ω

c2
W

)
+
c2

W

ω
u ln

(ω
u

)
+
c2

W

ω
(ω − u), (A.37)

F2(u) = FW(u) + FZ(u)+

+
α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{
8c6

Wπ
2

u2
+
F0

u
+

393c2
W

8

+

(
F1

u
+ F2 + F3u

)
ln(c2

W)

(4c2
W − 1)(4c2

W − u)

+

(
F4

u
+ F5 + F6u+ F7u

2

)
ln(u)

(u− 1)(4c2
W − u)

− 3

2

(
32c6

W

u2
+

21c4
W

u
+ 15c2

W − 35u

)
Li2

(
1− u

c2
W

)
+ (F8 + F9u)

9c2
W(−3 + 4c2

W)

2

Φ (cW, cW, 1)

(4c2
W − 1)2(u− 1)

+

[
F10

u2
+
F11

u
+ F12 + F13u+ F14u

2 +
105u3

2

]
Φ (
√
u, cW, cW)

(4c2
W − u)2(u− 1)

}
, (A.38)

F0 =
3c4

W

(
−640 + 576c2

W + 7π2
)

4
= −55.9, (A.39)

F1 = 96c6
W

(
11− 53c2

W + 36c4
W

)
= −380, (A.40)

F2 = −3

4
c2

W

(
−66c2

W − 48c4
W + 672c6

W

)
= −137, (A.41)

F3 = −3

4
c2

W

(
109− 430c2

W + 120c4
W

)
= 88.8, (A.42)

F4 = 96c6
W

(
−11 + 9c2

W

)
= −180, (A.43)

F5 =
45c4

W

2
+ 192c6

W = 103, (A.44)

F6 =
3

4
c2

W

(
157 + 90c2

W

)
= 132, (A.45)

F7 = −3

4

(
18 + 61c2

W

)
= −49.0, (A.46)

F8 =
(
−7 + 61c2

W − 162c4
W + 96c6

W

)
= −12.3, (A.47)

F9 = (1− 5c2
W + 10c4

W) = 3.15, (A.48)

F10 = −1728c8
W

(
−1 + c2

W

)
= 140, (A.49)

F11 = 3c6
W

(
−899 + 768c2

W

)
= −425, (A.50)

F12 =
(
387c4

W − 363c6
W

)
= 63.4, (A.51)

F13 =
9

2
c2

W

(
57 + 106c2

W

)
= 486, (A.52)

F14 = −15

2

(
7 + 45c2

W

)
= −314, (A.53)
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FZ(u) =
α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{
Z1uLi2 (1− u)

+
Z2

2u2

[
6(−4 + u)u+ π2(4 + 3u) + 6u(4 + u) ln(u)

− 6(4 + 3u)Li2 (1− u) + 6u(2 + u)Φ
(√
u, 1, 1

) ]
+ Z3u

[
6 + π2(−4 + u)u+ 3 ln(u)(4 + (−4 + u)u ln(u))

+ 12(−4 + u)uLi2 (1− u) + 6(−2 + u)Φ
(√
u, 1, 1

) ]}
, (A.54)

Z1 = 3(17− 48c2
W + 32c4

W) = −2.9, (A.55)

Z2 =
(
5− 12c2

W + 8c4
W

)
= 0.50, (A.56)

Z3 = 3
(
1− 3c2

W + 2c4
W

)
= −0.37, (A.57)

FW(u) =
α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{
− 57c2

W

2
− 4c6

Wπ
2

u2
+

3c4
W

(
32− 3π2

)
4u

+
3
(
16c6

W + 9c4
Wu+ 12c2

Wu
2 − 19u3

)
Li2

(
1− u

c2W

)
2u2

+
3c2

W

(
16c2

W + 19u
) (

ln
(
c2

W

)
− ln(u)

)
2u

+
3
(
4c4

W − 50c2
Wu+ 19u2

)
Φ (
√
u, cW, cW)

2
(
4c2

W − u
)
u

}
, (A.58)

F3(u, ω) =
α2

576π2 c4
Ws

4
W

m2
µ

M2
Z

{
9u
(
2c2

W − u+ ω
)

ω

+

[
A1(u, ω) ln

(
u

c2
W

)
+ 9c4

W

(
c4

W − 4c2
Wω + 3ω2

)
ln(c2

W)

]
ln
(
ω/c2

W

)
2ω2(c2

W − ω)

+A2(u, ω)
ln (u)

ω(4c2
W − u)

+A3(u, ω)
ln (ω)

ω(c2
W − ω)

+A4(u, ω)
ln
(
c2

W

)
ω2(4c2

W − u)(c2
W − ω)

+
A5(u, ω)

c2
Wω

2
Li2

(
1− u

c2
W

)
+

A6(u, ω)

uc2
W(4c2

W − u)2(c2
W − ω)

Φ
(√
u, cW, cW

)
+

A7(u, ω)

ω2
(
c2

W − ω
) (
c4

W − 2c2
W(u+ ω) + (u− ω)2

)Φ
(√
u,
√
ω, cW

)}
, (A.59)

A1(u, ω) = −9c2
Wu

3 + 9c2
Wu

2
(
3c2

W + ω
)

+ 27c4
Wu
(
ω − c2

W

)
+ 9

(
c8

W − 4c6
Wω + 3c4

Wω
2
)
, (A.60)

A2(u, ω) =
9c4

Wω

2
− 9u2

(
5c2

W + ω
)

+ u

(
36c4

W +
153c2

Wω

4

)
+ 9u3, (A.61)

A3(u, ω) = 9c2
Wu

2 − 9

2
c2

Wu
(
4c2

W + ω
)
, (A.62)
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A4(u, ω) = −9

2
u2ω

(
2c4

W + 9c2
Wω + 2ω2

)
+

9

8
uω
(
32c6

W + 13c4
Wω + 35c2

Wω
2
)

+ 9u3ω2, (A.63)

A5(u, ω) = −9u3
(
c2

W + ω
)
− 9u

(
3c6

W + 2c2
Wω

2
)

+ 9u2
(
3c4

W + 4c2
Wω + ω2

)
+

9

2
c4

W

(
2c4

W − 6c2
Wω + ω2

)
, (A.64)

A6(u, ω) = −9u4
(
9c2

W + ω
)

+ u
(
81c6

Wω − 225c8
W

)
+ 9c8

W

(
ω − c2

W

)
− 9

2
u2
(
3c6

W + 37c4
Wω
)

+ u3
(
198c4

W + 72c2
Wω
)

+ 9u5, (A.65)

A7(u, ω) = −9c2
Wu

4 + 18c2
Wu

3
(
2c2

W + ω
)

+ 36u
(
c8

W − 2c6
Wω
)

− 9c2
Wu

2
(
6c4

W − c2
Wω + ω2

)
− 9c2

W

(
c2

W − 3ω
) (
c3

W − cWω
)2
. (A.66)

B Cancellation of MA dependence in Y A
l sector

In the bosonic contributions in eq. (3.23), only the coefficient anon-Yuk
µ depends on MA,

whereas the Yukawa-coupling dependent parts are independent of MA. Here we provide

details on this cancellation.

Figure 12 shows the only remaining two-loop Feynman diagram with MA and Yukawa

coupling dependence. The sum of the diagrams of figures 12b and 12c is zero, therefore

these give no contributions. The remaining possible MA dependence can arise from the

diagram of figure 12a. However, as we show in the following this contribution cancels out

with the tadpole counterterm contribution.

The sum of the two-loop Feynman diagram figure 12a and the counterterm diagram

figure 1c with tadpole counterterm containing only A-loop can be illustrated as

γ

µ νµ

H±

A G±

W

µ
+

✖

γ

µ νµ

H±
G±

W

µ
=

γ

µ νµ

H±
◦G±

W

µ
×
{

H±
A

G±
+ H±

✖ G±

}
. (B.1)

The explicit form of the H±-G± mixing propagator counterterm is(
H±

✖ G±
)

=
(

ig2
2MW

)
δtHG, (B.2)

where

δtHG = cos(β − α)δTh − sin(β − α)δTH ' −δTH + η δTh +O(η2). (B.3)

According to the definition of the tadpole counterterms, the A Higgs boson contribution

to the tadpole counterterm for h is the product of the (h− A− A) coupling constant and

the scalar one-point loop function A0(m),

δTAh = i
(

Ah
)

= g2
2MW

A0(MA)
{

2M2
A +M2

h − Λ5v
2 − (M2

A − Λ5v
2)
(
tβ − 1

tβ

)
η
}

. (B.4)
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γ

µ νµ

H±

A G±

W

µ

(a)

γ

µ

µ µ

A

Z

h/H Z µ

(b)

γ

µ

µ µ

A

A

h/H Z µ

(c)

Figure 12. The Feynman diagrams containing A with Yukawa couplings.

For H we need to replace the (h − A − A) with (H − A − A) coupling constant, and the

result reads

δTAH = i
(

AH
)

= g2
2MW

A0(MA)
{(
M2
H − Λ5v2

2

)(
tβ − 1

tβ

)
+ (M2

H + 2M2
A − Λ5v

2)η
}

. (B.5)

By combining the previous equations we obtain for eq. (B.2)

i g2

2MW
δtHG =

−i g2
2

4M2
W

A0(MA)

{(
M2
H −

Λ5 v
2

2

)(
tβ −

1

tβ

)
+ (M2

H −M2
h)η

}
. (B.6)

This shows that the MA dependence is now only localized in A0(MA). On the other hand,

after applying the quartic coupling constant of H±-G±-A-A, we obtain the explicit form

of the inner loop of figure 12, with the result

(
H±

A

G±

)
=

ig22
4M2

W
A0(MA)×{(

M2
H − Λ5 v2

2

)(
tβ − 1

tβ

)
+ (M2

H −M2
h) η

}
.

(B.7)

Hence, the MA dependent parts vanish,

(
H±

A

G± + H±
✖ G±

)
= 0. (B.8)
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Non-decoupling two-loop corrections to (g − 2)µ from fermion/sfermion loops in the MSSM,

Phys. Lett. B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].

[61] H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Two-loop
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[82] D. Lopez-Val and J. Solà, ∆r in the Two-Higgs-Doublet Model at full one loop level — and

beyond, Eur. Phys. J. C 73 (2013) 2393 [arXiv:1211.0311] [INSPIRE].

[83] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop

level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075]

[INSPIRE].

[84] R. Santos and A. Barroso, On the renormalization of two Higgs doublet models, Phys. Rev. D

56 (1997) 5366 [hep-ph/9701257] [INSPIRE].

[85] M.A. Caprio, LevelScheme: A level scheme drawing and scientific figure preparation system

for mathematica, Comput. Phys. Commun. 171 (2005) 107 [physics/0505065] [INSPIRE].

[86] A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the

momentum expansion, Nucl. Phys. B 397 (1993) 123 [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP06(2013)045
https://arxiv.org/abs/1303.5098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5098
http://dx.doi.org/10.1103/PhysRevLett.65.964
http://dx.doi.org/10.1103/PhysRevLett.65.964
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,65,964%22
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,C38,090001%22
http://dx.doi.org/10.1016/j.cpc.2009.09.011
https://arxiv.org/abs/0902.0851
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0851
http://dx.doi.org/10.1016/j.cpc.2009.12.016
http://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,181,833%22
http://dx.doi.org/10.1016/0550-3213(94)90325-5
https://arxiv.org/abs/hep-ph/9310358
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9310358
http://dx.doi.org/10.1016/0370-1573(72)90011-7
http://inspirehep.net/search?p=find+J+%22Phys.Rept.,3,193%22
http://dx.doi.org/10.1016/0550-3213(78)90051-2
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B137,63%22
http://dx.doi.org/10.1088/1126-6708/2001/05/006
https://arxiv.org/abs/hep-ph/0102297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102297
http://dx.doi.org/10.1016/0550-3213(86)90341-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B272,77%22
http://dx.doi.org/10.1140/epjc/s10052-013-2393-y
https://arxiv.org/abs/1211.0311
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0311
http://dx.doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1075
http://dx.doi.org/10.1103/PhysRevD.56.5366
http://dx.doi.org/10.1103/PhysRevD.56.5366
https://arxiv.org/abs/hep-ph/9701257
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9701257
http://dx.doi.org/10.1016/j.cpc.2005.04.010
https://arxiv.org/abs/physics/0505065
http://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,171,107%22
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B397,123%22

	Introduction
	Two-Higgs Doublet Model
	The model and its parameters
	Constraints
	Theoretical constraints
	Electroweak and experimental constraints


	2HDM two-loop contributions
	One-loop contribution
	Counterterm contribution
	Bosonic loop contribution
	2-boson and 3-boson diagrams
	Analytic results

	Fermionic loop contribution

	Numerical analysis
	Conclusion
	Analytic results
	Cancellation of M(A) dependence in Y**A(l) sector

