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Abstract: We discuss neutrino masses and mixing in the framework of a supersymmetric

model with an U(1)R symmetry, consisting of a single right handed neutrino superfield

with an appropriate R charge. The lepton number (L) of the standard model fermions are

identified with the negative of their R-charges. As a result, a subset of leptonic R-parity

violating operators can be present and are consistent with the U(1)R symmetry. This model

can produce one light Dirac neutrino mass at the tree level without the need of introducing

a very small neutrino Yukawa coupling. We analyze the scalar sector of this model in detail

paying special attention to the mass of the lightest Higgs boson. One of the sneutrinos might

acquire a substantial vacuum expectation value leading to interesting phenomenological

consequences. Different sum rules involving the physical scalar masses are obtained and we

show that the lightest Higgs boson mass receives a contribution proportional to the square

of the neutrino Yukawa coupling f . This allows for a 125GeV Higgs boson at the tree

level for f ∼ O(1) and still having a small tree level mass for the active neutrino. In order

to fit the experimental results involving neutrino masses and mixing angles we introduce

a small breaking of U(1)R symmetry, in the context of anomaly mediated supersymmetry

breaking. In the presence of this small R-symmetry breaking, light neutrino masses receive

contributions at the one-loop level involving the R-parity violating interactions. We also

identify the right handed neutrino as a warm dark matter candidate in our model. In the

case of R-symmetry breaking, the large f case is characterized by a few hundred MeV

lightest neutralino as an unstable lightest supersymmetric particle (LSP) and we briefly

discuss the cosmological implications of such a scenario.
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1 Introduction

The observation of a new neutral boson, widely believed to be the first elementary scalar

boson of nature, by the CMS and ATLAS experimental collaborations at the CERN LHC

is perhaps the most important discovery in high energy physics in recent times [1, 2]. The

mass of this particle is measured to be ∼ 125GeV. Obviously, more data and analysis can

confirm whether this is the Higgs boson of the standard model (SM) or not. On the other

hand, supersymmetric particle searches by ATLAS and CMS for pp collision at center-of-

mass energy,
√
s = 7 and 8TeV, has observed no significant excess over the expected SM

background. This has set stringent limits on the superparticle masses (particularly on the

masses of squarks and gluinos) for a number of supersymmetric models/scenarios [3, 4].

At the same time, we have very strong experimental evidences in favor of neutrino

oscillation [5–7]. These results have firmly established the existence of massive neutrinos

and non-trivial mixing pattern in the neutrino sector (including the recent discovery [8, 9]

of a small but non-zero mixing angle θ13). Non-vanishing neutrino masses and mixing

are very important indications of new physics. Naturally, the neutrino sector is a testing

ground for various models going beyond the SM.

There is also compelling evidence for the existence of dark matter (DM) and cosmo-

logical observations have measured the relic density of DM with a high degree of preci-

sion [10, 11]. Nevertheless, the identity of the DM remains unknown to date and the

potential candidates are, for example, the lightest neutralino in an R-parity conserving su-

persymmetric theory, the gravitino, the axino, the axion and the keV sterile neutrino [12].

On the theoretical side, supersymmetry (SUSY) is a very popular choice for new

physics. The minimal supersymmetric standard model (MSSM) with R-parity violation

(RPV) is an intrinsically supersymmetric way of generating observed neutrino masses and

mixing pattern. There are extensive studies involving MSSM with R-parity violation on

neutrino masses and mixing, under various assumptions, both at the tree and the loop

level [13].

It is, therefore, tempting to see whether there exist supersymmetric models which

can naturally explain the observed mass of the new scalar boson at ∼ 125GeV, relax the

strong constraints on SUSY particle masses coming from the LHC, provide a suitable dark

matter candidate and at the same time produce neutrino masses and mixing consistent

with current data. In this direction a class of very interesting models are those with a

global continuous U(1)R symmetry [14–18]. Models with R-symmetry have Dirac gauginos

instead of Majorana gauginos and the bounds on the first two generation squarks are

somewhat relaxed compared to MSSM because of the presence of a Dirac gluino [19–32].

Flavor and CP violating constraints are also suppressed in this class of models [33].

Let us mention at this stage that extensive studies have been performed with Dirac

gaugino masses in the R-symmetric limit. In order to have a Dirac gaugino mass [29],

one needs to incorporate a singlet superfield Ŝ in the adjoint representation of U(1)Y ,

an SU(2)L triplet superfield T̂ (with zero hypercharge), and an SU(3)C octet superfield

Ô. The Dirac gaugino masses have also been motivated from “supersoft” supersymmetry

breaking [34]. Another notable feature of these models are, the absence of trilinear scalar
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interactions (A terms) and also the µ term, when the R-symmetry is preserved. However

one can reintroduce these terms by considering the breaking of R-symmetry [35].

Recently, there have been very interesting proposals where the U(1)R symmetry was

identified with the lepton number [14–18]. A classification of phenomenologically interest-

ing R-symmetric models has been performed in ref. [16] showing that leptonic or baryonic

RPV operators are allowed by such R-symmetries. The role of the down type Higgs is played

by the sneutrino in these models, which can acquire a significant vacuum expectation value

(vev) and a light Higgs boson with a mass of ∼ 125GeV can be produced [14–16, 18]. If

lepton number is identified with the U(1)R symmetry then even in the presence of leptonic

RPV operators one cannot generate neutrino Majorana masses violating lepton number by

two units (∆L = 2). One way to avoid such a problem is to introduce light Dirac neutrino

masses involving gauge singlet neutrino superfields with appropriate R-charges.

In this work we take a very interesting and minimalistic approach and introduce only

a single right handed neutrino superfield in the model. We shall discuss in detail at a

later stage that this model can produce one very light Dirac neutrino1 at the tree level

with an Yukawa coupling as large as ∼ 10−4 and in some cases even with an Yukawa

coupling of O(1). In the presence of only a single right-handed neutrino the low energy

spectrum includes two massless neutrinos and one must think of some other mechanism to

generate non-zero mass to at least one of these massless neutrinos. This can be achieved by

introducing a small breaking of U(1)R symmetry. We know that a non-zero gravitino mass

m3/2 implies breaking of U(1)R symmetry. In this work we shall consider a small gravitino

mass m3/2 . 10GeV in the context of anomaly mediated supersymmetry breaking. This

ensures that the effects of U(1)R symmetry breaking are also not very large. In fact, the

small breaking of R-symmetry generates small Majorana masses for the gauginos as well as

trilinear scalar interactions or the A-terms [15]. We shall show in our subsequent analysis

that these small R-breaking parameters will induce non-zero Majorana mass terms for the

neutrinos at the tree level as well as at the one-loop level. Moreover, gravitino mass in

this ballpark is also consistent with primordial nucleosynthesis, thermal leptogenesis and

gravitino as a cold dark matter candidate [36].

Our analysis shows that in the case of a large neutrino Yukawa coupling f , an additional

tree level contribution to the lightest CP-even Higgs boson mass can be obtained, which

can be significant for a value of f ∼ O(1). Note that even with such a large value of f

one can have a small active neutrino mass at the tree level. In the presence of this large f

the lightest neutralino with a large bino component and having a mass of a few hundred

MeV becomes the LSP. The long-lived gravitino (with a mass m3/2 ∼10GeV) is the next-

to-lightest supersymmetric particle (NLSP) and in order to be cosmologically consistent

this requires a reheating temperature TR . 106GeV.

One important thing to note is that in this model we can have a sterile neutrino with

mass of the order of a few keV. This can be identified as a warm dark matter candidate [37]

with appropriate relic density. We have checked that the active sterile mixing is small and

1Although the generic feature of this model would be to have a relatively heavy Dirac neutrino, by

appropriate tuning of some parameters one can have a Dirac neutrino mass less than 0.1 eV or so.
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consistent with the experimental observations of satellite based X-ray telescopes. Thus we

are able to have a situation, where appropriate values of light neutrino masses and mixing

angles are achieved along with a warm dark matter candidate in the form of sterile neutrino.

The plan of the paper is as follows. First in section 2, we give an introduction to the

U(1)R symmetric model with one right handed neutrino superfield. Section 3 describes

the scalar sector of this model along with the electroweak symmetry breaking conditions.

The generation of a ∼ 125GeV Higgs boson mass through one loop radiative corrections is

discussed in some detail. The neutrino sector in R-symmetric case is discussed in section

4. We introduce R-symmetry breaking in section 5 in the framework of anomaly medi-

ated supersymmetry breaking. Neutrino masses at the tree level are discussed in detail

accompanied by necessary analytical results. In section 6 we consider the possibility of

having a eV scale sterile neutrino in this model and discuss its incompatibility to explain

the LSND [38–40] anomaly. Next we present our discussion of a keV scale sterile neutrino

as a warm dark matter candidate in section 7. Section 8 describes the contribution to neu-

trino mass matrix at the one-loop level in the R-symmetry breaking scenario. We present

a comprehensive discussion on the results of our numerical analysis of neutrino masses and

mixing and keV dark matter in section 9, along with the constraints on RPV couplings as a

function of the gravitino mass. The case of large neutrino Yukawa coupling and its relation

to the tree level Higgs boson mass is discussed in section 10. We conclude in section 11

along with future outlook.

2 U(1)R model with a right handed neutrino

We consider a minimal extension of the model, introduced in [16], with the standard MSSM

superfields Ĥu, Ĥd, Q̂i, Û
c
i , D̂

c
i , L̂i, Ê

c
i (i = 1, 2, 3), along with one right handed neutrino

superfield N̂ c. In addition to this, vector like SU(2)L doublet superfields R̂u and R̂d,

with opposite hypercharge (Y = 1,−1 respectively) are considered. These doublets, with

appropriate R charge assignments, were originally introduced in order to have an anomaly

free framework [33] and they are inert in nature. The reason for this inertness is, if R̂u

and R̂d acquires a vev, the R-symmetry will be broken spontaneously, which we would

like to avoid. Again, as mentioned earlier, the bino and wino do not possess Majorana

masses in the R-symmetry preserving scenario. However, they can acquire Dirac masses

and for that one has to consider superfields in the adjoint representation of the standard

model gauge group. These superfields are, a singlet Ŝ, a triplet T̂ , under SU(2)L (with

zero hypercharge), and an octet Ô, under SU(3)c. For example, by pairing the singlet Ŝ,

with the bino, one obtains a Dirac bino mass term and so on.

As discussed in ref. [15, 16], we identify the R-symmetry with lepton number symmetry

in such a way that the lepton numbers of the SM fermions are identified with the negative

of their R-charges whereas the superpartners of the SM fermions carry lepton numbers

same as their R-charges. Below we make a table of different superfields in this model with

their appropriate R-charges.
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Q̂i Û c
i D̂c

i L̂i Êc
i Ĥu Ĥd R̂u R̂d Ŝ T̂ Ô N̂ c

U(1)R 1 1 1 0 2 0 0 2 2 0 0 0 2

Table 1. U(1)R charge assignments to the superfields.

The superpotential in the R-preserving case becomes,

W = yuijĤuQ̂iÛ
c
j + µuĤuR̂d + fiL̂iĤuN̂

c + λSŜĤuR̂d + 2λT ĤuT̂ R̂d −MRN̂
cŜ

+µdR̂uĤd + λ′SŜR̂uĤd + λijkL̂iL̂jÊ
c
k + λ′ijkL̂iQ̂jD̂

c
k + 2λ′T R̂uT̂ Ĥd

+ydijĤdQ̂iD̂
c
j + yeijĤdL̂iÊ

c
j + λN N̂

cĤuĤd. (2.1)

Here the triplet T̂ under SU(2)L, is parametrised as [41, 42],

T̂ =
∑

a=1,2,3

T̂ (a),

=
1

2

(
T̂0

√
2T̂+√

2T̂− −T̂0

)
, (2.2)

where T̂ (a) = Ta
σa

2 , σa’s are the Pauli matrices and we denote T3 = T0, T+ = 1√
2
(T1 − iT2)

and T− = 1√
2
(T1 + iT2). Note that the most general superpotential contributing to the

renormalizable interactions in the Lagrangian includes other terms such as

W ′ = κN̂ cŜŜ + ηN̂ c. (2.3)

However, in this work for simplicity we will keep κ and η to be equal to zero. It is also

important to note that a term of the type µiLR̂uL̂i can, in principle, be added to the

superpotential. Nevertheless, one can rotate away this term using a redefinition of the

superfields L̂i and Ĥd such that only a linear combination of these superfields couples to

R̂u in the superpotential, which we identify as the new Ĥd. One must remember that the

above superpotential (eq. (2.1)) is written in this rotated basis.

2.1 Soft supersymmetry breaking interactions

The R-symmetric model discussed above must contain supersymmetry breaking in order

to make a realistic phenomenological model. In order to do this we have to imagine

that supersymmetry breaking is not associated with R-symmetry breaking in the global

supersymmetry case. This can be achieved by including both D-term supersymmetry

breaking as well as F-term supersymmetry breaking [16, 43]. Introducing the spurion

superfields W ′
α = λ′α + θαD

′, the Dirac gaugino mass terms appear in the Lagrangian as

LDirac
gaugino =

∫
d2θ

W ′
α

Λ

[√
2κ1 W1αŜ + 2

√
2κ2 tr(W2αT̂ ) + 2

√
2κ3 tr(W3αÔ)

]
+ h.c. (2.4)

The terms written in eq. (2.4) preserve a U(1)R symmetry under which the Wiα and W ′
α

have R-charge 1. Accordingly, R[λiα] = R[λ′α] = 1 and R[D′] = 0.
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The integration over the Grassmann coordinates generates the Dirac gaugino mass

terms as

LDirac
gaugino = −MD

1 λ1S̃ −MD
2 λ2iT̃i −MD

3 λ3aÕa + . . . , (2.5)

where MD
j = κjD

′/Λ are the Dirac gaugino masses with j = 1, 2, 3 corresponding to the

U(1)Y , SU(2)L, and SU(3)C gauge groups respectively. Here Λ is the scale at which SUSY

breaking is mediated and Ŝ, T̂ , and Ô are the chiral superfields in the adjoint representation

of the gauge groups as mentioned earlier, with

Ŝ = S +
√
2θS̃ + . . . ,

T̂ = T +
√
2θT̃ + . . . ,

Ô = O +
√
2θÕ + . . . (2.6)

The U(1)R conserving soft supersymmetry breaking terms in the scalar sector are

generated by the spurion superfield X̂ defined as X̂ = x+ θ2FX , (with 〈x〉 = 0, 〈FX〉 6= 0,

R[X̂] = 2), and can be written as

Vsoft = m2
Hu
H†

uHu +m2
Ru
R†

uRu +m2
Hd
H†

dHd +m2
Rd
R†

dRd +m2
L̃i
L̃†
i L̃i +m2

R̃i
l̃†Ri l̃Ri

+M2
N Ñ

c†Ñ c +m2
SS

†S + 2m2
T tr(T

†T ) + 2m2
Otr(O

†O) + (BµHuHd + h.c.)

−(bµiLHuL̃i + h.c.) + (tSS + h.c.) +
1

2
bS(S

2 + h.c.) + bT (tr(TT ) + h.c.)

+BO(tr(OO) + h.c.). (2.7)

We neglect the U(1)R symmetric scalar trilinear terms in the expression in eq. (2.7) because

they are assumed to be suppressed by the factor mSUSY/Λ where mSUSY ∼ 1TeV and Λ is

typically much larger than mSUSY [16]. It has been argued in ref. [44] that the dangerous tS
parameter in scenarios with Dirac gaugino masses are suppressed and that is what we shall

consider in the present work, so that this term does not introduce quadratic divergence

leading to phenomenological disaster. Note that the tadpole term (tÑcÑ c +h.c.) is absent

from the scalar potential because of R-symmetry.

The presence of the bilinear term bµiLHuL̃
i in the scalar potential can, in general, lead

to non-zero vevs2 (vi, i = 1, 2, 3) for all the three left-handed sneutrinos. However, we can

still rotate to a basis in which only one of the left-handed sneutrinos acquires a non-zero

vev. The rotation can be defined as [13]

L̂i =
vi
va
L̂a + eibL̂b, (2.8)

where L̂a is the combination of the L̂i superfields whose neutral scalar component gets a

non-zero vev va, a = 1(e) whereas the other sneutrino fields corresponding to L̂b, b =

2In this model sneutrino vevs do not violate lepton number and hence they are not constrained from the

consideration of small Majorana neutrino masses of active neutrinos.
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2, 3(µ, τ) do not acquire any vacuum expectation value, that is to say vb = 0 for b =

2, 3(µ, τ). Here va ≡
√∑

i v
2
i and the superfield L̂a is defined as

L̂a =
1

va

∑

i

viL̂i. (2.9)

The vectors {ei2} and {ei3} are orthogonal to each other and normalized to unity. In

addition, they are also orthogonal to the vector {vi}.
In this basis the term fiL̂iĤuN̂

c in the superpotential transforms into fivi
va
L̂aĤuN̂

c +

fieibL̂bĤuN̂
c. Using the freedom to choose fi such that fieib = 0, the modified neutrino

Yukawa coupling term in the superpotential looks like fL̂aĤuN̂
c, where f ≡ fivi

va
. Therefore,

in this rotated basis the right handed neutrino superfield N̂ c couples only with L̂a, a =

1(e) with a coupling strength f . Note that in this single sneutrino vev basis the soft

supersymmetry breaking bilinear term in the scalar potential involving the doublet slepton

field and the Ĥu field appears as ǫijbµaLH
i
uL̃

j
a + h.c. [a = 1(e)], where {i, j} are SU(2)

indices with ǫ12 = −ǫ21 = 1. The model can be made even more minimal by integrating

out the fields R̂u and Ĥd, as discussed in [16]. This is the situation when the left-handed

sneutrino vev 〈ν̃1〉 is much greater3 than the down-type Higgs vev 〈H0
d 〉 and can be achieved

with µ2d ≫ m2
L̃
where µd is the coefficient of the bilinear term µdR̂uĤd in the superpotential

and m2
L̃
is the soft mass squared of the left-handed sleptons. In such a case the masses

of the charged lepton and down type quarks arise because of the non-zero vev of the left-

handed sneutrino.

Furthermore, the trilinear RPV interactions in the superpotential looks like

1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k =

∑

b=2,3

viejb
va

λijkL̂aL̂bÊ
c
k + λ′ijk

vi
va
L̂aQ̂jD̂

c
k

+
1

2
(eibejcλijk)L̂bL̂cÊ

c
k +

∑

b=2,3

eibλ
′
ijkL̂bQ̂jD̂

c
k. (2.10)

From eq. (2.10) we can identify the Yukawa couplings and the trilinear R-parity violating

couplings in the single sneutrino vev basis as,

f lbk =
∑

ij

viejb
va

λijk, fdjk =
∑

i

vi
va
λ′ijk, (2.11)

λbck =
∑

ij

eibejcλijk, λ′bjk =
∑

i

eibλ
′
ijk. (2.12)

In the basis where the charged lepton (L̂b, b = 2, 3) and down type Yukawa couplings are

diagonal, the above superpotential given in eq. (2.10) can be re-written as

W diag =
∑

b=2,3

f lbL̂aL̂
′
bÊ

′c
b +

∑

k=1,2,3

fdk L̂aQ̂
′
kD̂

′c
k

+
∑

k=1,2,3

1

2
λ̃23kL̂

′
2L̂

′
3Ê

′c
k +

∑

j,k=1,2,3;b=2,3

λ̃′bjkL̂
′
bQ̂

′
jD̂

′c
k . (2.13)

3The constraints on the sneutrino vev can be obtained from the precision electroweak measurements of

the vector and axial-vector coupling of the Z boson to charged leptons as well as from the measurements

of tau lepton Yukawa coupling [14, 16].

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
1

Here the prime on the lepton (L̂′
b, b = 2, 3) and quark superfields denotes that they are

in the mass-eigenstate basis4 and λ̃, λ̃′ are the trilinear R-parity violating couplings in

that basis. In our subsequent analysis we shall work in this mass eigenstate basis and

remove the prime from the fields along with λ̃, λ̃′ → λ, λ′. Remember that we are also

working in a basis where only one left-handed sneutrino (corresponding to flavor a) gets a

vev. To reiterate, we observe that these trilinear RPV operators are consistent with the

R-symmetric superpotential. Nevertheless, this superpotential conserves lepton number

because of the identification of lepton number with R-charges and hence the lepton number

violating processes do not constrain these trilinear couplings. The flavor structures of these

trilinear R-parity violating couplings in this model will have important implications in the

context of neutrino masses and other phenomenology as we shall discuss later.

In view of the above discussion it is easy to see that the superpotential and the soft

SUSY breaking scalar potential include the following terms

W = yuijĤuQ̂iÛ
c
j+µuĤuR̂d+fL̂aĤuN̂

c+λSŜĤuR̂d+2λT ĤuT̂ R̂d−MRN̂
cŜ+W diag, (2.14)

and

Vsoft = m2
Hu
H†

uHu +m2
Rd
R†

dRd +m2
L̃a
L̃†
aL̃a +

∑

b=2,3

m2
L̃b
L̃†
bL̃b +M2

N Ñ
c†Ñ c

+m2
R̃i
l̃†Ri l̃Ri ++m2

SS
†S + 2m2

T tr(T
†T ) + 2m2

Otr(O
†O)− (bµLHuL̃a + h.c.)

+(tSS + h.c.) +
1

2
bS(S

2 + h.c.) + bT (tr(TT ) + h.c.) +BO(tr(OO) + h.c.) (2.15)

With the above superpotential and the soft SUSY breaking scalar potential, in the

R-symmetry conserving scenario, we would now like to analyze the scalar sector of this

model consisting of the CP-even neutral scalars, CP odd neutral scalars and the charged

scalars in detail. Here we assume that no CP violating phases exist in the scalar potential.

3 The scalar sector

The scalar potential comprises of four different terms.

V = VF + VD + Vsoft + Vone−loop, (3.1)

where VF is the F -term contribution to the scalar potential, VD is the D-term contribution,

Vsoft is the soft supersymmetry breaking part and Vone−loop is the one-loop contribution to

4Note, however, that the mass of the lepton of flavor a cannot be generated from the trilinear R-parity

violating operators and one must invoke R-symmetry preserving supersymmetry breaking operators to

generate a small mass.
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the scalar potential. The relevant part of the F -term contribution is,

VF =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

= |(µu + λSS + λTT0)R
0
d − fν̃LÑ

c +
√
2λTT+R

−
d |2

+|(µu + λSS + λTT0)H
0
u −

√
2λTT−H

+
u |2 + |λSH0

uR
0
d +MRÑ

c − λSH
+
u R

−
d |2

+|λT (H0
uR

0
d +H+

u R
−
d )|2 + |fH0

uÑ
c|2 + |fH+

u Ñ
c|2 + |f(ν̃LH0

u − l̃−LH
+
u )−MRS|2

+|(µu + λSS − λTT0)H
+
u −

√
2λTH

0
uT+|2 + |

√
2λTH

+
u R

0
d|2

+|
√
2λTH

0
uR

−
d |2 + |(µu + λSS − λTT0)R

−
d − f l̃−L Ñ

c +
√
2λTT−R

0
d|2 (3.2)

and the D-term contribution is given by

VD =
1

2

∑

a

DaDa +
1

2
DYDY , (3.3)

where

Da = g(H†
uτ

aHu + L̃†
iτ

aL̃i + T †λaT ) +
√
2(MD

2 T
a +MD

2 T
a†). (3.4)

The τa’s are the SU(2) generators in the fundamental representation, whereas λa’s are

the three generators of the SU(2) group in adjoint representation. Again, the DY is com-

puted as,

DY =
g′

2
(H+

u Hu − L̃+
i L̃i) +

√
2MD

1 (S + S†). (3.5)

Here g and g′ are SU(2)L and U(1)Y gauge couplings respectively.

Therefore using eq. (3.4) and eq. (3.5), we expand eq. (3.3) and obtain the contribution

to the scalar potential from D-terms as

VD =
g′2

8
(|H+

u |2 + |H0
u|2 − |ν̃0i |2 − |l̃−i |2)2 + (MD

1 )2(S + S†)2 + (MD
2 )2(T0 + T †

0 )
2

+
g
′√

2

2
MD

1 (S + S†)(|H+
u |2 + |H0

u|2 − |ν̃0i |2 − |l̃−i |2)

+
g2

8
(|H+

u |2 − |H0
u|2 + |ν̃0i |2 − |l̃−i |2 + 2|T+|2 − 2|T−|2)2

+
g2

8
((H+

u )∗H0
u + (l̃−i )

∗ν̃0i +
√
2(T− − T+)T

∗
0 + h.c.)2 − (MD

2 )2

2
((T+ − T−)− h.c.)2

−g
2

8
((H0

u)
∗H+

u + (l̃−i )
∗ν̃0i +

√
2T0(T

∗
+ + T ∗

−)− h.c.)2 +
(MD

2 )2

2
((T+ + T−) + h.c.)2

+
gMD

2

2
((T+ + T−) + h.c.)((H+

u )∗H0
u + (l̃−i )

∗ν̃0i +
√
2(T− − T+)T

∗
0 + h.c.)

−gM
D
2

2
((T+ − T−)− h.c.)((H0

u)
∗H+

u + (l̃−i )
∗ν̃0i +

√
2T0(T

∗
+ + T ∗

−)− h.c.)

+

√
2gMD

2

2
(T0 + h.c.)(|H+

u |2 − |H0
u|2 + |ν̃0i |2 − |l̃−i |2 + 2|T+|2 − 2|T−|2). (3.6)
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The Soft supersymmetry breaking part of the scalar potential is given by eq. (2.15) and

the dominant radiative corrections to the quartic potential are of the form 1
2δλu(|Hu|2)2,

1
2δλν(|ν̃a|2)2, and 1

2δλ3|H0
u|2|ν̃a|2. The coefficients of these quartic terms are [45]

δλu =
3y4t
16π2

ln

(
mt̃1

mt̃2

m2
t

)
+

5λ4T
16π2

ln

(
m2

T

v2

)
+

λ4S
16π2

ln

(
m2

S

v2

)

− 1

16π2
λ2Sλ

2
T

m2
T −m2

S

(
m2

T

{
ln

(
m2

T

v2

)
− 1

}
−m2

S

{
ln

(
m2

S

v2

)
− 1

})
, (3.7)

δλν =
3y4b
16π2

ln

(
mb̃1

mb̃2

m2
b

)
+

5λ4T
16π2

ln

(
m2

T

v2

)
+

λ4S
16π2

ln

(
m2

S

v2

)

− 1

16π2
λ2Sλ

2
T

m2
T −m2

S

(
m2

T

{
ln

(
m2

T

v2

)
− 1} −m2

S{ln
(
m2

S

v2

)
− 1

})
, (3.8)

and finally,

δλ3 =
5λ4T
32π2

ln(
m2

T

v2
) +

1

32π2
λ4S ln

(
m2

S

v2

)

+
1

32π2
λ2Sλ

2
T

m2
T −m2

S

(
m2

T

{
ln

(
m2

T

v2

)
− 1

}
−m2

S

{
ln

(
m2

S

v2

)
− 1

})
. (3.9)

These contributions to the Higgs quartic couplings can be very important for the lightest

CP-even Higgs boson to have a mass ∼ 125GeV for large stop masses and/or large values

of the couplings λT and λS .

3.1 Symmetry breaking and minimization conditions

In minimizing the scalar potential we assume that the neutral scalar fieldsH0
u, ν̃a (a = 1(e)),

S and T acquire real vacuum expectation values vu, va, vs and vT , respectively. The scalar

fields Rd and Ñ c carry R-charge 2 and they decouple from the scalar fields mentioned

above carrying R-charge 0. In order to write down the minimization conditions, first we

split the fields in terms of their real and imaginary parts: H0
u = hR + ihI , ν̃ = ν̃aR + iν̃aI ,

S = SR+ iSI and T = TR+ iTI . The resulting minimization equations with respect to hR,

ν̃R, TR, and SR fields, are

(m2
Hu

+ µ2u) + (bµaL − fMRvS)(tanβ)
−1 + λ2Sv

2
S + λ2T v

2
T + 2µuλSvS

+2µuλT vT + 2λSλT vSvT + f2v2 cos2 β +
√
2(g′MD

1 vS − gMD
2 vT )

+
2δλu + δλ3

2
v2 cos2 β − (g2 + g′2 + 4δλu)

4
v2 cos 2β = 0,

(3.10)

m2
L̃a

+ (bµaL − fMRvS) tanβ + f2v2 sin2 β +
g2 + g′2 − δλ3 + 2δλν

4
v2 cos 2β

+

(
δλ3 + 2δλν

4

)
v2 +

√
2(gMD

2 vT − g′MD
1 vS) = 0,

(3.11)
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m2
TR

+µuλT
v2

vT
sin2 β+λSλT

vS
vT
v2 sin2 β+λ2T v

2 sin2 β+
g√
2
MD

2

v2

vT
cos 2β = 0,

(3.12)

vS(m
2
SR

+ λ2Sv
2 sin2 β) +

(
µuλSv

2 sin2 β + λSλT vT v
2 sin2 β + tS

− g′√
2
MD

1 v
2 cos 2β − fMRv

2 sin 2β

2

)
= 0,

(3.13)

where we identifym2
TR

= m2
T+bT+4(MD

2 )2, m2
SR

= m2
S+bS+4(MD

1 )2+M2
R, tanβ = vu/va

and v2 = v21 + v22. The W- and the Z-boson masses can be written as

m2
W =

1

2
g2(v2 + 4v2T ),

m2
Z =

1

2
g2v2/ cos2 θW . (3.14)

The tree level ρ-parameter comes out to be

ρ ≡ m2
W

m2
Z cos2 θW

= 1 +
4v2T
v2

. (3.15)

Electroweak precision measurements of the ρ-parameter constrain the triplet vev vT to be

. 3GeV [46] and can be taken to be zero in the first approximation.

3.2 CP-even neutral scalar sector

With the help of these minimization equations, it is straightforward to write down the

neutral CP even scalar squared-mass matrix in the basis (hR, ν̃R, SR, TR). The CP even

scalar squared-mass matrix, thus, would be a symmetric 4 × 4 matrix. Note that we are

working in the R-symmetry conserving case.

The elements of the 4× 4 CP-even scalar squared-mass matrix M2
S are given by

(M2
S)11 =

(g2 + g′2)

2
v2 sin2 β + (fMRvS − bµaL)(tanβ)

−1 + 2δλuv
2 sin2 β,

(M2
S)12 = f2v2 sin 2β + bµaL − (g2 + g′2 − 2δλ3)

4
v2 sin 2β − fMRvS ,

(M2
S)13 = 2λ2SvSv sinβ+2µuλSv sinβ+2λSλT vvT sinβ+

√
2g′MD

1 v sinβ−fMRv cosβ,

(M2
S)14 = 2λ2T vT v sinβ + 2µuλT v sinβ + 2λSλT vSv sinβ −

√
2gMD

2 v sinβ,

(M2
S)22 =

(g2 + g′2)

2
v2 cos2 β + (fMRvS − bµaL) tanβ + 2δλνv

2 cos2 β,

(M2
S)23 = −

√
2g′MD

1 v cosβ − fMRv sinβ,

(M2
S)24 =

√
2gMD

2 v cosβ,

(M2
S)33 = −µuλS

v2 sin2 β

vS
− λSλT vT v

2 sin2 β

vS
− tS
vS

+
g′MD

1 v
2 cos 2β√
2vS

+
fMRv

2 sin 2β

2vS
,
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(M2
S)34 = λSλT v

2 sin2 β,

(M2
S)44 = −µuλT

v2

vT
sin2 β − λSλT vS

v2

vT
sin2 β − gMD

2√
2

v2

vT
cos 2β. (3.16)

Since we want to have the lightest CP-even Higgs boson to be doublet-like and with a mass

around 125GeV, we would require a small vev vS of the singlet S as well as large radiative

corrections to the Higgs boson mass. Because of the choices of R-charges of various fields

in this model, one cannot get tree level contributions to the lightest Higgs boson mass

proportional to λ2S and λ2T as obtained in [35, 45]. However, there can be an additional

contribution to the lightest Higgs boson mass at the tree level proportional to the square

of the neutrino Yukawa coupling f and that can be significant when f is O(1). We shall

discuss more on this scenario at a later stage. Note also that the smallness of vS and vT
can be easily obtained by keeping the corresponding soft supersymmetry breaking mass

terms mS and mT somewhat larger (& a TeV).

3.3 CP-odd neutral scalar sector

In the basis (hI , ν̃I , SI , TI) the elements of the tree-level neutral CP-odd symmetric scalar

squared-mass matrix M2
P are

(M2
P )11 = (fMRvS − bµaL)(tanβ)

−1,

(M2
P )12 = −bµaL + fMRvS ,

(M2
P )13 = −fMRv cosβ,

(M2
P )14 = 0,

(M2
P )22 = (fMRvS − bµaL) tanβ,

(M2
P )23 = −fMRv sinβ,

(M2
P )24 = 0,

(M2
P )33 = λ2Sv

2 sin2 β +m2
SR

− 2bS − 4(MD
1 )2,

(M2
P )34 = λSλT v

2 sin2 β,

(M2
P )44 = λ2T v

2 sin2 β +m2
TR

− 2bT − 4(MD
2 )2. (3.17)

The eigenvalues of the CP-odd scalar squared-mass matrix consists of a massless Goldstone

boson and three physical CP-odd Higgs bosons. Out of these three physical Higgs bosons,

one is essentially the linear combination of hI and ν̃I whereas the other two eigenstates are

composed mainly of SI and TI , the imaginary parts of the singlet S and the triplet T .

One can perform the following rotation to separate out the Goldstone mode



G

A

S′
I

T ′
I


 =




− sinβ cosβ 0 0

cosβ sinβ 0 0

0 0 1 0

0 0 0 1







hI
ν̃I
SI
TI


 , (3.18)

where tanβ = vu/va. The 4 × 4 squared-mass matrix then reduces to a 3 × 3 matrix

structure from which one can find out the physical CP-odd Higgs bosons.
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3.4 Charged scalar sector

In this U(1)R symmetric case the elements of the tree-level charged scalar squared-mass

matrix in the basis (H+
u , L̃

−∗
a , T+, (T−)∗) are given by (a = 1(e))

M±2
11 = 2

√
2gMD

2 vT − 4vSvTλSλT − 4vTλTµu − f2v2 cos2 β +
1

2
g2v2 cos2 β

+(−bµaL + fMRvS) cotβ,

M±2
12 = −bµaL + fMRvS − 1

2
f2v2 sin 2β +

1

4
g2v2 sin 2β,

M±2
13 = gMD

2 v sinβ − g2vvT sinβ√
2

−
√
2vλT (µu + vSλS − vTλT ) sinβ,

M±2
14 = gMD

2 v sinβ +
g2vvT sinβ√

2
−
√
2vλT (µu + vSλS + vTλT ) sinβ,

M±2
22 = −2

√
2gMD

2 vT − f2v2 sin2 β +
1

2
g2v2 sin2 β + (−bµaL + fMRvS) tanβ,

M±2
23 = gMD

2 v cosβ − g2vvT cosβ√
2

,

M±2
24 = gMD

2 v cosβ +
g2vvT cosβ√

2
,

M±2
33 = −bT − 2(MD

2 )2 + g2v2T +
1

2
g2v2 cos 2β − gMD

2 v
2 cos 2β√
2vT

− v2vSλSλT sin2 β

vT

+v2λ2T sin2 β − v2λTµu sin
2 β

vT
,

M±2
34 = bT + 2(MD

2 )2 − g2v2T ,

M±2
44 = −bT − 2(MD

2 )2 + g2v2T − 1

2
g2v2 cos 2β − gMD

2 v
2 cos 2β√
2vT

− v2vSλSλT sin2 β

vT

−v2λ2T sin2 β − v2λTµu sin
2 β

vT
. (3.19)

In the limit where the vev of the neutral component of the triplet is very small, the triplet

essentially decouples from the doublet fields. Considering that, the Goldstone mode can

be written as [25, 41],

G+ = (− sinβH+
u + cosβL̃−∗

a + aT+ + b(T−)∗), (3.20)

where a and b represents small admixtures of the triplet fields with the doublet Higgs-

sneutrino block. In order to evaluate the coefficients a and b, we note that the charged

scalar squared-mass matrix follows the eigenvalue equation,

−M±2
11 sinβ +M±2

12 cosβ +M±2
13 a+M±2

14 b = 0,

−M±2
12 sinβ +M±2

22 cosβ +M±2
23 a+M±2

24 b = 0. (3.21)
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Solving for a and b in terms of the charged scalar squared-mass matrix elements, we find

a = b =
√
2vT
v and finally the expression for the Goldstone mode becomes

G+ =
1√
ρ

(
− sinβH+

u + cosβL̃−∗
a +

√
2vT
v

T+ +

√
2vT
v

(T−)∗
)
, (3.22)

where ρ is the appropriate normalization factor and given by ρ = 1 +
4v2

T

v2
. The Goldstone

boson G+ gives a mass to W+ and G− ≡ (G+)∗ gives a mass to W−. The other states

orthogonal to G+ are

H+ =
1√
ρ

(
cosβH+

u + sinβL̃−∗
a +

√
2vT
v

T+ −
√
2vT
v

(T−)∗
)
,

T+
P =

1√
ρ

(√
2vT
v

H+
u −

√
2vT
v

L̃−∗
a + sinβT+ + cosβ(T−)∗

)
,

(T−
P )∗ =

1√
ρ

(√
2vT
v

H+
u +

√
2vT
v

L̃−∗
a − cosβT+ + sinβ(T−)∗

)
. (3.23)

Once again we can separate out the Goldstone mode and write down the resulting 3 × 3

symmetric charged scalar squared-mass matrix in the basis of these orthogonal states (and

their charge conjugates) to find out the physical charged scalar states.

3.5 Sum rules

We will conclude the discussion on scalar sector by presenting various sum rules for this

model. Let us look at the CP-even neutral scalar squared-mass matrix once again and

assume that the singlet and triplet vevs are very small. In such a situation these two fields

are effectively decoupled from the theory and as a result the scalar squared-mass matrix

becomes, a 2× 2 matrix. Under these assumptions, we can write down the elements of the

neutral CP-even squared-mass matrix (for the MSSM case see [47]) in a compact form as

(see eq. (3.16)),

M2
11 = M2

Z sin2 β + ξ cotβ,

M2
12 = −ξ + 1

2
M2

Z(α− 1) sin 2β =M2
21,

M2
22 = ξ tanβ +M2

Z cos2 β, (3.24)

where we have defined α = 2f2v2

M2

Z

and ξ = fMRvS − bµaL. Note that we have kept small

terms proportional to vS in this (2×2) light CP-even squared-mass matrix. The eigenvalues

of this matrix represent the square of the masses of the two physical doublet-like Higgs

bosons (remember that in this model the sneutrino of flavor a plays the role of the down

type Higgs) and they are given by

λ± =
1

2

[
(M2

Z + ζ)±∆
]
, (3.25)
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where ζ = 2ξ
sin 2β and

∆ =
[(
M2

Z − ζ
)2

cos2 2β + (M2
Z(1− α) + ζ)2 sin2 2β

] 1

2

. (3.26)

Similarly, in the decoupling limit of the singlet and triplet fields, the CP odd scalar mass

matrix has two eigenvalues. One of which corresponds to the massless Goldstone boson,

whereas the other eigenvalue being

ζ =
2(−bµaL + fMRvS)

sin 2β
≡M2

A. (3.27)

The upper bound on the squared-mass of the lightest CP-even Higgs boson (λ− ≡ m2
h)

will depend on the value of ∆. With the help of the inequality [41]

[
a2 cos2 2β + b2 sin2 2β

] 1
2 >

[
a cos2 2β + b sin2 2β

]
, (3.28)

we can write down the tree level upper bound on the lightest CP-even Higgs boson mass

depending on whether α < 1 or α > 1. However, as long as the quantity ζ ≡ M2
A > M2

Z ,

we find that the tree level upper bound on the lightest CP-even Higgs boson mass is

m2
h 6

[
M2

Z cos2 2β + f2v2 sin2 2β
]
, (3.29)

irrespective of whether α < 1 or α > 1.

It is very interesting to note that the neutrino Yukawa coupling f provides a tree level

correction to the lightest Higgs boson mass. We shall discuss later that in our model f

can be as large as O(1) and in that case this large f would certainly provide a significant

correction to the tree level mass of the lightest Higgs boson, requiring very small radiative

corrections via the triplet and the singlet as well as from the stop loop.

In a similar way we can obtain a lower bound on the heavy Higgs boson mass irrespec-

tive of α for ζ ≡M2
A > M2

Z and is given by

m2
H >

[
M2

Z sin2 2β +M2
A − f2v2 sin2 2β

]
. (3.30)

Finally we also obtain a relation between the trace of the CP-even scalar squared-mass

matrix and the trace of the CP-odd scalar squared-mass matrix, which differs from that of

the MSSM

Tr(M2
S) = Tr(M2

P ) +M2
Z + 2(bS + bT ) + 4

[
(MD

1 )2 + (MD
2 )2

]
. (3.31)

Looking at the charged Higgs boson squared-mass matrix in the limit of very heavy

triplet, we can see that the charged Higgs boson mass (mH±) can be written in terms of

the CP-odd scalar mass (MA) and the W boson mass as

m2
H± = M2

A +M2
W − f2v2 − 4vTλT (µu + λSvS). (3.32)

Let us also emphasize that we have checked that all the eigenvalues of the CP-even,

CP-odd and charged scalar squared-mass matrices (leaving aside the Goldstone bosons)

come as positive for a minimum.
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4 Neutrino sector in R-symmetric case

In the neutral fermion sector we have mixing between the neutralinos, the active neutrino

of flavor a, i.e. νe and the single right-handed neutrino N c after the electroweak symmetry

breaking.5 In order to write down the neutral fermion mass matrix, we can separate out

the relevant part of the Lagrangian as L = (ψ0+)TMN (ψ0−), where ψ0+ = (b̃0, w̃0, R̃0
d, N

c),

with R-charges +1, and ψ0− = (S̃, T̃ 0, H̃0
u, νe), with R- charges -1. The neutral fermion

mass matrix MD
χ is given by

MD
χ =




MD
1 0 g′vu√

2
− g′va√

2

0 MD
2 − gvu√

2

gva√
2

λSvu λT vu µu + λSvS + λT vT 0

MR 0 −fva −fvu


 . (4.1)

The mass matrix MD
χ can be diagonalized by a biunitary transformation involving two

unitary matrices V N and UN . This will give rise to four Dirac mass eigenstates χ̃0+
i ≡(

ψ̃0+
i

ψ̃0−
i

)
, with i = 1, 2, 3, 4 and ψ̃0+

i = V N
ij ψ

0+
j , ψ̃0−

i = UN
ij ψ

0−
j . The lightest mass eigen-

state χ̃0+
4 is identified with the light Dirac neutrino eigenstate. The other two active

neutrinos remain massless at the tree level in the R-symmetric limit.

4.1 Dirac mass of the neutrino

As we have mentioned, the smallest eigenvalue of the mass matrix MD
χ in eq. (4.1) corre-

sponds to the light Dirac neutrino mass. In order to obtain an analytical expression of this

small mass, we make a series expansion of Det(MD
χ − λsÎ), with respect to λs and then

use the characteristic equation to solve for small λs [48]

Det(MD
χ − λsÎ) = Det(MD

χ )− λsDet(MD
χ )Tr[(MD

χ )−1] = 0,

(4.2)

which implies,

λs =
1

Tr[(MD
χ )−1]

. (4.3)

From eq. (4.3) we obtain the light Dirac neutrino mass as

mD
νe =

[
MD

2 γτ + v3f sinβω
]

[
γ(τ +

√
2MD

2 (MD
1 − fv sinβ)) +MD

2 τ + (v3f sinβ)(g′λS − gλT )− v2 sin2 βω
] ,

(4.4)

where,

γ = (µu + λSvS + λT vT ),

τ = v cosβ(g tan θWMR −
√
2fMD

1 tanβ),

ω = g(MD
2 λS tan θW −MD

1 λT ). (4.5)

5In the charged fermion sector the charged lepton of flavor a (i.e. e∓) mixes with the charginos. We

shall not discuss it in this work and refer the reader for a thorough discussion in ref. [16].
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The generic spectrum of this model would include a Dirac neutrino mass ranging from a

few hundred eV to few tens of MeV. However by suitably choosing certain relationships

involving different parameters, it is possible to have a Dirac neutrino mass within 0.1 eV

or so. Therefore, to fit the small neutrino mass, the numerator of eq. (4.4) has to be very

small. This can be achieved by assuming ω → 0 and τ → 0. In this work we shall analyze

the case with τ = 0 and ω → 0. However, we shall not discuss the other case τ → 0,

ω = 0 in the present work, which can be analyzed in a straightforward way. The choice

τ = 0 gives

MR =

√
2fMD

1 tanβ

g tan θW
. (4.6)

Thus eq. (4.4) reduces to (neglecting the term containing ω in the denominator)

mD
νe =

[
v3fg sinβ(MD

2 λS tan θW −MD
1 λT )

]
[
γ
√
2MD

2 (MD
1 − fV sinβ) + (v3f sinβ)(g′λS − gλT )

] . (4.7)

The above expression in eq. (4.7) can be simplified further by assumingMD
1 ≫ fv sinβ and

λT = tan θWλS . (4.8)

With all these alterations in place, the neutrino Dirac mass can be expressed in a compact

form as

mD
νe =

v3 sinβfg√
2γMD

1 M
D
2

λT (M
D
2 −MD

1 ). (4.9)

As mentioned earlier, that in order to have a small neutrino mass, the neutrino Yukawa

coupling f need not be very small. By considering a near degeneracy between the bino

and wino Dirac masses (MD
1 and MD

2 ), it is possible to obtain a small neutrino mass. For

example, one can choose f ∼ 10−5, λT ∼ 1, and (MD
2 −MD

1 ) ∼ 10−2GeV to accommodate

a Dirac neutrino mass around 0.1 eV for MD
1 , MD

2 and µu ∼ a few hundred GeV. It is

pertinent to mention that the requirement of the degeneracy of the Dirac gaugino masses

is subject to the relations provided in eqs. (4.6) and (4.8).

However, this near degeneracy between the Dirac gaugino masses can be avoided by

assuming λT ∼ 10−4, f ∼ 10−4. As we have discussed previously, the triplet coupling

λT plays a crucial role to enhance Higgs boson mass via radiative corrections. Therefore,

in this case of small λT , we have to consider very heavy stops (with masses around a

few TeV) for having the lightest CP-even Higgs boson with a mass of 125GeV. In the

other case of λT ∼ 1, the stop masses can be around ∼ 700GeV and this makes a phe-

nomenologically interesting scenario. On the other hand, when f ∼ 1, λT ∼ 10−6 and

(MD
2 −MD

1 ) ∼ 10−2GeV, we can still have a light Dirac neutrino mass ∼ 0.1 eV and at

the same time the lightest Higgs boson mass can be ∼ 125GeV at the tree level without

requiring multi-TeV stops or large triplet coupling for substantial radiative corrections.

This is a phenomenologically interesting scenario and can be probed further.

Note that we still have two massless active neutrinos in this model and in order to

give non-zero masses to these neutrinos one must introduce either additional right-handed
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neutrino superfields with appropriate Yukawa interactions or look for R-symmetry breaking

effects leading to one-loop radiative corrections to neutrino masses. Although the first

approach is interesting and should be explored, in the remaining part of our work we shall

concentrate on the other approach and introduce a small R-symmetry breaking through a

non-zero gravitino mass.

5 R-symmetry breaking

So far we have constrained ourselves in the R-symmetry preserving case. Recent cosmolog-

ical observations imply a positive but very small vacuum energy or cosmological constant

associated with our universe [10]. In the context of a spontaneously broken supergravity

theory in a hidden sector [49], having a very small vacuum energy would require a non-

zero value of the superpotential in vacuum (< W >) and that will break R-symmetry

because superpotential carry non-zero R-charges. Since a non-zero gravitino mass also

requires a non-zero < W >, one can consider the gravitino as the order parameter of the

R-symmetry breaking.

The breaking of R-symmetry has to be communicated to the visible sector. In this

paper, we shall consider the case of anomaly mediated supersymmetry breaking playing

the role of the messenger of R-symmetry breaking as discussed in ref. [15] and coined as

anomaly mediated R-symmetry breaking (AMRB). In this situation, apart from the Majo-

rana gaugino masses and the scalar trilinear couplings, all the other R-breaking operators

are absent. Finally, since we started with an R-symmetry conserving model and afterwards

introduced the breaking of R-symmetry in order to fit neutrino oscillation parameters, it

is natural to assume that the R-breaking effects are small. This is the case with small

gravitino mass as we shall be discussing later in more detail.

In the AMRB scenario, the majorana gaugino masses, generated due to R-breaking,

are related to the gravitino mass in the following way

Mi = bi
g2i

16π2
m3/2, (5.1)

where i = 1, 2, 3 for bino, wino and gluinos respectively. The coefficients are b1 = 33
5 , b2 =

1, b3 = −3 and one has g2 = g, g1 =
√
5/3g′. The third generation trilinear scalar couplings

are

At =
β̂ht

mt

m3/2

16π2
vu, Ab =

β̂hb

mb

m3/2

16π2
va, Aτ =

β̂hτ

mτ

m3/2

16π2
va, (5.2)

where the β̂’s are written in terms of the usual beta functions as, β̂ = β
16π2 and are given

by [50, 51],

β̂ht
= ht

(
−13

15
g21 − 3g22 −

16

3
g23 + 6h2t + h2b

)
,

β̂hb
= hb

(
− 7

15
g21 − 3g22 −

16

3
g23 + h2t + 6h2b + h2τ

)
,

β̂hτ
= hτ

(
−9

5
g21 − 3g22 + 3h2b + 4h2τ

)
. (5.3)
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The trilinear scalar couplings for the first two generations can be obtained in a straight-

forward way by replacing the Yukawa couplings appropriately.

So, the Lagrangian containing R-breaking effects [15] in the AMRB scenario, can be

written as

L = M1b̃
0b̃0 +M2w̃

0w̃0 +M3g̃g̃ +
∑

b=2,3

Al
bL̃aL̃bẼ

c
b +

∑

k=1,2,3

Ad
kL̃aQ̃kD̃

c
k (5.4)

+
∑

k=1,2,3

1

2
Aλ

23kL̃2L̃3Ẽ
c
k +

∑

j,k=1,2,3;b=2,3

Aλ′

bjkL̃bQ̃jD̃
c
k +AνHuL̃aÑ

c +HuQ̃A
uŨ c.

5.1 Neutralino-neutrino mass matrix in R-breaking scenario

Our next task is to incorporate the R-breaking effects in the neutral fermion mass matrix.

Because of the presence of Majorana gaugino masses the tree-level neutralino-neutrino mass

matrix, written in the basis (b̃0, S̃, w̃0, T̃ , R̃0
d, H̃

0
u, N

c, νe), is given by

MM
χ =




M1 MD
1 0 0 0 g′vu√

2
0 − g′va√

2

MD
1 0 0 0 λSvu 0 MR 0

0 0 M2 MD
2 0 − gvu√

2
0 gva√

2

0 0 MD
2 0 λT vu 0 0 0

0 λSvu 0 λT vu 0 µu + λSvS + λT vT 0 0
g′vu√

2
0 − gvu√

2
0 µu + λSvS + λT vT 0 −fva 0

0 MR 0 0 0 −fva 0 −fvu
− g′va√

2
0 gva√

2
0 0 0 −fvu 0




.

(5.5)

In the absence of Majorana gaugino masses (M1 =M2 = 0), the pure Dirac neutrino case

discussed in section 4 is recovered from eq. (5.5) and we have one light Dirac neutrino of

mass mD
νe . This is equivalent to saying that we have two Majorana neutrinos of mass −mD

νe

and mD
νe with opposite CP parities [52].

If the gaugino Majorana mass parametersM1 andM2 are non-zero but small compared

to the corresponding Dirac gaugino mass parameters MD
1 and MD

2 then the pair of light

Majorana neutrinos will be quasi-degenerate and sometimes called a pseudo-Dirac neutrino.

By increasing the gravitino mass (which means largerM1 andM2) one can generate a larger

splitting between these two light Majorana neutrino states. Let us discuss these two cases

in the context of our model, in detail. Note that in the absence of N c, the neutralino-

neutrino mass matrix cannot produce a non-zero mass of the light neutrino even if the

gaugino Majorana mass parameters M1 and M2 are non-zero.

5.1.1 Case — 1

In this subsection, we consider a case, where R-breaking effects are very small. The two

light mass eigenstates of the neutralino-neutrino matrix in eq. (5.5) are almost degenerate,

maximally mixed and they combine to form a (pseudo)Dirac neutrino. We can evaluate

the product of these two mass eigenvalues by calculating the ratio of the determinants of

the full 8× 8 matrix and that of the upper 6× 6 block of MM
χ , without the (N c, νe) sector.
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Assuming small mixing between this neutrino sector with other neutral fermions we end

up with

−λ2 = −
[

v3 sinβfg√
2γ(MD

2 M
D
1 )

]2
λ2T
(
MD

2 −MD
1

)2
.

= −(mD
νe)

2, (5.6)

where γ is defined in eq. (4.5) and we have used the relations in eq. (4.6) and eq. (4.8).

5.1.2 Case — 2

Here we are going to consider a relatively lager value of m3/2, which is the order parameter

for R-breaking. We observe that, with this choice, there is a splitting in masses of the two

light Majorana neutrinos with a relatively smaller mixing between the two states. The

light neutrinos are predominantly right handed or left handed and the mass eigenstate

N c′ which is mostly a right handed neutrino is heavier than the mass eigenstate ν ′e with

a large left handed component. We shall explicitly show this in the section on numerical

analysis, but first let us evaluate the lightest Majorana neutrino mass, which corresponds

to the mass of ν ′e. This can be done by calculating the ratio of the determinant of the

8× 8 neutralino-neutrino mass matrix MM
χ , to that of the 7× 7 upper block of MM

χ . For

a very small neutrino mass we can assume that the eigenvalues of the 7× 7 matrix remain

unchanged from the seven heavier eigenvalues of the 8×8 matrix. This approximation can

be safely implemented as long as M1 ≫ g′2v2a
2MD

1

and M2 ≫ g2v2a
2MD

2

. We shall choose the mass

of the gravitino in such a way that these conditions are satisfied. Therefore the light active

Majorana neutrino mass at the tree level, in the R-symmetry breaking scenario is

(mν)Tree = −v2
[
gλT v

2(MD
2 −MD

1 ) sinβ
]2

[M1α2 +M2δ2]
, (5.7)

where

α =
2MD

1 M
D
2 γ tanβ

g tan θw
+
√
2v2λS tanβ(MD

1 sin2 β +MD
2 cos2 β),

δ =
√
2MD

1 v
2λT tanβ. (5.8)

In order to obtain eq. (5.7) we have used once again the relations in eq. (4.6) and eq. (4.8)

and γ has been defined previously. We can see from eq. (5.7) that mν = 0 (at the tree

level) when MD
2 = MD

1 and a small splitting of these Dirac gaugino mass parameters will

result in a value of mν in the right ballpark provided MD
1 , M

D
2 are of the order of a few

hundred GeV or 1TeV with the couplings λT , λS ∼ 10−4 or so. It is very interesting to

note that (mν)Tree is independent of the neutrino Yukawa coupling f . This is an artifact

of the relation we have used in eq. (4.6) and thus even for a large f ∼ O(1), the tree level

Majorana mass of the active neutrino can be kept very small with the above choices of

parameters. Our approximate analytical result matches very well with the full numerical

analysis as described later in this work.
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To derive an expression for the mass of the sterile neutrino, we work in the region

of parameter space, where the active neutrino becomes a pure left handed neutrino state.

Thus by excluding this left handed neutrino state, we are left with a 7 × 7 neutralino

mass matrix and the lightest eigenvalue then would correspond to the mass of the sterile

neutrino. In the limit of largeMD
1 , together with small couplings6 λS , λT , f and considering

only the dominant contributions, we eventually obtain the sterile neutrino mass as

MR
N ≃

(
M1

MD
1

)(
MR

MD
1

)
MR. (5.9)

Substituting the expression of MR, given in eq. (4.6), we reduce the sterile neutrino

mass in the form,

MR
N =M1

2f2 tan2 β

g′2
, (5.10)

which is independent of MD
1 .

6 eV scale sterile neutrino

The right handed sterile neutrino, introduced in our model can be at the eV scale or at the

keV scale depending on the relevant model parameters. In this section we shall analyze the

situation when the sterile neutrino is considered to have a mass around 1.2 eV. A mass of

the sterile neutrino, in this range, could in principle explain the LSND anomaly. We have

discussed in the previous section that there are two different cases, one where the active

and sterile neutrinos mix maximally to form a (pseudo)Dirac neutrino, and in the other

case there is a relatively large mass splitting between the sterile neutrino and the active

neutrino with a very small mixing. In the latter situation there are two distinct Majorana

neutrinos in the spectrum. Let us now discuss these two cases separately in the light of

the LSND anomaly [38–40].

6.1 Pseudo-Dirac case

When the R-breaking effects are small, the light neutrinos are almost degenerate in mass

at the tree level and with near maximal mixing between the two states. In this case,

taking into account the possible loop contributions for the active neutrinos as well as

the sterile neutrino, the neutrino mass matrix has a two texture zero structure in the

basis (N ′
R, ν

′
e, νµ, ντ ), where the prime signifies that these two states combine to form a

(pseudo)Dirac neutrino




× ⋆ 0 0

⋆ × × ×
0 × × ×
0 × × ×


 . (6.1)

6This particular choice of the couplings matches with the benchmark points with heavy stops, consid-

ered later.
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The asterisks in the (12) and (21) elements symbolise the Dirac neutrino mass obtained at

tree level from the neutralino-neutrino mass matrix MM
χ . The crosses in the mass matrix

signify the contributions to neutrino masses via loop corrections which we shall discuss

elaborately in the next section. The right handed sterile neutrino mixes maximally with

the active neutrino in the pseudo-Dirac case. As a result, we took into consideration a

small mass of the right handed neutrino, generated by loops. Finally we have a texture

two zero structure of the neutrino mass matrix, in the 3+1 scenario.7

In order to check whether such a texture of neutrino mass matrix is ruled out or not,

we consider a general neutrino mass matrix in the basis (N
′

R, ν
′

e, νµ, ντ )

Mν =




Mss Mse Msµ Msτ

Mes Mee Meµ Meτ

Mµs Mµe Mµµ Mµτ

Mτs Mτe Mτµ Mττ


 . (6.2)

This mass matrix can be diagonalised by a 4×4 PMNS matrix U which can be constructed

with 6 orthogonal rotation matrices. For simplicity, let us consider the scenario with no

CP violating phases. The neutrino mass matrix can be obtained from

Mν =




Us1 Us2 Us3 Us4

Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4







m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4







Us1 Ue1 Uµ1 Uτ1

Us2 Ue2 Uµ2 Uτ2

Us3 Ue3 Uµ3 Uτ3

Us4 Ue4 Uµ4 Uτ4


 , (6.3)

where m1, m2, m3, m4 are the physical neutrino masses and m1 ≫ m2,m3,m4. We

compare this with the two texture zero structure given in eq. (6.1)and obtain two equations

corresponding to the zeros in the mass matrix. They are as follows

Msµ = m1Us1Uµ1 +m2Us2Uµ2 +m3Us3Uµ3 +m4Us4Uµ4 = 0,

Msτ = m1Us1Uτ1 +m2Us2Uτ2 +m3Us3Uτ3 +m4Us4Uτ4 = 0. (6.4)

These equations can be further simplified with the assumption that the lightest neutrino

mass m4 could be zero. This choice is justified as the oscillation experiments are sensitive

to the mass squared differences. With this simplification, eq. (6.4) reduces to

m1Us1Uµ1 +m2Us2Uµ2 +m3Us3Uµ3 = 0,

m1Us1Uτ1 +m2Us2Uτ2 +m3Us3Uτ3 = 0. (6.5)

We notice that eq. (6.5) contains m1Us1, which is much larger than all the other terms.

Thus no cancellation between this term and the rest can satisfy eq. (6.5) and we conclude

that this texture is not viable to explain LSND anomaly.

7A detailed study of two texture zero neutrino mass matrix structure has been performed in [53].
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6.2 Majorana case

In this section we shall consider a different texture of the light neutrino mass matrix, where

we have one Majorana neutrino with a tree level mass ∼ 1.2 eV, but is composed mainly

of the right handed sterile neutrino. The other Majorana neutrino has a very small mass

at the tree level and it is essentially an active neutrino. Again taking into account possible

loop contributions to the active neutrinos, the three texture zero structure8 of the neutrino

mass matrix in the basis (N ′
R, ν

′
e, νµ, ντ ) is given by




⋆ 0 0 0

0 ⋆ × ×
0 × × ×
0 × × ×


 . (6.6)

The asterisks in the (11) and (22) elements represent the tree level Majorana masses of

N ′
R and ν ′e (with additional loop contribution in the (22) element) whereas all the other

masses are generated at the one-loop level. The state N ′
R is mostly a right handed sterile

neutrino and the active sterile mixing in this case is negligible.

Comparing the neutrino mass matrix obtained in eq. (6.3), with the three texture zero

structure of eq. (6.6), we find

m1Us1Ui1 +m2Us2Ui2 +m3Us3Ui3 +m4Us4Ui4 = 0 (i = e, µ, τ). (6.7)

Again with the assumption of the lightest neutrino mass, m4 = 0, this expression can

be simplified further. However, as argued in the previous section, eq. (6.7) cannot be

solved by taking into consideration the neutrino oscillation parameters which satisfy the

LSND anomaly.

Thus we see that this model as it is, cannot solve the LSND anomaly. Nevertheless, in

the next section we shall see that by appropriate choice of parameters we can fit the three

flavor global neutrino data in this model and at the same time the sterile neutrino can be

accommodated as a keV warm dark matter candidate.

7 Right handed neutrino as a keV warm dark matter

We are considering a situation where the Majorana sterile neutrino acquires a tree level

mass of the order of a few keV. We work in a specific region of parameter space, where

R-breaking effects are not so large implying that the gravitino mass is around a few GeV

(m3/2 ∼ 10GeV). There has been a lot of work on model building aspects of keV sterile

neutrino dark matter. For example, keV sterile neutrino dark matter has been discussed

in gauge extensions of the SM [56, 57], models of composite Dirac neutrinos [58, 59], 331

models [60, 61], models involving Froggatt-Nielsen mechanism [62] and in several other

contexts. A review of different models/mass generation mechanisms can be found in [63].

Various other issues related to keV sterile neutrinos can be found in [64, 65].

8A detailed study of three texture zero neutrino mass matrix structure has been performed in [54, 55].
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Let us give an outline of the case we have considered. The neutrino mass matrix in

the basis (N ′
R, ν

′
e, νµ, ντ ) looks like




⋆ 0 0 0

0 ⋆ × ×
0 × × ×
0 × × ×


 , (7.1)

where the stars and crosses have the same meaning as given in eq. (6.6). However, here we

have considered a set up in which the sterile neutrino has a mass around a few keV. We

also make sure that the active-sterile mixing is very small, and within the valid range given

by different X-ray experiments [66–71]. A very rough bound on the active-sterile mixing

angle can be written as [72]

θ214 ≤ 1.8× 10−5

(
1 keV

MR
N

)5

, (7.2)

where MR
N represents the Majorana mass of the right handed sterile neutrino. Therefore,

we can treat the right handed neutrino as a decoupled state and work with the effective

3 × 3 matrix of the active Majorana neutrinos. Note that the (11) element of this 3 × 3

neutrino mass matrix in the basis (ν ′e, νµ, ντ ) receives tree level as well as one-loop level

contributions whereas the other entries in this mass matrix comes only through various

loop corrections. The size of this tree level contribution to (mν)11 is controlled by the

model parameters and for suitable choices of the parameters one can obtain a tree level

value (mν)Tree . 0.1 eV. Combining with the loop contributions one can then perform a fit

to the three flavor global neutrino data.

However, if we wish the keV sterile neutrino to be a candidate for dark matter then it

should have the correct relic density (ΩNh
2 ∼ 0.1) and must satisfy the constraints coming

from X-ray experiments. An approximate formula for the relic density of sterile neutrinos

via the Dodelson-Widrow (DW) [73] mechanism is [66, 73]

ΩNh
2 ≈ 0.3

(
sin2 2θ

10−10

)(
MR

N

100 keV

)2

, (7.3)

where ΩN is the ratio of density of sterile neutrinos to the total density of the universe

and the present value of h is 0.673 [10]. Our numerical scan of the parameter space

shows that the correct relic density can be achieved only if (mν)Tree is extremely small

(∼ 10−4 eV or so).

Sterile singlet neutrino dark matter can also be produced via the resonant pro-

duction mechanism [74]. Several other model dependent production mechanisms have

been discussed in the literature [63, 75–78]. However, in this work we assume that the

relic abundance of keV sterile neutrinos is determined solely by eq. (7.3) resulting from

DW mechanism.

There have been different experimental observations which put lower limits on the

mass of the keV warm dark matter. For fermionic dark matter particles, a very robust

lower bound on their mass comes from Pauli exclusion principle. By demanding that the
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maximal (Fermi) velocity of the degenerate fermionic gas in the dwarf spheroidal galaxies

is less than the escape velocity leads to a lower bound on the mass of the sterile neutrino

dark matter MR
N > 0.41 keV [79]. This is the only model independent mass bound which

holds for any fermionic dark matter.

Model dependent bounds such as the ones coming from phase space density consider-

ations have put strong lower bounds on the mass of the sterile neutrino acting as a warm

dark matter candidate [79–81]. The authors of [82, 83] put a more stringent lower bound

on the warm dark matter mass (MR
N > 8–14 keV) by analyzing Lyman-α experimental

data. In the context of left-right symmetric model a lower bound of 1.6 keV on the mass

of the sterile neutrino warm dark matter has been discussed in [56]. In ref. [57], a lower

limit of 0.5 keV on the sterile neutrino dark matter mass has been advocated in low scale

left-right theory. In the present work we shall stick to the model independent lower bound

of 0.4 keV as discussed above. Moreover, our parameter choices are such that the active

sterile neutrino mixing is within the valid range of experimental observations.

In order to get some idea about the numbers involved let us take two examples. With

a choice of MD
1 = 805GeV, MD

2 = 800GeV, the R-symmetry breaking order parameter

m3/2 = 5GeV, tanβ = 5.5, λS = 10−4, f = 1.5 × 10−4 one produces a tree level mass of

the active Majorana neutrino (mν)Tree ≃ 2.06 × 10−4 eV, and a sterile neutrino of mass

around 0.47 keV. The active-sterile mixing is close to 4.35 × 10−7, which is within the

acceptable limit as observed by different X-ray experiments and the relic density of the

sterile neutrinos comes out to be ΩNh
2 = 0.117. Again with another set of parameters

such as MD
1 = 1200.001GeV, MD

2 = 1200GeV, m3/2 = 5GeV, tanβ = 5, λS = 1.2 and

f = 1.55 × 10−4, we obtain a sterile neutrino of 0.42 keV mass and the tree level active

Majorana neutrino mass (mν)Tree ≃ 2.2×10−4 eV with an active-sterile mixing 3.64×10−7

and ΩNh
2 = 0.114.

To conclude this section, we observe that the keV sterile neutrino in this model fits

the requirements of a good candidate for warm dark matter. With this note we shall now

discuss different loop contributions to the neutrino mass matrix, which provide Majorana

masses for the light active neutrinos with appropriate mixing between them.

8 One loop effects to generate neutrino mass

In our model only the electron neutrino acquires a mass at the tree level. The other two

neutrinos obtain their masses via one loop diagrams. At one loop level, the neutrino masses

are generated from diagrams involving charged lepton-slepton loop, quark-squark loop and

neutralino-Higgs loop respectively. We note in passing that similar onle loop calculations

have also been performed in [15], which fits neutrino masses via radiative corrections only,

without introducing an extra right handed neutrino superfield.

8.1 Charged lepton-slepton loop

We first consider the charged lepton-slepton loop which will generate Majorana mass terms

for the neutrinos of all flavors [84]. We consider only the tau-stau loop as other charged

lepton-slepton loops have very mild effect as far as neutrino mass is concerned. The con-
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Figure 1. Charged lepton-slepton loop.
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Figure 2. Quark-squark loop for d = b, s quarks and d̃ = b̃, s̃ squarks.

tribution of the stau-tau loop (see, figure 1) to the one loop neutrino mass matrix is

ml−s
ν =

1

(16π2)2

[
mτm3/2va

m2
τ̃

]
β̂τ




λ2133 λ133λ233 0

λ233λ133 λ2233 0

0 0 0


 ln

(
m2

τ̃1

m2
τ̃2

)
, (8.1)

where we have used the expression of Aτ from eq. (5.2), which provide the necessary

lepton number violation of two units in the scalar propagator. Here m2
τ̃2
> m2

τ̃1
represent

the physical squared-masses of the staus and m2
τ̃ ≃ m2

τ̃2
. In the above mass matrix we

considered e = 1, and µ, τ = 2, 3 respectively, keeping in mind that λ is antisymmetric in

the first two indices. Because of this antisymmetry property of the coupling λ, some of the

elements in ml−s
ν are zero.

8.2 Squark-quark loop

The squark-quark loop will also contribute to the light neutrino Majorana mass matrix [84].

Here we have taken into account bottom and strange squark-quark loop as shown in figure 2.
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The contribution of quark-squark loop to the one loop neutrino mass matrix is

mq−s
ν =

3

(16π2)2

[
m3/2va

m2
b̃

]
β̂b

×
[
mb

(
λ′2
133

λ′
133

λ′
233

λ′
133

λ′
333

λ′
133

λ′
233

λ′2
233

λ′
233

λ′
333

λ′
333

λ′
133

λ′
333

λ′
233

λ′2
333

)
ln

(
m2

b̃1

m2
b̃2

)
+ms

(
0 0 0

0 λ′
223

λ′
232

λ′
223

λ′
332

0 λ′
323

λ′
232

λ′
323

λ′
332

)
ln

(
m2

b̃1

m2
b̃2

)]

+
3

(16π2)2

[
m3/2va

m2
s̃

]
β̂s

×
[
mb

(
0 0 0

0 λ′
232

λ′
223

λ′
232

λ′
323

0 λ′
332

λ′
223

λ′
332

λ′
323

)
ln

[
m2

s̃1

m2
s̃2

]
+ms

(
λ′2
122

λ′
122

λ′
222

λ′
122

λ′
322

λ′
122

λ′
222

λ′2
222

λ′
222

λ′
322

λ′
322

λ′
122

λ′
322

λ′
222

λ′2
322

)
ln

[
m2

s̃1

m2
s̃2

]]
.

(8.2)

m2
b̃1,b̃2

m2
s̃1,s̃2

are the physical squared-masses of the sbottom squarks and strange squarks

respectively with m2
b̃2
> m2

b̃1
, m2

s̃2
> m2

s̃1
and m2

b̃
≃ m2

b̃2
, m2

s̃ ≃ m2
s̃2
. Since β̂b ≫ β̂s and

mb ≫ ms, the dominant contribution to the neutrino mass matrix arises from the first two

terms in eq. (8.2) as long as we assume m2
s̃ ≫ m2

b̃
. The other terms have a sub dominant

contribution to the neutrino masses and therefore, it is safe to consider only the first two

terms for computing the neutrino mass eigenvalues.

8.3 Neutralino-Higgs boson loop

We now consider the loop consisting of neutralino and Higgs propagators to generate Ma-

jorana mass of neutrinos [85, 86]. This is shown in figure 3. The loop contribution is pro-

portional to the Majorana gaugino mass parameters M1 and M2, which are much smaller

than the mass of the corresponding physical neutralino states. Note that the bilinear term

bµLH
0
uν̃

a in the scalar potential can be large in this model and this loop contribution can

be significant. In order to compute this loop we consider a simplified scenario where the

singlet and the triplet states are integrated out and we are therefore left only with the

Hu and ν̃a fields as considered earlier in the discussion of the scalar sector, generating the

CP-even physical states h,H and the CP-odd state A.
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Majorana mass term of a neutrino implies lepton number violation by two units. This

is provided by the Majorana mass insertion in the neutralino propagator. The contribution

to the neutrino mass matrix from this loop is given by

(mν)11 =
g2

64π2

∑

γ=1,2

[Zγ2 − tan θWZγ1]
2 M1

2
[
cos2 αB0(0,m

2
H ,m

2
χ̃0) + sin2 αB0(0,m

2
h,m

2
χ̃0)− sin2 βB0(0,m

2
A,m

2
χ̃0)
]

+
g2

64π2

∑

γ=3,4

[Zγ2 − tan θWZγ1]
2 M2

2
[
cos2 αB0(0,m

2
H ,m

2
χ̃0) + sin2 αB0(0,m

2
h,m

2
χ̃0)− sin2 βB0(0,m

2
A,m

2
χ̃0)
]
,

(8.3)

where tanβ = vu/va and we have used

ν̃aR ≃ v1 +
1√
2

(
H cosα− h sinα

)
, (a = 1(e))

hR ≃ v2 +
1√
2

(
H sinα+ h cosα

)
,

ν̃aI ≃ 1√
2
(G cosβ +A sinβ) . (8.4)

The summation in eq. (8.3) is taken over two pairs of nearly degenerate pseudo-Dirac

heavier neutralino states mχ̃1,2
and mχ̃3,4

, which are predominantly bino (b̃0) and wino

(w̃0) respectively. Here we have assumed that |mχ̃1,2
| ≃MD

1 ± M1

2 and |mχ̃3,4
| ≃MD

2 ± M2

2

and for a given pair the neutralino mixing matrix elements Zγ2 and Zγ1 does not change

for γ = (1, 2) and (3, 4). B0 is a Passarino-Veltman function and follow its definition as

mentioned in [84–86]. It is important to note that this one loop contribution adds only

to the (11) element of the effective 3×3 neutrino mass matrix. The other neutrino flavors

do not get any contribution to their masses from this loop because the corresponding

sneutrinos do not mix with Hu.

9 Numerical analysis

We now present the results of our detailed numerical investigations to fit the lightest Higgs

boson mass, neutrino masses and mixing angles as well as the keV sterile neutrino mass

and its mixing with the active neutrino. As mentioned earlier in the text, we analyze two

situations, one with small singlet and triplet couplings (λS and λT respectively), which

would imply heavy stops to fit the lightest Higgs boson mass whereas the other case with

light stop mass requires large λS and λT , which would provide significant radiative correc-

tions to the lightest Higgs boson mass. A set of benchmark points for the latter case is

provided below in table 2.

We chose a relatively larger value of the Dirac wino mass consistent with the allowed

range of tanβ (2.7 ≤ tanβ ≤ 17.4) obtained from the deviation in the couplings of the
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Parameters BP-1 BP-2 BP-3

MD
1 1200.001GeV 1000.001GeV 800.001GeV

MD
2 1200GeV 1000GeV 800GeV

tanβ 5 7 10

λS 1.25 1.1 0.98

λT λS tan θW ∼ 0.69 0.6 0.54

µ 590GeV 530GeV 650GeV

tS (200)3 (GeV)3 (200)3 (GeV)3 (200)3 (GeV)3

bµL −(200)2 (GeV)2 −(200)2 (GeV)2 −(200)2 (GeV)2

mS 7.6TeV 10TeV 18TeV

mT 5.46TeV 5.8TeV 1.9TeV

vS -0.6GeV -0.3GeV -0.1GeV

vT 0.1GeV 0.1GeV 0.05GeV

f 1.55× 10−4 1.1× 10−4 1.0× 10−4

MR 3.67GeV 3GeV 3.16GeV

mt̃1
= mt̃2

600GeV 900GeV 1.2TeV

bS 1TeV 1TeV 1TeV

bT 1TeV 1TeV 1TeV

m3/2 5GeV 6GeV 3GeV

mh 125.15GeV 124.9GeV 123.7GeV

MR
N 0.42 keV 0.51 keV 0.43 keV

(mν)Tree 2.17× 10−4 eV 1.86× 10−4 eV 2.4× 10−4 eV

θ214 5.05×10−7 3.64×10−7 5.53× 10−7

ΩNh
2 0.1121 0.114 0.122

Table 2. Benchmark points (with large λS and λT ) to calculate the lightest Higgs boson mass,

light active neutrino mass, mass of the sterile neutrino as well as its mixing with active neutrino

and the relic density of sterile neutrino dark matter.

Z boson to charged leptons as well as from the τ Yukawa couplings [16]. In order to

fit the neutrino data, we choose the Dirac bino mass very close to the Dirac wino mass.

Let us emphasize that in this model a large Dirac gaugino mass does not introduce any

logarithmically divergent contribution to scalar masses squared because it is cancelled by

the new scalar loop contributions [34].

In table 3 we show benchmark points corresponding to small λT ∼ 10−4. In this

case, in order to fit the neutrino data, one does not require a strong degeneracy between

MD
1 and MD

2 . It is worth mentioning once again that we have reduced the number of

independent parameter of the model by assuming certain relations between some of them

as shown in eqs. (4.6) and (4.8). One can observe from these two tables that the benchmark

points provide a lightest Higgs boson mass around 125GeV, a sterile neutrino mass in the

keV range along with a very small active-sterile mixing and a very small tree level active

neutrino Majorana mass. The mass and mixing of the sterile neutrino are in the allowed

range of values coming from X-ray observations and it can be accommodated as a warm

dark matter candidate in our model.
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Parameters BP-4 BP-5 BP-6

MD
1 1018GeV 805GeV 604GeV

MD
2 1000GeV 800GeV 600GeV

tanβ 10 5.5 7

λS 10−4 10−4 10−4

λT λS tan θW ∼ 5.5× 10−5 5.5× 10−5 5.5× 10−5

µ 700GeV 500GeV 580GeV

tS (200)3 (GeV)3 (200)3 (GeV)3 (200)3 (GeV)3

bµL −(200)2 (GeV)2 −(200)2 (GeV)2 −(200)2 (GeV)2

mS 12TeV 11.6TeV 11TeV

mT 11TeV 10.14TeV 9TeV

vS -0.1GeV -0.1GeV -0.1GeV

vT 0.1GeV 0.1GeV 0.1GeV

f 0.92× 10−4 1.5× 10−4 1.2× 10−4

MR 3.69GeV 2.62GeV 2GeV

mt̃1
= mt̃2

6.5TeV 6.5TeV 6.5TeV

bS 1TeV 1TeV 1TeV

bT 1TeV 1TeV 1TeV

m3/2 3.5GeV 5GeV 6GeV

mh 126GeV 123.1GeV 124.9GeV

MR
N 0.41 keV 0.47 keV 0.59 keV

(mν)Tree 2.41× 10−4 eV 2.06× 10−4eV 1.6× 10−4 eV

θ214 5.85×10−7 4.35×10−7 2.7× 10−7

ΩNh
2 0.119 0.117 0.114

Table 3. Benchmark points with small λS and λT .

In figure 4(a) the contours of the tree level mass (mν)Tree of the light active neutrino

in the (MD
1 -MD

2 ) plane exhibits the degeneracy required for these two parameters in order

to have a small neutrino mass. Figure 4(b) shows that the active-sterile mixing is also

dependent on the degeneracy of MD
1 and MD

2 . Since the X-ray experiments provide very

stringent constraints on the mixing, one is compelled to choose the Dirac gaugino masses

close to each other. For these two plots, all the other parameters are fixed at the values

of BP-4. In figure 4(c) we show the variation of the sterile neutrino mass in the (f -m3/2)

plane. The figure shows that for a fixed f , a larger gravitino mass produces a larger

mass of the sterile neutrino. Again we expect this to happen because the gravitino is the

order parameter of R-breaking and therefore, a larger gravitino mass creates a larger mass

splitting between the sterile and the active neutrino, which would be zero in the absence of

gravitino mass. This way the sterile neutrino mass gets more enhanced whereas the active

neutrino mass becomes smaller. On the contrary the active-sterile mixing decreases with

m3/2 for a fixed f as shown in figure 4(d). This is also expected, as a larger gravitino

mass increases the mass of the sterile neutrino and thus reduces its mixing with the active

neutrino. In figures 4 (c) and 4(d), we have fixed MD
2 at 1TeV and MD

1 at 1.018TeV,
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Figure 4. Figure (a) represents contours of tree level light neutrino mass (mν)Tree in the (MD
1
–

MD
2
) plane. The black thick line represents (mν)Tree = 0.1 eV. The blue dotted line and the red

dashed line represent (mν)Tree = 5× 10−3 eV and 5× 10−5 eV, respectively. Figure (b) represents

active-sterile mixing (θ2
14
) in the same (MD

1
–MD

2
) plane. The black thick line represents the contour

of 5 × 10−6 and the blue dotted line and the red dashed line represent contours of 5 × 10−7 and

10−8, respectively. Figures (c) and (d) show the contours of sterile neutrino mass (MR
N ) and θ2

14

in the (f–m3/2) plane. In figure (c) the black thick line corresponds to MR
N = 10 keV whereas the

blue dotted line and the red dashed line show contours of MR
N = 5 keV and 1 keV, respectively. In

figure (d) the black thick line shows a mixing of 6× 10−8 and the blue and the red line show θ2
14

=

3× 10−8 and 10−8, respectively.

corresponding to BP-4 in table 3. In figure 5 the contours of (a) MR
N , (b) θ214 and (c)

(mν)Tree are shown in the (MD
1 –m3/2) plane and in (d) contours of θ214 are presented in the

(f–MD
1 ) plane for other parameter choices shown in BP-4. One can see from figure 5(a)

that for large values of MD
1 , the sterile neutrino mass MR

N is almost insensitive to MD
1 as

expected from eq. (5.10). However, the mixing θ214 increases with MD
1 for a fixed m3/2 and

this is because of the fact that the light neutrino mass mν also increases with MD
1 for a

fixed MD
2 and m3/2 (see figure 5(c)) and thus leads to an increase in θ214. The variation of

θ214 in the (f–MD
1 ) plane can also be explained in a similar way by looking at eq. (5.7).

We have also presented two scatter plots in the (MR
N -θ214) plane in figures 6 and 7 show-

ing the allowed region after taking into account the constraints from the X-ray experiments

as well as the lower bound of 0.4 keV on the sterile neutrino mass, discussed earlier. On
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Figure 5. Figure (a) represents contours of MR
N in the (MD

1
–m3/2) plane. The red dashed line

shows a sterile neutrino of mass 1.6 keV whereas the blue dotted and the thick black line shows

a sterile neutrino mass of 2.5 keV and 4 keV, respectively. In figure (b) θ2
14

contours are shown

in the same plane. The contours are 5 × 10−7 (black-thick), 8 × 10−8 (blue-dotted) and 3 × 10−8

(red-dashed), respectively. In figure (c) we show the variation of tree level active neutrino mass mν

in the (MD
1
–m3/2). The outermost contours represent (mν)Tree = 10−3 eV. Finally in figure (d) we

plot the contours of θ2
14

in the (MD
1
–f) plane.

top of that we have also shown the points satisfying the correct dark matter relic density

at 3σ (ΩDMh
2 = 0.1199 ± 0.0027 at 1σ) as obtained from the recent observations of the

PLANCK experiment [10].

Note that in this model the gravitino is the LSP for the parameter region discussed

so far and can, in principle, be a candidate for dark matter. So, in general, one can have

two component dark matter in this model. However, in figures 6 and 7 we have assumed

that the dark matter relic density is entirely due to the sterile neutrino. A more detailed

analysis of this two component dark matter scenario is beyond the scope of the present

work. In order to generate these two plots we have varied all the parameters, which play

an important role in sterile neutrino mass and active sterile mixing. This plot has been

generated by varying the model parameters in the following range: 800GeV ≤MD
1 , M

D
2 ≤

850GeV, 1GeV ≤ m3/2 ≤ 40 GeV, 10−5 ≤ f ≤ 8 × 10−4 and 2.7 ≤ tanβ ≤ 17. We have
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Figure 6. Scatter plot in sterile neutrino mass and active-sterile mixing plane showing the allowed

regions, in the heavy stop scenario. The grey region shows the part of the parameter space excluded

by the X-ray experiments. Lower bound on sterile neutrino mass excludes the blue region to the

left of the vertical line and the thick red band represents the parameter points which satisfy correct

dark matter relic density, at 3σ.

kept λS ∼ 10−4 and so obviously these points represent the heavy stop scenario. The grey

region is disallowed by the constraints from X-ray observations whereas the red line at 0.4

keV and the blue region to its left is ruled out by the lower bound on sterile neutrino mass.

Finally, note that by varying the stop mass we ensured that all the scattered points in this

plot produced the lightest Higgs boson mass in the range (123− 127)GeV. In figure 7, we

show the results of our parameter space scan in the light stop scenario. In this plot we

have used λS ∼ 1.1 and 1GeV ≤ m3/2 ≤ 40GeV whereas f and tanβ are varied in the

same range as before.

We discussed earlier that for large λS , the Dirac gaugino masses MD
1 and MD

2 need to

be almost degenerate in order to fit a small tree level mass of the active neutrino. Therefore

in this plot we fixed MD
1 = 1000.001GeV and MD

2 = 1000GeV. The grey and the blue

regions again represent the parameter points ruled out by X-ray experiments and lower

limit on the sterile neutrino mass respectively. We have also ensured that each and every

point in this scattered plot produce a Higgs boson mass in the range (123− 127)GeV. In

figure 8 we showed the variation of the relic density of the sterile neutrino with its mass.

The blue scattered points respect the X-ray constraints and the Higgs boson mass within

the range (123 − 127)GeV. The grey region shows the parameter space disfavored by the

Pauli exclusion principle discussed earlier. The red-circle, green-triangle and orange-square

points represent tree level neutrino mass greater than 10−5, 10−4 and 10−3 eV respectively.

We observe that in order to have a sterile neutrino as a warm dark matter candidate in

our model, the neutrino mass at the tree level has to be very small.
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Figure 7. Scatter plot in the (MR
N–θ2

14
) plane showing the allowed regions, in the light stop

scenario. The colored(shaded) regions are the same as described in figure 6.
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Figure 8. Scatter plot in the (MR
N–ΩNh

2) plane showing the allowed regions, in the heavy stop

scenario. The grey region describes the lower bound of the sterile neutrino mass, for it to become

a warm dark matter candidate. All the scattered points satisfy the X-ray constraints. The red-

circle scattered points show (mν)Tree > 10−5eV. The green(triangle) and the orange(square) points

represent (mν)Tree > 10−4, 10−3 respectively. The horizontal band is the 3σ allowed region for the

dark matter relic abundance.
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9.1 Neutrino masses and mixing: inverted hierarchy

For inverted hierarchy the best-fit values of solar and the atmospheric neutrino mass

squared differences and the three mixing angles are as follows [5] ∆m2
21 = 7.62× 10−5eV2,

|∆m2
31| = 2.43×10−3eV2, θ12 = 34.4◦, θ23 = 50.8◦ and θ13 = 9.1◦, where ∆m2

ij ≡ m2
i −m2

j .

The neutrino mass matrix can be obtained using

mν = UPMNS



m1 0 0

0 m2 0

0 0 m3


UT

PMNS , (9.1)

where the standard PMNS matrix UPMNS, with vanishing CP violating phases is of the form

UPMNS =




c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


 , (9.2)

and m1, m2 and m3 are the neutrino mass eigenvalues. Since the oscillation experiments

are sensitive only to the mass squared differences, therefore for simplicity, we can assume

the lightest neutrino mass m3 to be zero in this case. Thus we have m2
1 = |∆m2

31| and
m2

2 = ∆m2
21 + m2

1. For example, using the central values of the oscillation parameters

mentioned above, the three flavor neutrino mass matrix in the inverted hierarchy case

comes out to be

mIH
ν =




0.049 −0.0059 −0.0052

−0.0059 0.0211 −0.024

−0.0052 −0.024 0.0311


 . (9.3)

The three flavor active neutrino mass matrix in our model is composed mainly of the

one-loop radiative corrections as discussed above because the tree level contribution to

(mν)11 is very small in order to have the correct relic density of the keV sterile neutrino

dark matter. We shall now present the results of our numerical analysis in order to fit

the three-flavor global neutrino data in our model in the inverted hierarchy scenario. We

shall confine ourselves in the parameter region which will produce the correct value for

the lightest Higgs boson mass and where the sterile right handed neutrino can be a good

candidate for keV warm dark matter.

Note that there are contributions from the tau-stau, quark-sqaurk and neutralino-Higgs

loop to the (11) element of the neutrino mass matrix (neglecting the tree level contribution).

The trilinear R-parity violating couplings involved in these loop contributions are λ133 and

λ′133, which are identified with the tau and the bottom Yukawa couplings. The other

parameters which play a crucial role in order to fit the (11) element of the neutrino mass

matrix are tanβ,m3/2 andm
2
b̃
(assuming that the stau-tau loop contribution is smaller than

the other loop contributions). However, for a fixed value of tanβ the trilinear couplings

λ133 and λ′133 are fixed and thus this leaves us with only two parameters (m3/2 and m2
b̃
)

in terms of which (mν)11 can be fitted. Figure 9 presents the contour plots of (mν)11
in the (m3/2–mb̃) plane. Here the blue-dotted line corresponds to the maximum value of
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Figure 9. Contours of (mν)11 in the (m3/2–mb̃) plane for inverted hierarchy and tanβ = 10. See

text for details.

(mν)11 whereas the red-dashed line corresponds to the minimum value of (mν)11. These

maximum and minimum values are obtained by varying the oscillation parameters within

the 3σ range. Moreover, we also draw a third contour (the black-bold line) which represents

the upper bound on (mν)11 as obtained by the neutrinoless double beta decay experiments

kamLAND-Zen and EXO-200 [87, 88].

In order to produce this figure we fixed all the other parameters at values corresponding

to BP-4. The grey line represents a gravitino mass of 3.5GeV. On the right hand side of

this grey vertical line the mass of the sterile neutrino is ≥ 0.41 keV. Moreover, this plot

shows the allowed range of sbottom mass, required to fit (mν)11 for fixed values of tanβ

and m3/2. For example, we see that for tanβ = 10, m3/2 = 3.5GeV, the sbottom mass

is allowed in the range (1228–1242) GeV. For larger values of tanβ the allowed range of

mb̃ increases.

Bounds on the trilinear RPV couplings for inverted hierarchy. By varying the

neutrino oscillation parameters within their 3σ allowed ranges we can get maximum and

minimum values for different neutrino mass matrix elements. These allowed ranges of neu-

trino mass matrix elements can be translated into a lower and an upper bound on different

trilinear R-parity violating couplings involved. With the choice of other parameters as pre-

sented in BP-4, we present in table 4 the bounds on λ and λ′ type couplings as functions

mb̃ and m3/2 for a particular value of tanβ = 10. Note that these bounds are independent

of the choices of other parameters shown in different benchmark points because they are

calculated from the neutrino mass matrix elements which get contributions only from the

one loop corrections.
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Couplings Bounds for BP-4 Existing bounds

|λ′
233| (2.37× 10−7 − 1.03× 10−6)

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

6.8× 10−3 cosβ

|λ′
333| (2.84× 10−7 − 1.04× 10−6)

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

1.305 cosβ

|λ′
232λ

′
223| (2.11− 4.3)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

(2× 10−3) cos2 β (ν̃L2
ũL3

)2

|λ′
223λ

′
332| (2.82− 3.34)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

—

|λ′
323λ

′
332| (2.38− 4.64)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

—

Table 4. Bounds on λijk and λ
′

ijk couplings for tanβ = 10 and for inverted hierarchy.

9.2 Neutrino masses and mixing: normal hierarchy

In the case of normal hierarchy best-fit values of the neutrino oscillation parameters are

given as [5] ∆m2
21 = 7.62×10−5 eV2, |∆m2

31| = 2.55×10−3 eV2 and the three mixing angles

are θ12 = 34.4◦, θ23 = 51.5◦ and θ13 = 9.1◦. With these values and assuming that m1 = 0,

m2
2 = ∆m2

21 and m2
3 = |∆m2

31| the neutrino mass matrix in the case of normal hierarchy

turns out to be

mNH
ν =




0.0039 0.0082 0.0014

0.0082 0.0318 0.021

0.0014 0.021 0.023


 . (9.4)

Figure 10 presents the contour of (mν)11 in the (m3/2–mb̃) plane in the case of normal hier-

archy. Here the blue-dotted line corresponds to the maximum value of (mν)11 = 0.005 eV

whereas the red-dashed line corresponds to the minimum value of (mν)11 = 0.003 eV. Once

again these maximum and minimum values are obtained by varying the oscillation param-

eters within their 3σ range.

The right side of the 3.5GeV gravitino mass line can produce a keV sterile neutrino

warm dark matter with a mass greater than 0.41 keV. The values of other parameters

correspond to BP-4. Here we have chosen a small λS = 10−4, which requires heavy stops

to produce a ∼ 125GeV Higgs boson. Looking at this figure one can also see the range of

sbottom mass required to fit the value of (mν)11 for a fixed value of tanβ and m3/2. If we

take a large value of λs, then the mb̃ mass range changes slightly but the essential feature

remains the same.

Bounds on the trilinear RPV couplings for normal hierarchy. One can also con-

strain the trilinear R-parity violating couplings in the case of normal hierarchy after ana-

lyzing the other elements of the neutrino mass matrix in the light of neutrino data. The

resulting bounds are shown in table 5. Bounds on trilinear R-parity violating couplings

from various other studies can be found in [89–100].

10 Case with large neutrino Yukawa coupling

While discussing the sum rules in the scalar sector, we observed that the lightest Higgs bo-

son mass receives an additional tree level contribution due to the presence of the neutrino
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Figure 10. Contours of (mν)11 in the (m3/2–mb̃) plane for normal hierarchy case and tanβ = 10.

Couplings Bounds for BP-4 Existing Constraints

|λ′
233| (8.07× 10−7 − 1.2× 10−6)

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

6.8× 10−3 cosβ

|λ′
333| (3.74× 10−8 − 6.11× 10−7)

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

1.305 cosβ

|λ′
232λ

′
223| (2.5− 4.7)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

(2× 10−3) cos2 β (ν̃L2
ũL3

)2

|λ′
223λ

′
332| (2.4− 3.0)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

—

|λ′
323λ

′
332| (2.5− 4.69)× 10−5

( m
b̃

100 GeV

)2
(

10 GeV

m3/2

)

—

Table 5. Bounds on λijk and λ
′

ijk couplings for tanβ = 10 and for normal hierarchy.

Yukawa term fĤuL̂aN̂
c in the superpotential. In the minimal supersymmetric standard

model (MSSM) one requires a very large loop correction in order to fit the Higgs boson

mass in the range of (123–127) GeV [101]. In the next-to-minimal supersymmetric model

(NMSSM), the µ term is dynamically generated through a λSSHuHd term in the superpo-

tential and the tree level Higgs boson mass receives a correction proportional to λ2S [101].

Similarly in the singlet-triplet extension of the MSSM, a tree level correction to the Higgs

boson mass proportional to λ2S and λ2T is obtained [42]. However, in this model these tree

level contributions to the lightest Higgs boson mass are absent but because of the presence

of the neutrino Yukawa coupling f an additional contribution (∆m2
h)tree = f2v2 sin2 2β

is obtained. In figure 11 we show the variation of the lightest Higgs boson mass in this

model as a function of tanβ. We can observe from this figure that for a low value of tanβ

the Higgs boson mass of ∼ 125 GeV can be achieved with f = 0.9, even at the tree level.

Moreover, we find that mt̃1
= mt̃2

= 500 GeV is sufficient enough to provide the correct

Higgs boson mass through radiative corrections for a slightly larger value of tanβ.

In this case the parameter MR, included in the superpotential as MRN
cS, is very

large and thus the sterile neutrino becomes very heavy (see eq. (4.6)). In such a situation

the lightest neutralino with a large bino component becomes the LSP with a very small
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Figure 11. The variation of the lightest Higgs boson mass with tanβ. The dashed lines represent

the Higgs boson mass at the tree level and the continuous lines represent the Higgs boson mass

after radiative correction is added for a stop mass of 500GeV. Here red corresponds to f = 0.9

whereas blue corresponds to f = 0.8.

mass of a few hundred MeV. The mass of the LSP is essentially controlled by the R-

symmetry violating Majorana gaugino mass parameterM1. We show the benchmark points

corresponding to the large f scenario in table 6, where a tree level neutrino mass of 0.049 eV

and a lightest neutralino mass of 167MeV are obtained. Several studies can be found in

the literature [102–106] concerning very light neutralinos. These include non universal

gaugino mass models and R-parity violation. In the context of NMSSM with R-parity

conservation, a few hundred MeV bino-like lightest neutralino has been studied as a dark

matter candidate and it has been shown that one can avoid the overproduction of such a

light neutralino in the early universe through efficient annihilations [107].

However, in our case the MeV neutralino LSP can decay through R-parity violating

channels. Note, that in this case the gravitino with a mass of ∼ 10GeV decays mainly to the

lightest neutralino + photon final state and has a lifetime of ∼ 1012 sec. Such a gravitino

will decay after the big-bang nucleosynthesis (BBN) producing an unacceptable amount of

entropy. This conflicts with the predictions of BBN if one assumes the standard big-bang

cosmology and results in a constraint on the gravitino mass to be m3/2 > 10 TeV [108].

However, this constraint on the gravitino mass can be avoided if one assumes that the

universe had gone through an inflationary phase and in order to avoid the strong constraints

obtained from the photo-dissociation of the light elements because of the radiative decay of

the gravitino, one arrives at the upper bound on the reheating temperature of the universe

TR . 106GeV [105, 109]. In this case the gravitino is a stable particle in the collider

time scale. However, it cannot be a candidate for dark matter because of its small lifetime

in the cosmological time scale. Implications of such a scenario in the context of collider

studies and dark matter requires further investigations and we shall postpone this for a

future work.
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Parameters BP-7

MD
1 800GeV

MD
2 580GeV

tanβ 2.6

λS 10−5

λT λS tan θW ∼ 5.5× 10−6

µ 200GeV

tS (200)3

bµL −(200)2 (GeV)2

mS 7.39TeV

mT 7.7TeV

vS 0.5GeV

vT 0.1GeV

f 0.9

MR 7.4TeV

mt̃1
= mt̃2

500GeV

bS 1TeV

bT 1TeV

m3/2 20GeV

mh 125.5GeV

(mν)Tree 0.049 eV

m0
χ̃ 167MeV

Table 6. A benchmark point with large f and small λS and λT .

11 Conclusions and outlook

We have studied a supersymmetric model of neutrino masses and mixing with an U(1)R
symmetry and a single right handed neutrino superfield. In this model the R-symmetry is

identified with lepton number in such a way that the lepton numbers of the standard model

fermions are the same as their R-charges but with a negative sign. The neutral gauginos

are Dirac fermions in this model and one needs to introduce additional chiral superfields

in the adjoint representations of the gauge groups. The right-handed neutrino with an

appropriate R-charge allows one to write down neutrino Yukawa interactions respecting

the U(1)R symmetry. After the electroweak symmetry breaking one of the sneutrinos (we

choose it to be the electron sneutrino) develops a non-zero vacuum expectation value, which

can be significant because it is not constrained by small neutrino masses. In the neutral

fermion sector we have mixing among the neutralinos, the electron-neutrino and the right

handed neutrino consistent with the R-symmetry and that results in a small Dirac neutrino

mass at the tree level. The scalar sector of this model can accommodate a Higgs boson

with ∼ 125GeV mass. This can be achieved even at the tree level with the help of a large

Dirac neutrino Yukawa coupling (f ∼ 1) or including the one loop radiative corrections to

the tree level mass of the Higgs boson. A very important property of this R-symmetric

– 40 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
1

model is the existence of a subset of R-parity violating interactions in the superpotential

parametrized by λ and λ′ in the literature.

There are two massless active neutrinos at the tree level, which acquire non-zero masses

through one-loop radiative corrections when small R-symmetry breaking effects are turned

on through a small gravitino mass. In this work we confine ourselves in a situation where the

breaking of R-symmetry is communicated to the visible sector through anomaly mediated

supersymmetry breaking. This results in small Majorana gaugino masses as well as trilinear

scalar couplings, which were zero in the R-conserving limit. Depending on the size of the

R-symmetry breaking order parameter (gravitino mass m3/2 in this case), one can either

generate a pair of almost degenerate neutrinos forming a pseudo-Dirac neutrino or two

distinct light Majorana neutrinos from the neutralino-neutrino mass matrix at the tree

level. Our analysis shows that none of these situations can accommodate the results from

LSND experiments with a possible neutrino mass eigenstate at ∼ 1.2 eV. On the other

hand, there exists a possibility of having a Majorana sterile neutrino with a mass of the

order of a few keV, which can be a good candidate for warm dark matter. A detail scan of

our parameter space shows that there are allowed regions where the constraints on this keV

dark matter coming from X-ray observations can be satisfied and this keV sterile neutrino

can account for the dark matter relic density measured at the PLANCK and WMAP

experiments. At the same time there exists an active neutrino acquiring a very small mass

at the tree level. All these allowed points in the parameter space are consistent with a ∼
125GeV light Higgs boson. We have also identified two distinct cases of heavy and light

stop masses consistent with the Higgs boson mass, dark matter relic density constraint and

a small tree level mass of the neutrino. The collider signatures of these two cases should be

explored further which can possibly provide some testable predictions at the LHC. Because

of the mixing in the neutralino, chargino and the scalar mass matrices the sparticles can

have novel decay modes leading to interesting final states in pp collision and can be studied

in a similar way as presented in ref. [17].

We investigate the light active neutrino sector and try to fit the three flavor global

neutrino data by incorporating one loop radiative corrections to the (3 × 3) light neutrino

mass matrix. We choose certain benchmark points for our numerical analysis and show that

one can obtain bounds on the trilinear R-parity violating couplings in the superpotential

from neutrino data as a function of the R-symmetry breaking order parameter (m3/2).

We further pay a special attention to the situation with a large Dirac neutrino Yukawa

coupling f and demonstrate that a large f can induce additional tree level contribution to

the lightest Higgs boson mass to be consistent with the Higgs boson mass measurement at

the LHC experiments. Even with such a large value of f , a small Majorana mass for the

light active neutrino can be generated at the tree level. A very interesting feature of this

scenario is the existence of a few hundred MeV lightest neutralino LSP with a substantial

bino component. In this R-parity violating scenario, this MeV lightest neutralino LSP can

decay into final states involving standard model fermions and can avoid the constraints on

such a light MeV neutralino from its overproduction in the early universe. The gravitino

is the NLSP in this case with a mass m3/2 ∼ 10GeV and it is a stable particle in the

collider time scale with a lifetime of ∼ 1012 sec. This is cosmologically consistent as long
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as the reheating temperature TR . 106GeV. It would be really interesting to see the

phenomenological and cosmological implications of this MeV neutralino scenario in detail,

and in particular, at the LHC. However, such a dedicated analysis is beyond the scope of

this paper.
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