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Abstract
Kim et al. (Appl. Math. Inf. Sci. 9(6):1-6, 2015) consider the q-extensions of Boole
polynomials. In this paper, we consider Witt-type formula for the q-Boole polynomials
with weights and derive some new interesting identities and properties of those
polynomials and numbers from the Witt-type formula which are related to special
polynomials and numbers.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will, respec-
tively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and
the completions of algebraic closure of Qp. The p-adic norm is defined by |p|p = 

p .
When one talks of q-extension, q is variously considered as an indeterminate, a complex

q ∈ C, or p-adic number q ∈Cp. If q ∈ C, one normally assumes that |q| < . If q ∈Cp, then
we assume that |q – |p < p– 

p– so that qx = exp(x log q) for each x ∈ Zp. Throughout this
paper, we use the notation

[x]–q =
 – (–q)x

 – (–q)
.

Note that limq→–[x]–q = x for each x ∈ Zp.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),

the p-adic invariant integral on Zp is defined by Kim as follows:

I–q(f ) =
∫
Zp

f (x) dμ–q(x) = lim
N→∞


[pN ]–q

pN –∑
x=

f (x)(–q)x (see [–]). (.)

Let f be the translation of f with f(x) = f (x + ). Then, by (.), we get

I–q(f) + I–q(f ) = []qf (). (.)

As is well known, the Stirling number of the first kind is defined by

(x)n = x(x – ) · · · (x – n + ) =
n∑

l=

S(n, l)xl, (.)
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and the Stirling number of the second kind is given by the generating function:

(
et – 

)m = m!
∞∑

l=m

S(l, m)
tl

l!
(see [, ]). (.)

It is well known that the (h, q)-Euler polynomials are defined by the generating function:

(
q + 

qhet + 

)
ext =

∞∑
n=

En,q(x|h)
tn

n!
(see []), (.)

where h is an integer. When x =  and h = , En,q(|h) = En,q(h) are called the ordinary
q-Euler numbers.

Recently, DS Kim and T Kim introduced the Changhee polynomials of the first kind are
defined by the generating function:


 + t

( + t)x =
∞∑

n=

Chn(x)
tn

n!
(see [, –]), (.)

and T Kim et al. defined the q-Changhee polynomials as follows:

[]q

q( + t) + 
( + t)x =

∞∑
n=

Chn,q(x)
tn

n!
(see [, , ]). (.)

As is well known, the Boole polynomials are defined by the generating function:

∞∑
n=

Bln(x|λ)
tn

n!
=


 + ( + t)λ

(see [, ]).

When λ = , Bln(x|) = Chn(x) are Changhee polynomials. In [], Kim et al. consider
the q-analog of Boole polynomials, and found some new and interesting identities related
to special polynomials, and Y Do and D Lim investigated the properties of (h, q)-Daehee
numbers and polynomials, which are defined by

∫
Zp

q–hy(x + y)n dμq(y) (see []).

In this paper, we consider Witt-type formula for the q-Boole polynomials with weights
and derive some new interesting identities and properties of those polynomials and num-
bers from the Witt-type formula which are related to special polynomials and numbers.

2 q-Analog of Boole polynomials with weight
In this section, we assume that t ∈Cp with |t|p < p– 

p– , λ ∈ Zp with λ �=  and h ∈ Z. From
(.), we have

∫
Zp

q(h–)y( + t)x+λy dμ–q(y) =
 + q

qh( + t)λ + 
( + t)x =

∞∑
n=

[]qBln,q(x|h,λ)
tn

n!
, (.)
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where Bln,q(x|h,λ) are the (h, q)-Boole polynomials which are defined by


qh( + t)λ + 

( + t)x =
∞∑

n=

Bln,q(x|h,λ)
tn

n!
. (.)

By (.), we can derive the following equation:

∫
Zp

q(h–)y
(

x + λy
n

)
dμ–q =

 + q
n!

Bln,q(x|h,λ). (.)

In the special case x = , Bln,q(|h,λ) = Bln,q(h,λ) are called the (h, q)-Boole numbers.
Note that

( + t)x+λy = e(x+λy) log(+t)

=
∞∑

n=

(x + λy)n

n!
(
log( + t)

)n

=
∞∑

n=

(x + λy)n

n!
m!

∞∑
m=n

S(m, n)
tm

m!

=
∞∑

n=

{ n∑
m=

(x + λy)mS(n, m)

}
tn

n!
. (.)

The (h, q)-Euler polynomials are defined by the generating function:

 + q
qhet + 

ext =
∞∑

n=

En,q(x|h)
tn

n!
. (.)

Note that limq→ En,q(x|) = En(x). When x = , En(|h) = En,q(h) are called the (h, q)-Euler
numbers.

By (.), we can derive easily the following equation:

∫
Zp

q(h–)ye(x+y)t dμ–q(y) =
 + q

qhet + 
ext =

∞∑
n=

En,q(x|h)
tn

n!
. (.)

Since

∫
Zp

q(h–)ye(x+y)t dμ–q(y) =
∞∑

n=

∫
Zp

q(h–)y(x + y)n dμ–q(y)
tn

n!
,

by (.), we have

∫
Zp

q(h–)y(x + y)n dμ–q(y) = En,q(x|h) (n ≥ ). (.)
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From (.) and (.), we get
∫
Zp

q(h–)y( + t)x+λy dμ–q(y)

=
∞∑

n=

{ n∑
m=

∫
Zp

q(h–)y(x + λy)m dμ–q(y)S(n, m)

}
tn

n!

=
∞∑

n=

{ n∑
m=

λmEm,q

(
x
λ

|h
)

S(n, m)

}
tn

n!
. (.)

Thus, by (.), (.), and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

Bln,q(x|h,λ) =


[]q

n∑
m=

λmEm,q

(
x
λ

∣∣∣h
)

S(n, m)

and
∫
Zp

q(h–)y
(

x + λy
n

)
dμ–q =

[]q

n!
Bln,q(x|h,λ).

By Theorem ., we note that

Bln,q(x|h,λ) =


[]q

∫
Zp

q(h–)y(x + λy)n dμ–q(y),

where (x)n = x(x – ) · · · (x – n + ). When λ =  and h = , we have

Bln,q(x|, ) =


[]q

∫
Zp

q–(x + y)n dμ–q(y). (.)

In [], Arici et al. defined the q-analog of Changhee polynomials by the generating func-
tion:

∞∑
n=

Chn(x|q)
tn

n!
=

[]q

[]t + 
( + t)x. (.)

By (.), we have

∫
Zp

q–y( + t)x+y dμ–q(y) =
[]q

[]t + 
( + t)x =

∞∑
n=

Chn(x|q)
tn

n!
. (.)

By (.) and (.), we note that

[]q


Chn(x) = Chn(x|q). (.)

From (.), we get
∫
Zp

q–(x + y)n dμ–q(y) = Chn(x|q). (.)
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By (.), (.), and (.), we have

Bln,q(x|, ) =


[]q
Chn(x|q) =




Chn(x).

By replacing t as et –  in (.), we derive the following equations:

 + q
qheλt + 

ext =
∞∑

n=

[]qBln,q(x|h,λ)

n!

(
et – 

)n

=
∞∑

n=

[]qBln,q(x|h,λ)

n!

n!
∞∑

m=n
S(m, n)

tm

m!

=
∞∑

n=

n∑
m=

[]qBlm,q(x|h,λ)S(n, m)
tn

n!
(.)

and

 + q
qheλt + 

ext =
 + q

qheλt + 
e( x

λ
)λt =

∞∑
n=

En,q

(
x
λ

∣∣∣h
)

λm tm

m!
. (.)

Hence, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

n∑
m=

Blm,q(x|h,λ)S(n, m) =
λm

q + 
En,q

(
x
λ

∣∣∣h
)

.

From now on, we define the (h, . . . , hr , q)-Boole numbers of the first kind as follows:

[]r
qBl(h,...,hr)

n,q (λ)

=
∫
Zp

· · ·
∫
Zp

qh+···+hr–r(λ(x + · · · + xr)
)

n dμ–q(x) · · · dμ–q(xr) (n ≥ ). (.)

By (.), we have

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (λ)

tn

n!

=
∫
Zp

· · ·
∫
Zp

∞∑
n=

qh+···+hr–r
(

λ(x + · · · + xr)
n

)
tn dμ–q(x) · · · dμ–q(xr)

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

qh+···+hr–r( + t)λ(x+···+xk ) dμ–q(x) · · · dμ–q(xr)

=
r∏

i=

(
 + q

qhi ( + t)λ + 

)

= ( + q)r
∞∑

n=

( ∑
l+···+lr=n

(
n

l, . . . , lr

)
Bi,q(h,λ) · · ·Bir ,q(h,λ)

)
tn

n!
. (.)

Thus, by (.), we obtain the following corollary.
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Corollary . For n ≥ , we have

Bl(h,...,hr )
n,q (λ) =

∑
l+···+lr=n

(
n

l, . . . , lr

)
Bi,q(h,λ) · · ·Bir ,q(h,λ).

The (h, . . . , hr , q)-Euler polynomials are defined by the generating function to be

∫
Zp

· · ·
∫
Zp

qh+···+hr–re(x+···+xr+x)t dμ–q(x) · · · dμ–q(xr)

=
r∏

i=

(
 + q

qhi et + 

)
ext

=
∞∑

n=

En,q(x|h, . . . , hr)
tn

n!
. (.)

By (.), we have

∫
Zp

· · ·
∫
Zp

qh+···+hr–r(x + · · · + xr + x)n dμ–q(x) · · · dμ–q(xr) = En,q(x|h, . . . , hr).

In the special case x = , En,q(|h, . . . , hr) = En,q(h, . . . , hr) are called the (h, . . . , hr , q)-Euler
numbers.

From (.) and (.), we note that

( + q)rBl(h,...,hr)
n,q (λ)

=
∫
Zp

· · ·
∫
Zp

qh+···+hr–r(λ(x + · · · + xr)
)

n dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

S(n, l)
∫
Zp

· · ·
∫
Zp

qh+···+hr–rλl(x + · · · + xr)l dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

S(n, l)λlEl,q(h, . . . , hr). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , we get

Bl(h,...,hr )
n,q (λ) =


( + q)r

n∑
l=

S(n, l)λlEl,q(h, . . . , hr).

By replacing t by et –  in (.), we have

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (λ)

(et – )n

n!
=

r∏
i=

(
 + q

qhi eλt + 

)

=
∞∑

n=

En,q(h, . . . , hr)λn tn

n!
(.)
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and

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (λ)


n!

(
et – 

)n = []r
q

∞∑
n=

Bl(h,...,hr)
n,q (λ)

∞∑
m=n

S(m, n)
tm

m!

= []r
q

∞∑
n=

{ n∑
m=

Bl(h,...,hr)
m,q (λ)S(n, m)

}
tn

n!
. (.)

Hence, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

λn

[]r
q

En,q(h, . . . , hr) =
n∑

m=

Bl(h,...,hr)
m,q (λ)S(n, m).

Let us define the (h, . . . , hr , q)-Boole polynomials of the first kind as follows:

[]r
qBl(h,...,hr )

n,q (x|λ)

=
∫
Zp

· · ·
∫
Zp

qh+···+hr–r(λ(x + · · · + xr) + x
)

n dμ–q(x) · · · dμ–q(xr), (.)

where n ≥  and r ∈N. By (.), we can derive the generating function of the (h, . . . , hr , q)-
Boole polynomials of the first kind as follows:

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (x|λ)

tn

n!

=
∫
Zp

· · ·
∫
Zp

qh+···+hr–r( + t)λ(x+···+xr)+x dμ–q(x) · · · dμ–q(xr)

=
r∏

i=

(
 + q

qhi ( + t)λ + 

)
( + t)x. (.)

By (.), we can see easily

r∏
i=

(
 + q

qhi ( + t)λ + 

)
( + t)x

= []r
q

( ∞∑
n=

Bl(h,...,hr )
n,q (λ)

tn

n!

)( ∞∑
m=

(
x
m

)
tm

)

= []r
q

∞∑
n=

( n∑
m=

m!
(

x
m

)
n!

(n – m)!m!
Bl(h,...,hr )

n–m,q (λ)

)
tn

n!

= []r
q

∞∑
n=

( n∑
m=

m!
(

x
m

)(
n
m

)
Bl(h,...,hr )

n–m,q (λ)

)
tn

n!

= []r
q

∞∑
n=

( n∑
m=

(
n
m

)
Bl(h,...,hr )

n–m,q (λ)(x)m

)
tn

n!
. (.)

By (.) and (.), we obtain the following theorem.
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Theorem . For n ≥ , we have

Bl(h,...,hr )
n,q (x|λ) =

n∑
m=

(
n
m

)
Bl(h,...,hr )

n–m,q (λ)(x)m.

Replacing t as et –  in (.), we get

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (x|λ)


n!

(
et – 

)n =
n∏

i=

(
 + q

qhi eλt + 

)
ext

=
∞∑

n=

E(h,...,hr )
n,q

(
x
λ

)
λn tn

n!
(.)

and

[]r
q

∞∑
n=

Bl(h,...,hr)
n,q (x|λ)

(et – )n

n!

= []r
q

∞∑
n=

( n∑
m=

Bl(h,...,hr )
m,q (x|λ)S(n, m)

)
tn

n!
. (.)

Hence, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

n∑
m=

Bl(h,...,hr)
m,q (x|λ)S(n, m) =

λn

[]r
q

E(h,...,hr)
n,q

(
x
λ

)
.

From (.), we get

[]r
qBl(h,...,hr )

n,q (x|λ)

=
∫
Zp

· · ·
∫
Zp

qh+···+hr–r(λ(x + · · · + xr) + x
)

n dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

S(n, l)
∫
Zp

· · ·
∫
Zp

qh+···+hr–r(λ(x + · · · + xr) + x
)l dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

S(n, l)λlE(h,...,hr)
n,q

(
x
λ

)
. (.)

Thus, by (.), we obtain the following theorem.

Theorem . For n ≥ , we have

Bl(h,...,hr )
n,q (x|λ) =


[]r

q

n∑
l=

S(n, l)λlE(h,...,hr)
n,q

(
x
λ

)
.

Now, we define the (h, q)-Boole polynomials of the second kind as follows:

B̂ln,q(x|h,λ) =


[]q

∫
Zp

q(h–)y(–λy + x)n dμ–q(y) (n ≥ ). (.)
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By (.), we have

B̂ln,q(x|h,λ) =


[]q

n∑
l=

(–λ)lS(n, l)
∫
Zp

(
y –

x
λ

)l

dμ–q(y)

=


[]q

n∑
l=

(–λ)lS(n, l)El,q

(
–

x
λ

)
. (.)

In the special case x = , B̂ln,q(|h,λ) = B̂ln,q(h,λ) are called the (h, q)-Boole numbers of the
second kind. From (.), we can derive the generating function of B̂ln,q(x|λ) as follows:

∞∑
n=

B̂ln,q(x|h,λ)
tn

n!
=


[]q

∫
Zp

q(h–)y( + t)–λy+x dμ–q(y)

=
( + t)λ

qh + ( + t)λ
( + t)x. (.)

By replacing t by et –  in (.), we have

∞∑
n=

B̂ln,q(x|h,λ)
(et – )n

n!
=

eλt

qh + eλt ext

=


 + q

∞∑
n=

(–λ)nEn,q

(
–

λ

x

∣∣∣h
)

tn

n!
(.)

and

∞∑
n=

B̂ln,q(x|h,λ)
(et – )n

n!
=

∞∑
n=

( n∑
m=

B̂lm,q(x|h,λ)S(n, m)

)
tn

n!
. (.)

By (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

B̂ln,q(x|h,λ) =


[]q

n∑
l=

(–λ)lS(n, l)El,q

(
–

x
λ

)

and


[]q

(–λ)nEn,q

(
–

λ

x

∣∣∣h
)

=
n∑

m=

B̂lm,q(x|h,λ)S(n, m).

For h, . . . , hr ∈ Z, we define the (h, . . . , hr , q)-Boole polynomials of the second kind as
follows:

B̂l(h,...,hr )
n,q (x|λ)

=


q + 

∫
Zp

· · ·
∫
Zp

q(h+···+hr–r)y(–λ(x + · · · + xr) + x
)

n dμ–q(x) · · · dμ–q(xr). (.)
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By (.), we can derive the generating function of the (h, . . . , hr , q)-Boole polynomials of
the second kind as follows:

∞∑
n=

B̂l(h,...,hr )
n,q (x|λ)

tn

n!

=


( + q)r

∫
Zp

· · ·
∫
Zp

( + t)–λx–···–λxr+x dμ–q(x) · · · dμ–q(xr)

=
r∏

i=

(
( + t)λ

qhi + ( + t)λ

)
( + t)x

=
r∏

i=

(


qhi ( + t)–λ + 

)
( + t)x

=
∞∑

n=

Bl(h,...,hr)
n,q (x| – λ)

tn

n!
. (.)

Hence, by (.), we obtain the following proposition.

Proposition . For n ≥ , we have

B̂l(h,...,hr )
n,q (x|λ) = Bl(h,...,hr )

n,q (x| – λ).

Note that

(–)n[]q

n!
Bln,q(x|h,λ) = (–)n

∫
Zp

q(h–)y
(

x + λy
n

)
dμ–q(y)

=
∫
Zp

q(h–)y
(

–x – λy + n – 
n

)
dμ–q(y)

=
∫
Zp

q(h–)y
n∑

m=

(
–x – λy

m

)(
n – 
n – m

)
dμ–q(y)

=
n∑

m=

(
n – 
n – m

)∫
Zp

q(h–)y
(

–x – λy
m

)
dμ–q(y)

= []q

n∑
m=

(
n – 
n – m

)
B̂lm,q(–x|h,λ)

m!
, (.)

and, by a similar method, we get

(–)n[]q

n!
B̂ln,q(x|h,λ) = (–)n

∫
Zp

q(h–)y
(

x – λy
n

)
dμ–q(y)

= []q

n∑
m=

(
n – 
n – m

)
Blm,q(–x|h,λ)

m!
. (.)

By (.) and (.), we obtain the following theorem.
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Theorem . For n ≥ , we have

(–)n

n!
Bln,q(x|h,λ) =

n∑
m=

(
n – 
n – m

)
B̂lm,q(–x|h,λ)

m!

and

(–)n

n!
B̂ln,q(x|h,λ) =

n∑
m=

(
n – 
n – m

)
Blm,q(–x|h,λ)

m!
.

By Theorem ., we obtain the following corollary.

Corollary . For n ≥ , we have

Bln,q(x|h,λ) =
n∑

m=

m∑
k=

(–)n+m
(

n
n – m, m – k, k

)
(n – )l–Blk,q(x|h,λ)

where
( n

p,q,r
)

= n!
p!q!r! , p + q + r = n.
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