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Kotlářská 2, 611 37, Brno, Czech Republic

Theory Division, Physics Department, CERN,

CH-1211 Geneva 23, Switzerland

E-mail: klu@physics.muni.cz

Abstract: In this paper we continue the study of the Hamiltonian formalism of the
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1 Introduction

Last year Petr Hořava proposed new approach for the formulation of UV finite quantum

theory of gravity [1–3]. The basic idea of this approach is to modify the UV behavior

of the general theory so that the theory is perturbatively renormalizable. However this

modification is only possible on condition when we abandon Lorentz symmetry in the

high energy regime: in this context, the Lorentz symmetry is regarded as an approximate

symmetry observed only at low energy.

Succeeding studies of the Hořava-Lifshitz gravity showed that in this model propagates

an extra scalar mode with respect to General Relativity and appears to be burdened with

serious shortcomings , such as instabilities, overconstrained evolution and strong coupling

at low energies [5, 6, 27]. In [7] extension of Hořava-Lifshitz gravity was proposed, after

noticing that terms involving N and its spatial derivatives can be included in the potential

term in the action without violating the symmetry of the action. The scalar mode in this

model exhibits improved behavior [8],1 but see also [26].

Since the healthy extended Hořava-Lifshitz gravity is interesting proposal of alternative

theory of gravity that contains spatial gradient of the lapse function we mean that it

deserves to be studied from different points of view. We started the investigation of this

theory in [9] where we discovered that the healthy extended Hořava-Lifshitz theory has

very interesting Hamiltonian structure. We showed that due to the presence of the spatial

derivatives of the lapse function in the Lagrangian the primary constraint pN ≈ 0 and

corresponding secondary constraint are the second class constraints. This fact makes the

theory completely different from the original Hořava-Lifshitz theory of gravity without

projectability condition that seems to suffer from severe problems as was shown explicitly

in [10, 12].2 In particular, it was shown in [12] that the Hořava-Lifshitz gravity without

the projectability condition has very peculiar property in the sense that the Hamiltonian

1It is important to stress that there exists also the second fundamental formulation of the Hořava-Lifshitz

gravity where the lapse function N depends on t only. This version is known as Hořava-Lifshitz gravity

with projectability condition. For review and extensive discussion of this version of theory, see [11].
2For an alternative approaches, see [28–30].
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constraints are the second class constraints and that the gravitational Hamiltonian vanishes

strongly. On the other hand the healthy extended Hořava-Lifshitz gravities offers surprising

resolution of this problem. Explicitly, since pN and corresponding secondary constraint are

the second class constraints their can be explicitly solved. Then we can express N as a

function of canonical variables gij , p
ij , at least at principle. Further, the reduced phase

space of healthy extended Hořava-Lifshitz theory is spanned by gij , p
ij. The important

point is that the Hamiltonian constraint as we know from the General Relativity or from

the healthy extended Hořava-Lifshitz gravity is absent. This remarkable observation implies

that the healthy extended Hořava-Lifshitz gravities can provide solution of the problem of

time in gravity [16]. In fact, according to standard analysis of the constraint systems all

phase space functional should have weakly vanishing Poisson brackets with the constraints.

In case of General Relativity the Hamiltonian is the linear combination of the constraints

and hence any observable Poisson commutes with the Hamiltonian on the constraint surface

and consequently any observable does not evolve with time. This serious problem of General

Relativity was investigated in many papers in the past, see for example [20–24]. On the

other hand the observable in the healthy extended Hořava-Lifshitz gravity is defined as

phase-space functional that is invariant under spatial diffeomorphism. This is clearly much

weaker condition than in General Relativity and hence it is possible to define observable

in natural way with clear physical interpretation.

An important drawback of our analysis is that we will not able to solve explicitly the

second class constraints and hence an explicit form of the Hamiltonian will not be found.

In fact, since the potential V given in [7] has complicated dependence on the metric gij and

the vector ai = ∂iN
N

the resulting Hamiltonian will be given as the sum of infinite terms

with probably non-local dependence on gij and pij.

For that reason we tried to implement the Batalin-Tyutin formalism [25] for the healthy

extended Hořava-Lifshitz gravity in order to convert the second class constraints to the

Poisson commuting first ones. As a result of this conversion we find the healthy extended

Hořava-Lifshitz gravity where the extended phase space is spanned by dynamical variables

(gij , p
ij, N, pN , N i, pi,Φ

1,Φ2) where Φ1,Φ2 are new-dynamical fields that are necessary for

this conversion. Unfortunately we will not be able to determine the Hamiltonian and all

the first class constraints in the closed form.

The organization of this paper is as follows. In the next section we review the main

properties of the healthy extended Hořava-Lifshitz gravity and perform its Hamiltonian

formulation. Then in section (3) we review the main properties of the Batalin-Tyutin

formalism and apply it for the healthy extended Hořava-Lifshitz theory. Finally in conclu-

sion (4) we outline our results and suggest possible extension of this work.

2 Review of healthy extended Hořava-Lifshitz gravity

Let us consider D + 1 dimensional manifold M with the coordinates xµ , µ = 0, . . . ,D and

where xµ = (t,x) ,x = (x1, . . . , xD). We presume that this space-time is endowed with the

metric ĝµν(xρ) with signature (−,+, . . . ,+). Suppose that M can be foliated by a family

of space-like surfaces Σt defined by t = x0. Let gij , i, j = 1, . . . ,D denotes the metric on Σt

– 2 –
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with inverse gij so that gijg
jk = δk

i . We further introduce the operator ∇i that is covariant

derivative defined with the metric gij . We introduce the future-pointing unit normal vector

nµ to the surface Σt. In ADM variables we have n0 =
√

−ĝ00, ni = −ĝ0i/
√

−ĝ00. We also

define the lapse function N = 1/
√

−ĝ00 and the shift function N i = −ĝ0i/ĝ00. In terms of

these variables we write the components of the metric ĝµν as

ĝ00 = −N2 + Nig
ijNj , ĝ0i = Ni , ĝij = gij ,

ĝ00 = − 1

N2
, ĝ0i =

N i

N2
, ĝij = gij − N iN j

N2
. (2.1)

Then it is easy to see that
√

− det ĝ = N
√

det g . (2.2)

The action of the healthy extended Hořava-Lifshitz theory takes the form

S =

∫

dtdDx
√

gN(KijGijklKkl − EijGijklE
kl − V (gij , ai)) , (2.3)

where we introduced the extrinsic derivative

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) , (2.4)

and where the generalized metric Gijkl is defined as

Gijkl =
1

2
(gikgjl + gilgjk) − λgijgkl , (2.5)

where λ is real constant. Note that inverse Gijkl is equal to

Gijkl =
1

2
(gikgjl + gilgjk) − λ̃gijgkl , (2.6)

where λ̃ = λ
Dλ−1 . Further, Eij are defined using the variation of D−dimensional action

W (gkl)
√

gEij =
δW

δgij
. (2.7)

These objects were introduced in the original work [1]. However it is possible to consider

theory when EijGijklE
kl is replaced with more general potential that is a function of gij

and their covariant derivatives. Further, the potential V (a, g) depends on gij and on

D−dimensional vector ai constructed from the lapse function N(t,x) as

ai =
∂iN

N
. (2.8)

It can be easily shown that the action (2.3) is invariant under foliation preserving diffeo-

morphism

t′ − t = f(t) , x′i − xi = ξi(t,x) , (2.9)

the lapse N , the shift N i and metric gij transform under (2.9) as

N ′i(t′,x′) = N i(t,x) + N j(t,x)∂jζ
i(t,x) − N i(t,x)ḟ(t) − ζ̇i(t,x) ,

N ′(t′,x′) = N(t,x) − N(t,x)ḟ(t) ,

g′ij(t
′,x′) = gij(t,x) − gil(t,x)∂jζ

l(t,x) − ∂iζ
k(t,x)gkj(t,x) (2.10)
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and also

a′i(t
′,x′) = ai(t,x) − aj(t,x)∂iξ

j(t,x) . (2.11)

Following [9] we now perform the Hamiltonian analysis of theory defined by the action (2.3).

We firstly determine the momenta conjugate to N,N i and gij from (2.3)

pN (x) =
δS

δ∂tN(x)
≈ 0 , pi(x) =

δS

δ∂tN i(x)
≈ 0 ,

pij(x) =
δS

δ∂tgij(x)
=

√
gGijklKkl(x) , (2.12)

where the first line in (2.12) implies that pN (x), pi(x) are primary constraints of the theory.

On the other hand with the help of the relation between pij and ∂tgij given on the second

line in (2.12) we easily find the corresponding Hamiltonian

H =

∫

dDx
(

N(HT +
√

gV ) + N iHi + vipi + vNpN

)

, (2.13)

where HT and Hi are given as

HT =
1√
g
pijGijklp

kl +
√

gEijGijklE
kl ,

Hi = −2gik∇jp
kj , (2.14)

and where we included the primary constraints pN (x) ≈ 0 , pi(x) ≈ 0. Note that HT ,Hi

take the same form as in Hořava-Lifshitz gravity.

As usual the preservation of the primary constraints pi(x) ≈ 0 imply the secondary

constraints

Hi(x) ≈ 0 . (2.15)

It is convenient to introduce the following slightly modified smeared form of this constraint

TS(ξ) =

∫

dDx(ξi(x)Hi(x) + ξi(x)∂iN(x)pN (x)) . (2.16)

Note that the additional term in TS is proportional to the primary constraint pN (x) ≈ 0.

The significance of this term will be clear when we calculate the Poisson bracket between

TS(ξ) and ai.

Now we come to the most interesting property of the healthy extended Hořava-Lifshitz

gravity that is related to the requirement of the preservation of the primary constraint

Θ1(x) ≡ pN (x) ≈ 0 during the time evolution of the system. Explicitly, the time evolution

of this constraint is governed by following equation

∂tΘ1(x) = {Θ1(x),H} = −HT (x) −√
gV + +

1

N
∂i

(

N
√

g
δV

δai

)

(x) ≡ −Θ2(x) ≈ 0 (2.17)

using

{

pN (x),

∫

dDyN
√

gV (g, a)

}

= −√
gV (x) +

1

N
∂i

(

N
√

g
δV

δai

)

(x) . (2.18)
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At this place we should stress one important point. Since N is dynamical variable in

healthy extended Hořava-Lifshitz theory it is natural to interpret the equation Θ2(x) ≈ 0

as the new secondary constraint between dynamical variables and that this constraint

vanishes weakly. Only succeeding analysis of the consistency of this constraint with the

time evolution of the system can determine whether this is the second class constraint that

can be explicitly solved. Explicitly, the general analysis of the constraint systems implies

that the total Hamiltonian is the sum of the original Hamiltonian and all constraints so

that it takes the form

H =

∫

dDx(N(HT +
√

gV ) + N i(Hi + pN∂iN) + vαΘα + vipi) , (2.19)

where vα are Lagrange multipliers related to the constraints Θα. Observe that as opposite

to the case of canonical gravity or standard Hořava-Lifshitz theory N does not appear as

Lagrange multiplier in the Hamiltonian (2.19).

As the next step we have to check the stability of the secondary constraints Θ2(x) ≈
0 ,TS(ξ) ≈ 0. In fact, using

{TS(ξ), gij(x)} = −ξk(x)∂kgij(x) − ∂iξ
k(x)gkj(x) − gik(x)∂jξ

k(x) ,
{

TS(ξ), pij(x)
}

= −∂kp
ij(x)ξk(x) − pij(x)∂kξ

k(x) + ∂kξ
i(x)pkj(x) + pik(x)∂kξj(x) ,

{TS(ξ), ai(x)} = −ξj(x)∂jai(x) − ∂iξ
j(x)aj(x) (2.20)

we easily find

{TS(ξ),HT (x)} = −ξk(x)∂kHT (x) −HT (x)∂kξk(x) ,

{TS(ξ), V (g(x))} = −∂iV (x)ξi(x) . (2.21)

Collecting these results we find

{TS(ξ),Θα(x)} = −∂kΘα(x)ξk(x) − Θα(x)∂kξk(x) . (2.22)

Then it is easy to see that the constraint TS(ξ) ≈ 0 is preserved during the time evolution

of the system since

∂tTS(ξ) = {TS(ξ),H} =

∫

dDx(∂kvαΘαξk) + TS(ξi∂iN
k − N i∂iξ

k) ≈ 0 (2.23)

using also the fact that

{TS(ξ),TS(η)} = TS(ξi∂iη
k − ηi∂iξ

k) . (2.24)

As the next step we analyze the stability of constraints Θ1,2. To do this we calculate

following Poisson bracket

{Θ1(x),Θ2(y)} ≡ △12(x,y) = − 1

N
∂yi

(√
g

δ2V

δai(y)δaj(y)

(

aj(y)δ(x − y) − ∂yjδ(x − y)
)

)

.

(2.25)
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Using this result we find that the time evolution of the constraint Θ1(x) is equal to

∂tΘ1(x) = {Θ1(x),H} = Θ1(x) +
{

Θ1(x),TS(N i)
}

+

+

∫

dDyv2(y) {Θ1(x),Θ2(y)} ≈
∫

dDyv2△12(x,y) . (2.26)

Clearly ∂tΘ1 ≈ 0 for v2 = 0. In the same way we determine the time evolution of the

constraint Θ2(x) ≈ 0

∂tΘ2(x) = {Θ2(x),H} ≈
∫

dDy (N {Θ2(x),HT (y) +
√

gV (y)} − v1△12(y,x)) = 0

(2.27)

using v2 = 0 and also the fact that
{

Θ2(x),TS(N i)
}

≈ 0. We see from (2.27) that the

requirement that ∂tΘ2(x) = 0 fixes v1. As the result of this analysis we find following

extended Hamiltonian

HT = H + TS(N i) +

∫

dDyvipi , (2.28)

where

H =

∫

dDx (N(HT +
√

gV ) + vαΘα) =

∫

dDx(N(HT +
√

gV ) + v1Θ1) . (2.29)

As then next step we explicitly solve Θα in order to eliminate the canonical pair pN , N

from the Hamiltonian. In this process we also replace the Poisson brackets between phase

space variables (gij , π
ij) defined on the reduced phase space with the Dirac brackets

{F (g, p), G(g, p)}D = {F (g, p), G(g, p)} −

−
∫

dDxdDy {F (q, p),Θα(x)}△αβ(x,y) {Θβ(x), G(p, q)} , (2.30)

where △αβ(x,y) is inverse of △αβ(x,y) in a sense

∫

dDz△αβ(x, z)△βγ(z,y) = δγ
αδ(x − y) . (2.31)

However due to the fact that the Poisson brackets between gij , p
ij and Θ1 vanish we find

that the Dirac brackets between canonical variables gij , p
ij coincide with the Poisson brack-

ets.

Let us now presume that the constraints Θα = 0 can be explicitly solved. The solution

of the first one Θ1 = 0 is clearly pN = 0. On the other hand it is very difficult to find the

solution of the equation Θ2 = 0. We can only guess from the structure of the constraint

Θ2 = 0 that N has following functional dependence on HT and gij

N = N(HT , g) . (2.32)

Then, using (2.32) in (2.29) we find that the Hamiltonian on the reduced phase space takes

the form

HT =

∫

dDx
[

N(HT , g)(HT +
√

gV (N(HT , g))) + vipi

]

+ TS(N i) . (2.33)

– 6 –



J
H
E
P
0
7
(
2
0
1
0
)
0
3
8

Note that the Hamiltonian (2.33) is not given as a linear combination of constraints which

is a consequence of the fact that the Hamiltonian constraint is missing in the healthy

extended Hořava-Lifshitz gravity. It is interesting to compare this result with the case

of the General Relativity or Hořava-Lifshitz gravity with projectability condition where

corresponding Hamiltonians are linear combinations of the first class constraints.

Remarkably, this fact also implies that the celebrated ”problem of time” is absent in

the healthy extended Hořava-Lifshitz gravity. As is well known the problem of time in Gen-

eral Relativity follows from the fact that General Relativity is a completely parameterized

system. That is, there is no natural notion of time due to the diffeomorphism invariance

of the theory and therefore the canonical Hamiltonian which generates time reparameteri-

zation vanishes.3 Explicitly, it is well known that the General Relativity Hamiltonian can

be written as

HGR =

∫

dDx(N(x)HGR
T (x) + N i(x)HGR

i (x)) , (2.34)

where HGR
T (x) ≈ 0 ,HGR

i (x) ≈ 0 are generators of gauge transformations. Alternatively,

we say that the General Relativity is complete constrained system defined as

HGR
T (N) = 0 ,HGR

S (N i) ≈ 0 ,∀ N ,N i , (2.35)

where

HGR
T (N) =

∫

dDxN(x)HGR
T (x) , HGR

S (N i) =

∫

dDxN i(x)HGR
i (x) . (2.36)

In fact, since the Hamiltonian is just a particular case of the gauge generator, the time

evolution is just gauge, hence nothing happens. Time is frozen.

Let us now consider observable in General Relativity. By definition the observable is

a phase space functional that weakly Poisson commutes with the smeared form of con-

straints [19]
{

A(p, q),HGR
T (N)

}

≈ 0 ,
{

A(p, q),HGR
S (N i)

}

≈ 0 . (2.37)

or alternatively
{

A(p, q),HGR
α (x)

}

=

∫

dDxΛ β
α (x,y)HGR

β (y) , (2.38)

where Λ β
α generally depend on pij, gij and where HGR

α = (HGR
T ,HGR

i ). From (2.34) we see

that any observable is also an integral of motion that is another manifestation of the claim

that the time is frozen.

Now we return to the construction of observables in healthy extended Hořava-Lifshitz

gravity. By definition observable is a phase space function that weakly Poison commutes

with generator of spatial diffeomorphism

{A(p, q),TS(ξ)} ≈ 0 (2.39)

or alternatively

{A(p, q),Hi(x)} =

∫

dDyΛ j
i (x,y)Hj(y) . (2.40)

3For detailed discussion of this issue see for example [20–24] where more references can be found.
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In other words, observable in this theory is any phase space functional that is invariant

under spatial diffeomorphism. Clearly this requirement is much weaker than in General

Relativity where the observable has to Poisson commute with Hamiltonian constraint as

well.

Explicitly, let us discuss the time evolution of observable A = A(p, g) that obeys (2.39).

By definition

dA

dt
= {A,H} ≈

∫

dDx

(

δH

δHT (x)
{A,HT (x)} +

δH

δgij(x)
{A, gij(x)}

)

.

(2.41)

We see that the phase space functional that has following Poisson bracket with HT and

with gij

{A(p, q),HT (x)} =

∫

dDyΛi(x,y)Hi(y) , {A(p, q), gij(x)} =

∫

dDyΓk
ij(x,y)Hk(y)

(2.42)

is integral of motion since

dA

dt
≈

∫

dDx

∫

dDy

(

δH

δHT (x)
Λi(x,y)Hi(y) +

δH

δgij(x)
Γk

ij(x,y)Hk(y)

)

=

= TS

(
∫

dDx
δH

δHT (x)
Λi(x,y) +

∫

dDx
δH

δgkl(x)
Γi

kl(x,y)

)

≈ 0 . (2.43)

As a particular example of observable in healthy extended Hořava-Lifshitz gravity we con-

sider the volume of spatial section

V =

∫

Σ
dDx

√

g(x) . (2.44)

Then using

{gij(x),HT (y)} = 2
1√
g
Gijklp

kl(x)δ(x − y) (2.45)

we find

{V,HT (x)} =
1

1 − λD
gijp

ji(x) , (2.46)

where we used

gijGijkl =
1

1 − λD
gkl . (2.47)

Then it is easy to see that V depends on time since

dV
dt

= {V,H} =
1

1 − λD

∫

dDx
δH

δHT (x)
gij(x)pji(x) 6= 0 . (2.48)

Now we compare this result with the situation in General Relativity. In the same way as

above we find that
dV
dt

=
1

1 − D

∫

dDxN(x)gij(x)pji(x) (2.49)

using the fact that λ = 1 , δHGR

δHGR
T

(x)
= N(x). However as opposite to the case of healthy

extended Hořava-Lifshitz gravity V is not observable in the strick sense since it does not

Poisson commute with the Hamiltonian constraint.

– 8 –
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3 Batalin-Tyutin method for healthy extended Hořava-Lifshitz gravity

In this section we show that the healthy extended Hořava-Lifshitz gravity can be formulated

as the theory with the weakly vanishing first class constraints implementing the Batalin-

Tyutin method [25]. The motivation for this analysis was the hope that turning the original

healthy extended Hořava-Lifshitz gravity into the system with the first class constraint we

would be able to find explicit form of the Hamiltonian and consequently more physical

insight into the theory. Unfortunately we will see that the resulting theory is again very

complicated with no explicit form of the phase space functionals derived.

To begin with we review the dynamical content of the healthy extended Hořava-Lifshitz

theory. We have the dynamical fields (gij , p
ij), (N i, pi), (N, pN ) together with following set

of the first class constraints

Ta = (Hi(x), pi(x)) ≈ 0 . (3.1)

and the second class constraints Θα = 0, α, β = 1, 2

{Θα(x),Θβ(y)} = △αβ(x,y) ,△αβ(x,y) = −△βα(y,x) . (3.2)

Following [25] we introduce new fields Φα with non-trivial Poisson brackets

{

Φα(x),Φβ(y)
}

= ωαβ(x,y) , (3.3)

where ωαβ is antisymmetric field independent matrix so that

ωαβ(x,y) = −ωβα(y,x) . (3.4)

Then the extended phase space is spanned by the variables (gij , p
ij, N, pN , N i, pi,Φ

α) ≡
(p, q,Φ) and our goal is to convert the second class constraints Θα into the first class

constraints that we denote as

Fα = Fα(p, q,Φ) = 0 . (3.5)

By definition, the abelian conversion of the constraints is formulated as

{Fα(x),Fβ(y)} = 0 (3.6)

together with the boundary conditions

Fα(p, q, 0) = Θα(p, q) . (3.7)

Then, following [25] we search the solution in the form

Fα(p, q,Φ) =

∞
∑

n=0

F (n)
α , F (n)

α ∼ Φn , (3.8)

where by definition

F (0)
α (p, q) = Θα(p, q) . (3.9)
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Inserting (3.8) into (3.6) we find

{Fα(x),Fβ(y)} =
∑

n

∑

m

{

F (n)
α (x),F (m)

β (y)
}

= 0 . (3.10)

Now we demand that expressions of the same order in Φ′s match. As was shown in [25]

this requirement leads to the set of infinite recursive relations
{

F (0)
α (x),F (0)

β (y)
}

(p,q)
+

{

F (1)
α (x),F (1)

β (y)
}

(Φ)
= 0 ,

{

F (1)
[α (x),F (n+1)

β] (y)
}

(Φ)
+ B

(n)
αβ (x,y) = 0 , n ≤ 0 , (3.11)

where

B
(1)
αβ (x,y) =

{

F (0)
[α (x),F (1)

β] (y)
}

(p,q)
,

B
(n)
αβ (x,y) =

1

2
B

(n)
[αβ] =

n
∑

m=0

{

F (n−m)
α (x),F (n)

β (y)
}

(p,q)
+

+

n−2
∑

m=0

{

F (n−m)
α (x),Fm+2

β (y)
}

(Φ)
, n ≥ 2 (3.12)

and where {, }(p,q) denote the Poisson brackets with respect to gij , p
ij, N i, pi, N, pN and

{, }(Φ) denote the Poisson bracket with respect to Φ′s. Antisymmetrization in α, β indices

is defined as

K[αβ] = Kαβ − Kβα . (3.13)

Now we can straightforwardly construct the individual terms in expansion Fα. For example,

F (1)
α is given as

F (1)
α (x) =

∫

dyXαβ(x,y)Φβ(y) , (3.14)

where Xαβ obey the equation
∫

dDzdDz′Xαµ(x, z)ωµν (z, z′)Xνβ(z′,y) = −△αβ(x,y) . (3.15)

In order to obtain the complete series it is essential to introduce the matrix ωαβ and Xαβ

that are inverse to ωαβ and Xαβ respectively
∫

dDyωαβ(x,y)ωβγ(y, z) = δα
γ δ(x − z) ,

∫

dDyXαβ(x,y)Xβγ(y, z) = δα
γ δ(x − z) . (3.16)

Then the particular solution of the inhomogeneous equation (3.12) is given by [25]

F (n+1)
α (x) = − 1

n + 2

∫

dDzdDz′dDz′′Φµ(z)ωµν(z, z′)Xνρ(z′, z′′)B(n)
ρα (z′′,x) . (3.17)

The general solution of (3.12) can be derived by adding to it a term containing the solution

of the homogeneous equation (3.12). However it was shown in [25] that arbitrariness in
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these solutions correspond to the canonical transformations in extended phase space. Then

for the actual computational purpose it suffices to work with the solution (3.17).

Let us now consider functional A(p, q) defined on the original phase space and denote

its extension as Ã(p, q,Φ), where Ã is such phase space functional that strongly Poisson

commutes with constraints Fα
{

Fα(x), Ã
}

= 0 (3.18)

and that obeys the boundary condition Ã(p, q, 0) = A(p, q). Following [25] we write

Ã(p, q,Φ) as power series in Φ

Ã(p, q,Φ) =

∞
∑

n=0

Ã(n) , Ã(n) ∼ Φn . (3.19)

Then it can be shown that the functionals Ã(n) are determined through following recursion

rules
{

F (1)
α (x), Ã(n+1)

}

(Φ)
+ G(n)

α (x) = 0 , n ≤ 0 , (3.20)

where

G(0)
α (x) =

{

F (0)
α , Ã(0)

}

,

G(1)
α (x) =

{

F (1)
α (x), Ã(0)

}

+
{

F (0)
α (x), Ã(1)

}

+
{

F (2)
α (x), Ã(1)

}

(Φ)
,

G(n)
α (x) =

n
∑

m=0

{

F (n−m)
α (x), Ã(m)

}

(p,q)
+

n−2
∑

m=0

{

F (n−m)
α (x), Ã(m+2)

}

(Φ)
+

+
{

F (n+1)
α (x), Ã(1)

}

(Φ)
, n ≥ 2 . (3.21)

It can be shown that the particular solution of the inhomogeneous equation (3.20) takes

the form

Ã(n+1) = − 1

n + 1

∫

dDxdDydDzΦµ(x)ωµν(x,y)Xνρ(y, z)G(n)
ρ (z) . (3.22)

The most important example of the phase space functional is the Hamiltonian H0 that in

case of healthy extended Hořava-Lifshitz theory takes the form

H0 =

∫

dDxN(HT +
√

gV ) . (3.23)

Following discussion given above we introduce the extended Hamiltonian H̃ defined on the

extended phase space

H̃ = H̃(p, q,Φ) , (3.24)

where the strong involution is required
{

Fα(x), H̃
}

= 0 . (3.25)

Note also that this Hamiltonian is subject to the boundary condition

H̃(p, q, 0) = H0(p, q) (3.26)
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As in (3.19) we express H̃ as

H̃ =

∞
∑

n=0

H̃(n) , H̃(n) ∼ Φn (3.27)

with the boundary condition

H̃(0)(p, q,Φ) = H̃(p, q, 0) = H0(p, q) . (3.28)

Again, H̃(n) can in principle be derived from the recursion relations. In particular, H̃(1) is

equal to

H̃(1) = −
∫

dDxdDydDzΦµ(x)ωµν(x,y)Xνρ(y, z) {Θρ(z),H0} . (3.29)

Finally we should consider the extension of the original first class constraints Ta given

in (3.1). By definition these constraints have weakly vanishing Poisson brackets

{Ta(x), Tb(y)} ≈ 0 , {H0, Ta(x)} ≈ 0 , {Θα(x), Tb(y)} ≈ 0 . (3.30)

As was shown in [25] their extension T̃a(p, q,Φ) , T̃a(p, q, 0) = Ta(p, q) can be constructed

in the same way as in case of general phase space functions. Moreover, it was also shown

that they have following Poisson brackets

{

T̃a(x), T̃b(y)
}

=

∫

dDzŨ c
ab(x,y, z)T̃c(z) +

∫

dDzĨα
ab(x,y, z)Θ̃α(z) ,

{

H̃, T̃a(x)
}

=

∫

dDyṼ b
a (x,y)T̃b(y) +

∫

dDyK̃α
a (x,y)Θ̃α(y) , (3.31)

where Θ̃α(x) ≡ Fα(x) and where Ũ , K̃, Ṽ are general phase space functions. Further, by

definition of the abelian extension we have following strongly vanishing Poisson brackets

{

Θ̃α(x), T̃a(y)
}

=
{

Θ̃a(x), Θ̃b(y)
}

=
{

H̃, Θ̃a(x)
}

= 0 . (3.32)

The outline of this analysis in the case of Hořava-Lifshitz gravity is following. We have

original phase space variables (gij , p
ij , N, pN , Ni, p

i) together with additional scalar degrees

of freedom (Φ1,Φ2) with the phase space structure

{

Φα(x),Φβ(y)
}

= ωαβ(x,y) . (3.33)

We also have the Hamiltonian H̃ together with the set of the first class constraints

TA(x) = (T̃a(x), Θ̃a(x)) . (3.34)

The result of the Batalin-Tyutin construction is the healthy extended Hořava-Lifshitz grav-

ity with the Hamiltonian

H̃T = H̃ +

∫

dDxλA(x)TA(x) , (3.35)
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where

H̃ = H0 −
∫

dDxdDydDzΦµ(x)ωµν(x,y)Xνρ(y, z) {Θρ(z),H0} + . . .

H̃i(x) = Hi(x) −
∫

dDydDzdDz′Φµ(y)ωµν(y, z)Xνρ(z, z′)
{

Θρ(z
′),Hi(x)

}

, (3.36)

and where

Θ̃1(x) = pN (x) −
∫

dDyX1ρ(x,y)Φρ(y) + . . . ,

Θ̃2(x) = HT (x) +
√

gV (x) −
∫

dDyX2ρ(x,y)Φρ(y) + . . . . (3.37)

In summary we find the formulation of the healthy extended Hořava-Lifshitz gravity with

the first class constraints only. Note that the Hamiltonian does not vanish on constraint

surface that has important consequence for the time evolution of observable. Explicitly,

let us consider observable that Poisson commute with all constraints

{

F̃ (p, q),TA(x)
}

≈ 0 . (3.38)

Then its time evolution is governed by the equation

dF

dt
=

{

F̃ , H̃T

}

≈
{

F̃ , H̃
}

. (3.39)

Further, as follows from (3.37) pN does not vanish in case of Batalin-Tyutin extension

of the healthy extended Hořava-Lifshitz gravity. This fact implies that the corresponding

Lagrangian contains time derivative of the lapse function in special way that is determined

by the form of the first class constraint (3.37). Unfortunately as follows from the analysis

given above it is very difficult to find corresponding Lagrangian and study this property in

more details.

4 Conclusion

Let us conclude our paper. We studied the Hamiltonian formalism of the healthy extended

Hořava-Lifshitz gravity. We found that the resulting theory seems to be well defined

theory of gravity in the sense that governs the dynamics of metric components gij and

their conjugate momenta pij. Further, the Hamiltonian formalism of healthy extended

Hořava-Lifshitz gravity shows rich structure of given theory with potentially interesting

consequences. On the other hand we also discovered many puzzling properties related

to given theory that certainly deserve further study. For example, it is very difficult

to see how this theory is related to the Hamiltonian formulation of General Relativity.

It is possible that such relation can be found between Batalin-Tyutin extended version

of the healthy extended Hořava-Lifshitz gravity and General Relativity at least in some

approximation. Further, it would be also extremely useful to find explicit dependence N on

HT and g at least approximately. We also mean that it would be interesting to include the
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boundary terms to the healthy extended Hořava-Lifshitz gravity and study their impact

on the Hamiltonian formulation.

Despite all of these open problems we mean that the healthy extended Hořava-Lifshitz

gravity is very interesting dynamical system in its own. Clearly further progress in its

investigation would be desirable.

Acknowledgments

I would like to thank CERN PH-TH for generous hospitality and financial support during

the course of this work. This work was also supported by the Czech Ministry of Education

under Contract No. MSM 0021622409.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References
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arXiv:1003.5666 [SPIRES].

[27] K. Koyama and F. Arroja, Pathological behaviour of the scalar graviton in Hořava-Lifshitz
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