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Abstract

The new field of viral dynamics, based on within-host
modeling of viral infections, began with models of
human immunodeficiency virus (HIV), but now includes
many viral infections. Here we review developments in
HIV modeling, emphasizing quantitative findings about
HIV biology uncovered by studying acute infection, the
response to drug therapy and the rate of generation of
HIV variants that escape immune responses. We show
how modeling has revealed many dynamical features
of HIV infection and how it may provide insight into the
ultimate cure for this infection.
model, target cells are assumed to be produced at constant
Since the discovery of HIV as the etiological agent of AIDS,
numerous advances have been made in our understanding
of the molecular biology, pathogenesis, and epidemiology
of the virus, and the host immune response to it. Not least
among these has been the knowledge obtained by mathem-
atical analysis and within-host modeling of changes in viral
load and T-cell counts after initiation of potent antiretroviral
therapy in individual subjects. Indeed, modeling of the kin-
etics of HIV RNA under drug therapy has led to substantial
insights into the dynamics and pathogenesis of HIV-1 [1-6]
and the existence of multiple reservoirs that have made
eradication of the virus difficult [7,8]. Through these
analyses it has been possible to quantify the rapidity of HIV
infection and replication, the rate of virion clearance, the
lifespan of productively infected cells [1,2,4,5,9,10], and to
predict the impact of treatment and the appearance of
drug-resistant variants [11-13]. Other modeling efforts have
helped clarify controversial issues relating to the mechan-
ism of T-cell depletion in HIV infection [14] and motivated
new experimental and clinical studies. More recent
modeling studies have addressed issues such as immune
escape and viral evolution, allowing a window into the
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quantification of the immune mechanisms operating in the
setting of HIV infection.
Below we briefly review how quantitative data and

modeling have contributed to the understanding of HIV
biology.

A model of HIV infection
In the simplest and earliest models of viral infection, only
the key players in HIV infection were taken into account
[1,2]. These models included uninfected target cells, T,
infected cells, I, and free virus,V (Figure 1). Here target cells
correspond mostly to CD4+ T cells expressing an appropri-
ate co-receptor so as to be susceptible to infection. In this

rate λ, to die at rate dT per cell, and to be infected by free
virus, according to a simple mass action infection term, that
is, βVT. This generates productively infected cells, I, which
are lost at rate δ, larger than dT, to reflect viral effects in
shortening the infected cell lifespan. Finally, free viruses are
produced by infected cells at constant rate p per cell, and
are cleared from circulation at rate c per virus [15]. Thus,
the differential equations describing this system are:

dT
dt

¼ λ−dTT−βVT

dI
dt

¼ βVT−δI

dV
dt

¼ pI−cV

ð1Þ

This simple model was shown to be able to describe the
kinetics of acute HIV infection [16,17] and the establish-
ment of a steady-state - that is, a set-point - of viremia.
Only a small fraction of CD4+ T cells in the periphery

become infected with HIV [18] and thus identifying the
target cells in this model is not straightforward. However,
the model is able to describe the kinetics of T-cell deple-
tion in macaques infected with an X4-tropic virus, such
as SHIV89.6P, where most T cells are target cells [19].
Despite its ability to fit data, this model may be too simple
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Figure 1. Diagram of viral dynamics model. Uninfected cells (T) can
become infected by virus (V) to generate productively infected cells (I),
long-lived infected cells (M) or latently infected cells (L). Latent infected
cells may divide, sustaining this pool, which leaks to the productively
infected class as latent cells are activated into cells producing virus.
Dashed arrows indicate removal (death) of uninfected and infected cells,
which occur at different rates. Equation (1) in the text considers only the
uninfected cells, productively infected cells and virus.
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in that it does not include any explicit immune response
(more on this below). Nonetheless, this simple model and
generalizations that include long-lived infected cells and
latently infected cells (Figure 1) have proven to be useful
and have generated important insights into the biology of
HIV [4,9,20].

Modeling antiretroviral therapy
Early decay
The effects of antiretroviral therapy can easily be included
in equation (1), so as to analyze the dynamics of viral
decline under different therapeutic regimes. For example,
reverse transcriptase inhibitors can prevent the establish-
ment of productive infection of a cell. To model this
the infection term βVT in equation (1) is replaced by
(1 - εRTI)βVT, where εRTI is a number between 0 and 1
called the effectiveness of the reverse transcriptase inhibi-
tor. Here εRT = 1 implies a 100% effective inhibitor. Protease
inhibitors (PIs) prevent the maturation of HIV virions into
infectious particles. To model PIs, the viral population is
split into two populations,VI and VNI, where VNI represents
immature non-infectious particles created by the action of
the PI [4], and the viral equation in equation (1) is replaced
by the two equations:

dV I

dt
¼ 1−εPIð ÞpI−cV I

dVNI

dt
¼ εPIpI−cVNI

ð2Þ

where εPI is the effectiveness of the PI. This simple model
has been used successfully to fit viral load data taken
from individuals on antiretroviral therapy [2,4]. The model
explained the viral decays seen over the first week or two of
therapy, what we now call the first phase of viral decay
(Figure 2). Because free virus is cleared very rapidly, with a
half-life of about 45 minutes [21], the amount of virus mea-
sured in plasma after the first few hours of therapy reflects
the production of virus by infected cells and as such the rate
of decay of plasma viremia reflects the loss rate of product-
ively infected cells when therapy is 100% effective. If ther-
apy is less than 100% effective, then the observed decay rate
is slower than the rate of loss of productively infected cells
as some viral production continues. Thus, comparing the
first-phase decay rates of various drug regimens allows one
to compare their relative effectiveness [22] and using the
most potent regimens that approach 100% effectiveness has
led to the conclusion that productively infected cells live
about one day after they start producing virus [23].
Recently, this concept of treatment effectiveness has been
taken further by modeling the inhibitory potential of
different drug combinations, at clinical concentrations,
based on an extensive set of in vitro experiments for most
of the current anti-HIV drugs [24,25].

Second phase decay
If one follows the response to combination antiretroviral
therapy (cART) for more than a week or two, one sees that
the rapid first phase of decay of plasma viremia is followed
by a slower second phase of decay (Figure 2). This second
phase has been attributed to the existence of longer-lived
productively infected cells, perhaps resting CD4+ T cells or
cells of the macrophage/monocyte lineage [5]. Indeed, there
is clear heterogeneity in the cell types that are infected by
HIV and in the amount of virus produced by these cell
types [26], consistent with the suggestion that some
infected cells may live substantially longer than others.
Nonetheless, some modelers have suggested other explana-
tions for this second phase, such as the decline being driven
by cytotoxic T lymphocytes (CTLs), which slows as the
CTL response declines [27], or that infected cells have
an age-dependent transactivation rate, which slows the
generation of virus-producing cells [28].
Irrespective of the mechanism generating the second

phase, with continued cART viral levels decline below the
detection limit of clinical assays (50 HIV RNA copies/ml),
and with these assays one cannot determine how long the
second phase lasts.

Third and fourth phase decays
Based on the rate of second phase decay, modeling sug-
gested that 3 to 4 years of fully suppressive therapy could
eliminate the cells responsible for second phase virus [5].
However, the use of single copy assays (SCAs), which allow
one to detect as few as one HIV RNA/ml of plasma [29],
has led to the identification of a third phase of decay with a



Figure 2. Phases of viral decay under treatment. When treatment is initiated, plasma viral load undergoes a multiphasic decay, with slower
rates of viral loss as treatment progresses. One possible explanation is that there are various classes of infected cells (Figure 1) with different
turnover rates. This phenomenon makes it very difficult to predict whether viral eradication is possible and how long it would take.
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half-life estimated as 39 weeks in one study [30] and
69 weeks in another [31] with overlapping and rather large
95% confidence intervals. Palmer et al. [30], as well as
others [29,32], also suggested a fourth phase or constant
level of viremia is attained after very long times on therapy
(Figure 2). The existence of these later phases implies that
it may not be possible to eliminate HIV with antiviral
therapy alone. The sources of third and fourth phase
viremia are controversial and may include leakage of bound
virus from follicular dendritic cells (FDCs) [33-35], the
release of virus from latently infected cells and ongoing
viral replication.

Latency
HIV incorporates into the host cell genome and can estab-
lish a latent form of HIV infection, involving a small
fraction of resting memory CD4+ T cells that carry
integrated viral genomes [18,36,37]. Longitudinal analysis
suggested that this latent reservoir could persist in
patients for as long as 60 years [7]. While latently infected
cells do not produce virus in the resting state, they can do
so upon activation [36]. This feature has been explored by
modelers to explain the occasional viral ‘blips’ seen in
patients who are otherwise well-suppressed [38-42], as
well as the low levels of plasma viremia [30,41,43-46]
detected with research assays that have lower limits of
detection in the order of one HIV RNA/ml [29]. Since the
latent pool is not depleted by this occasional activation,
modeling suggested the possibility that latently infected
cells undergo homeostatic proliferation without activation
and thus maintain the latent reservoir for decades [41,45].
This hypothesis was later experimentally confirmed [47].
Modeling has also examined the role of early therapy in

preventing the establishment of latency [48] and work is
underway by both experimental and modeling groups
examining the possibility of activating latently infected cells
by therapies, such as the use of histone deacetylase
inhibitors, to potentially generate a cure for HIV [49,50]. In
assessing such new therapies, models for the activation of
latently infected cells [5,41,46] may provide critical insights.
So far, we have described the ‘ideal’ scenario for antiretro-

viral therapy, where treatment is successful in driving the
viral load below detection levels. However, viral load
sometimes rebounds and new viral strains with mutations
that confer resistance to the drugs used in the treatment
protocol are observed.
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Drug resistance
When HIV infects a cell, the viral RNA genome is reverse
transcribed into DNA. The reverse transcription process is
error prone and results in mutation at an estimated rate of
3 × 10-5 per base per generation, with about two-thirds of
these mutations being nucleotide substitutions [51]. Thus,
when HIV with its almost 10 kb genome is reverse tran-
scribed there is about a 20% chance that a base substitution
occurs. In a chronically infected patient it has been
estimated that about 108 cells are infected each day, thus
allowing all possible single and many double mutations to
be explored each day [3,11]. Also, drugs may not penetrate
all tissues and all cells with equal efficiency, and drug
‘sanctuaries’ may exist [52]. Thus, it is not surprising that
resistance to antiretroviral drugs can develop relatively
quickly, if combination therapy is not employed. This
was explained by modeling within-host viral dynamics
[12,13,53-58]. Moreover, several quantitative studies indi-
cated that resistance is more likely to pre-exist before ther-
apy is started than to appear de novo during the therapy,
especially if therapy is strong enough to curtail replication
[12,54,59]. Three factors contribute to the development of
resistance, and indeed to the observed diversity of HIV: i)
its high mutation rate, which is typical of an RNA virus, ii)
its fast lifecycle, and iii) the long-term nature of HIV
infection. These three factors combine to allow rapid viral
evolution and the generation of high diversity.
More recently, studies have shown that some patients

derive clinical benefit from continued therapy even when
the virus is resistant to the drug protocol, as the resistant
virus can be less fit than wild type [60].
Even though the introduction of antiretroviral treatment

was a great success, and improved the quality of life of
countless people, it has not become the panacea that was
expected. For several reasons, including those alluded to
above, treatment has not yet cured HIV. Thus, it has
become clear that the development of a vaccine that
prevents infection in the first place or ameliorates the
course of disease is very important. To this end a better
understanding of the clinical progression of HIV and the
immune response against it is crucial. Here too, models
have been playing a critical role as we discuss below.

Viral dynamics in primary infection
HIV is enormously diverse [61]. Thus, it was very surprising
to discover that approximately 80% of sexually transmitted
infections are the result of a single transmitted/founder
virus [62]. This discovery was a perfect example of extraor-
dinary technical developments in assay capabilities pushing
the state-of-the-art in modeling to analyze the results
generated by those assays. In this case, single genome
amplification (SGA) assays allowed an unprecedented look
at the phylogenetic structure of HIV early post-infection.
To analyze these data, a stochastic model of viral diversity
generation was developed [63,64]. The results conclusively
showed that the observed early genetic structure was most
compatible with a single virus being transmitted or
founding the complete viral population in a large fraction
of heterosexual transmissions.
A number of other modeling questions are of interest in

the setting of acute HIV infection. Very early on, it was re-
alized that the simple viral dynamics model in equation (1)
could explain the behavior of the virus during early infection
[2,4,17]. The model reproduces the fast exponential rise of
the virus, the achievement of a viral peak and the precipi-
tous decline that ensues to a quasi-steady state level,
termed the ‘set-point’ [16] (Figure 3). The exponential
increase in viral load, which has been estimated to corres-
pond to a doubling time of 0.65 days [65], has been used
with models to determine the basic reproductive number,
R0, forHIV [16,65,66] and SIV, a simianmodel for HIV infec-
tion [67]. The current best estimate of R0 for HIV is about 8,
suggesting that each infected cell on average infects 8 others
[65]. While models predict the set-point [16,68], no simple
interpretation of what determines the large variation in set-
point among individuals, at least three orders of magnitude
[69-71], has been found, as the set-point viral load depends
onall of theparameters in thebasicmodel shown inequation
(1) [16]. However, Bonhoeffer et al. [72] suggest thatmost of
thevariationinset-pointisduetovariationintherateatwhich
activatedCD4+Tcellsareproduced.
Not every encounter with HIV/SIV results in infection;

the transmission probability for HIV has been estimated as
10-3 to 10-2 per coital act [73]. This suggests that when low
levels of virus are transmitted the infection may go extinct
rather than take off. This possibility, as well as the potential
efficacy of pre- and post-exposure prophylaxis, has been
explored though the use of stochastic models of early infec-
tion [74,75]. These models suggest that extinction would
most likely occur well before virus is detectable even with
single copy assays. Thus, the low observed HIV-1 transmis-
sion rate may be a consequence of small numbers of virions
being transmitted followed by frequent extinction.
Although the modeling studies mentioned so far, dealing

with a variety of different processes in HIV infection, have
been quite successful in advancing our understanding of
HIV biology, a puzzling aspect remains: these models do
not necessarily include an explicit immune response.

Immune responses during HIV infection
The basic model given by equation (1), lacks an explicit
representation of the immune response and hence has been
called a target-cell limited model [76]. Despite this deficit,
the model fits viral kinetic data obtained both during
natural infection (Figure 3) and while patients are on
therapy. However, immune responses against HIV, at both
the cellular and humoral level, can be detected and there
are considerable data indicating a role for CD8+ T-cell



Figure 3. Data fits in primary infection. The basic model of HIV dynamics (equation (1)) provides a good description for the initial period of viral
infection, from the time of infection through the initial peak in viral load and subsequent control and achievement of a quasi steady-state (data from [16]).
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responses during HIV infection, particularly in people
called elite controllers [77-79]. Further, depleting CD8+ T
cells during acute SIV infection is associated with SIV
remaining at high levels rather than reaching a distinct peak
and then rapidly falling [80]. Also, HIV-1 tends to start
accumulating CTL escape mutations around the time of
the peak viremia, supporting the notion that CD8+ T cells
play an important role in controlling early viremia [81]. On
the other hand, increasing the initial number of HIV-
specific CD8+ T cells, by vaccinating macaques prior to
infection, did not change the growth rate or decay rate of
virus from its peak during primary infection, suggesting a
limited role of CD8+ T cells [82,83]. How to reconcile these
various observations and account for the initial immune
response in models of acute infection is still a subject of
research and debate [84,85].
While many models have included CD8 responses

[68,86], more than we can review here, they tend to lack
comparisons with experimental data leaving the field
without good estimates for the parameters that govern
CTL effects. An interesting example of these types of
models was developed to analyze experiments of SIV in
macaques where early drug treatment led to control of the
virus in the long term (akin to ‘elite controllers’) [87,88]. In
these models, the interactions between virus, CD4+ T cells
and CD8+ T cells were considered [89], as HIV-induced
depletion of CD4+ T cells may affect one’s ability to mount
CD8+ T-cell responses [90].
Modeling antibody responses to HIV is still an undevel-

oped area, although some work involving data interpret-
ation has been done [91,92]. Interestingly, in modeling
acute SIV infection an improvement in fit to the measured
viral loads was attained by allowing the viral infectivity, β in
equation (1), to decrease with time, possibly reflecting the
effects of antibody that builds up over time in reducing viral
infectivity [93]. This effect was suggested by the work of
Ma et al. [94] that showed mixing set-point plasma with
acute-phase plasma decreased the infectivity of the acute-
phase plasma.
One method of trying to estimate the strength of both

humoral and cell-mediated immune responses is to deter-
mine how fast the virus can escape from these responses
[81,92]. The basic idea, which we discuss in terms of cell-
mediated responses, is that cells infected by wild-type virus
should be susceptible to both viral cytopathic effects and
immune-mediated killing, say by CTL responses, whereas a
‘CTL escape variant’ would only be susceptible to viral
cytopathic effects. Following this approach, the basic model
of viral dynamics in equation (1) has been generalized by a
number of modelers to include both wild-type and escape
mutant virus and cells infected by these two classes of virus
[95-99]. Assuming that the concentration of virus is
proportional to the density of cells that produce that virus,
these models can be simplified to the two equations shown
in Figure 4 for wild type, w, and mutant, m, virus [99].
These equations can then be solved to yield the frequency
of escape (mutant) virus as a function of time since the start
of infection [95,99]. As one might intuit, this frequency in-
creases at a rate dependent on how fast the escape mutant
grows relative to the wild type. This rate, called the escape
rate, increases proportional to the rate of CTL-mediated
killing of the wild type, k, and decreases with the fitness
cost of escape, c. Thus, the fastest escapes would occur
when the CTL pressure, k, is high, and the cost of escape, c,
is low; whereas when there is weak CTL pressure and a
high cost of escape, the escape rate should be low [95-100].
While models with only two viral species are easy to

analyze, simulation models have looked at much more com-
plex situations in which there are multiple escapes [101].
Further, recent data using single genome amplification and



Figure 4. Immune escape at cytotoxic T lymphocyte epitopes. Schematic representation of the takeover of the viral population by virus mutated
at a particular CTL epitope escaping the host immune response. Two different epitopes (diamond and circle symbols) are representedwith different rates of
population turnover. The equations shown represent the dynamics of wild-type (w) andmutated virus (m) as they replicate with different rates (r and r(1 - c)),
where c is the ‘cost’ of escape, and the wild-type virusmutates to escape virus at rate μ (note that for simplicity we do not represent the backwardmutation).
CTL kills wild-type virus at rate k, but does not affect the escape virus.
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sequencing shows that HIV can escape at multiple T-cell
epitopes [81,102]. Thus, models are being developed that
consider the entire HIV genotype and not simply escape at
single epitopes that are treated independently [103].
Some studies quantified the efficiency of cytotoxic T

lymphocytes in killing infected cells based on the rate of
escape of viral variants at specific epitopes. These results
were used to compare the effect of immune pressure in
macaques infected with SIV with that of humans [104].
However, precise estimates of escape rates were hampered
by a lack of frequent sampling. Recently, a large effort has
been expended by the Center for HIV AIDS Vaccine Im-
munology (CHAVI) to elucidate the early immune response
during primary infection. Identifying subjects with a single
transmitted/founder sequence and then following the evo-
lution of that sequence in time using either deep sequen-
cing [105] or single genome amplification techniques has
made it possible to study the dynamics of the emergence of
both antibody and CTL escape variants in some detail
[81,92,102]. While early results suggested CTL response
against a single epitope only provides a modest amount of
pressure [104], later work using much more frequent
patient sampling showed that the CTL response against a
single epitope could account for as much as 35% of the
killing [81].
Balamurali et al. [106] measured the post-peak maximal

viral decay rates of wild-type and escape mutant virus in
macaques and found them to be the same, suggesting that
CD8+ T cells may act by non-cytolytic mechanisms. We
[107] and others [108] tried to address this issue directly by
modeling data on the decay rate of virus during cART in
the presence and absence of CD8+ T cells [107]. Our
results were consistent with CD8+ T cells mainly killing
cells before they began producing virus or with CD8s mainly
having a non-cytolytic effect, but a later analysis showed a
small cytolytic effect on productively infected cells could
not be ruled out [109]. Experiments that determine the rate
of viral decay during cART only provide information about
the fate of productively infected cells. Thus, other modeling
studies have examined the possibility that CTLs act by
killing cells before they become productively infected
[110,111]. Studies of escape have also been used in other
imaginative ways - for example, to estimate the turnover of
integrated DNA in resting CD4+ T cells, which is one of
the blocks in the elimination of infection [112].
As AIDS is characterized by a loss of CD4+ T cells, much

modeling work has focused on quantifying T-cell turnover
during HIV infection using direct labeling as well as cell
markers such as T-cell receptor excision circles. Much of
this modeling literature has recently been reviewed [113]
and thus will not be discussed here.

Future perspective
Modeling HIV dynamics has been a rich area of study that,
we believe, has spearheaded the wider field of modeling in
viral and immune system dynamics. Indeed, there is much
more research in HIV modeling than we could possibly
cover here, but we hope to have given a representative
flavor of the most innovative studies.
Looking into the future, there are several areas where we

believe modeling can still make important contributions.
Clearly, as more quantitative data on the immune response,
both cellular and humoral, become available, it will be
important to include these in the mechanistic models of
HIV infection. This will be especially important to explain
the events during primary infection, and in the analysis of
vaccine trial data in humans. These models should be able
to describe not just the time evolution of the viral load, as
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do current models, but also the kinetics of the immune
response and its effect on virus and infected cells. Another
area of interest to modelers is the potential effect of
cell-to-cell transmission of HIV-1 [114-119]. If a sizeable
proportion of infections in vivo occur this way, the
virus may be able to avoid antibody effects, which mostly
affect free virus, and thus evade the effect of the humoral
immune response. Also, the transfer of multiple viral
genomes by cell-to-cell transmission can reduce the
efficiency of cART [120]. Finally, as efforts intensify on find-
ing therapies to activate latent cells, models quantifying the
effects of such therapies and the balance of re-activation
and new infections could help inform best protocols for
the clinic.
Overall, we believe that two of the most pressing ques-

tions in the HIV field are why primary infection invariably
leads to chronicity, and why chronic infection leads to
persistence of the virus, even in the face of very potent
and durable therapy. It is unquestionable that future mod-
eling studies of novel datasets will help us to understand
both of these questions, proposing different mechanisms
and hypotheses for these observations. In so doing, we
might uncover new intervention strategies to help prevent
or eradicate infection. The idea of curing HIV infection
either, by viral eradication or functionally curing the
infection by controlling it, is gaining traction [121,122].
Modeling will surely play a role in these endeavors, and in
this way modeling will have come full circle from early
insights into viral biology to demonstrating that cure
is possible.

Conclusion
Mathematical analysis of HIV-1 viral dynamics and
immune responses has led to a number of important
insights about the dynamics and pathogenesis of HIV
infection. Modeling plasma virus decay under therapy
demonstrated the fast turnover of virus, explaining the
potential for generation of mutants and the development
of drug resistance. This early work paved the way for
many collaborations between clinicians and modelers to
understand the nature of the multiphasic viral decay
observed in treated patients, the initial expansion of virus
upon infection, the turnover of CD4+ and CD8+ T cells,
the probability of single transmitted/founder viruses and
many others. It is fair to say that most, if not all, of
these insights would not have been possible without
close interdisciplinary collaborations allowing quantitative
modeling.
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