
Econ Theory (2010) 42:55–96
DOI 10.1007/s00199-009-0447-z

SYMPOSIUM

Finding all Nash equilibria of a finite game using
polynomial algebra

Ruchira S. Datta

Received: 1 December 2006 / Accepted: 28 January 2009 / Published online: 20 February 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The set of Nash equilibria of a finite game is the set of nonnegative solu-
tions to a system of polynomial equations. In this survey article, we describe how
to construct certain special games and explain how to find all the complex roots of
the corresponding polynomial systems, including all the Nash equilibria. We then
explain how to find all the complex roots of the polynomial systems for arbitrary
generic games, by polyhedral homotopy continuation starting from the solutions to
the specially constructed games. We describe the use of Gröbner bases to solve these
polynomial systems and to learn geometric information about how the solution set
varies with the payoff functions. Finally, we review the use of the Gambit software
package to find all Nash equilibria of a finite game.

Keywords Nash equilibrium · Normal form game · Algebraic variety

JEL Classification C72

Our earlier paper (Datta 2003c) contains much of the material which is surveyed more expansively here.
We would like to express our gratitude to the following for generously taking the time to personally
discuss with us the use of their software packages: Andrew McLennan and Ted Turocy (Gambit
McKelvey et al. 2006), Gert-Martin Greuel (Singular Greuel et al. 2001), and Jan Verschelde (PHC
Verschelde 1999). We would also like to thank Gabriela Jeronimo for sending us a preprint of her paper
with Daniel Perrucci and Juan Sabia, and Andrew McLennan for suggesting she do so. We would like to
thank Richard Fateman and Bernd Sturmfels for supervising the research leading up to that paper, during
which the author was partially supported by NSF grant DMS 0138323. We would also like to
acknowledge our debt to Bernd Sturmfels, especially for teaching us about the application of polynomial
algebra to Nash equilibria, in the lectures leading to Sturmfels (2002).

R. S. Datta (B)
QB3 Institute, University of California, 324 Stanley Hall, Berkeley, CA 94720, USA
e-mail: ruchira@berkeley.edu

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81051864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 R. S. Datta

1 Introduction

The set of Nash equilibria of a finite game is the set of nonnegative solutions to a
system of polynomial equations. In this article, we introduce this point of view and
survey the computational methods for finding Nash equilibria using polynomial alge-
bra which are available to game theorists today. We give examples which we hope
will enable game theorists to find all Nash equilibria of games of relatively larger
formats. When we know only a subset of the Nash equilibria of a game, we have a
rather shaky foundation for making predictions about what could happen in repeated
trials of the game, since play may converge toward a Nash equilibrium which is not
in the subset. Knowing all the Nash equilibria of a game will help us to make more
principled predictions.

In Sect. 2, we explain the definitions and notation that we use. We prove that the set
of all Nash equilibria is given by the nonnegative solutions to a system of polynomial
equations, which we describe. In this system some additional variables appear, which
we call complementary slack variables, in analogy to linear optimization.

In Sect. 3, we explain what kind of mathematical object the set of Nash equilibria
is. After briefly giving definitions of the terms needed, we conclude that it is the quo-
tient of a real algebraic variety by a reflection group. We hope this will suggest to the
interested reader some branches of mathematics that may be relevant to game theory.
However, this section may be skipped without loss.

In Sect. 4, we eliminate the complementary slack variables from the system. The
single system of polynomial equations of Sect. 2 is replaced by a set of systems of poly-
nomial equations, one for each choice of which of the complementary slack variables
is nonzero. Each system corresponds to a support of the game.1 All Nash equilibria
of the game can be found by a combinatorial enumeration of the possible equilib-
rium supports. Such a support defines, for each pure strategy of a player, whether the
respective variable represents a mixed strategy probability, or a slack variable for the
suboptimal payoff for that strategy. In the rest of the paper, we explain how to solve a
single such system.

In Sect. 5, we note that the polynomial system would be easy to solve if it could
be factored. We explain how to construct an instance of the polynomial system which
is factorizable. We describe the combinatorial procedure for solving it, carrying it out
on examples.

In Sect. 6, we describe the polyhedral subdivision associated with a system of poly-
nomial equations. The reader who has gone through the previous section attentively
will be well-equipped to understand this combinatorial notion, which is important
for solving polynomial systems generally. The game-theoretic case is a particularly
beautiful and clear application because the polynomial system is multilinear, i.e., it
has degree at most 1 in each variable. However, this section may be skipped without
loss.

In Sect. 7, we explain how to use polyhedral homotopy continuation to find all
Nash equilibria of a generic game for which the polynomial system is not necessarily

1 Actually the system corresponds to a dual support, i.e., the support of the complementary slack variables.
This corresponds to a particular support of the game, along with its boundary.

123

Finding all Nash equilibria of a finite game using polynomial algebra 57

factorizable, by polyhedral homotopy continuation from one that is. The construction
of such a factorizable system was described in Sect. 5. This technique is easily par-
allelizable. We go through an example using the polyhedral homotopy continuation
software PHC.

In Sect. 8, we explain the use of Gröbner basis techniques to find all Nash equilibria
of a game parametrically, where the payoffs are the parameters. This gives us geomet-
ric insight into how the set of Nash equilibria may vary among games of a particular
format. We also mention resultant methods for achieving this objective.

In Sect. 9, we explain the technique used by the game-theoretic software pack-
age Gambit to find all Nash equilibria. This technique differs from those previously
described. We discuss the advantages and disadvantages of the various techniques.

2 The system of polynomial equations

In this section, we will first explain our notation and make the necessary definitions.
Then we will describe the system of polynomial equations whose nonnegative solu-
tions are the Nash equilibria.

A monomial in n variables x1, . . . , xn is an expression of the form xd1
1 , . . . , xdn

n
for some nonnegative integers d1, . . . , dn . It is squarefree if di ≤ 1 for all i . The
degree in xi of this monomial is di , and its total degree is

∑n
i=1 di . The product of

two monomials xd1
1 . . . xdn

n and xe1
1 . . . xen

n is xd1+e1
1 . . . xdn+en

n .
A polynomial in n variables x1, . . . , xn with coefficients in a field K is a finite sum

of terms. Each term is of the form cm for some c ∈ K and some monomial m in
x1, . . . , xn . The set of polynomials in n variables is a vector space whose basis is the
set of monomials in n variables. Since we can also multiply monomials together, we
can extend this multiplication to define a product on the space of polynomials, using
commutativity, associativity, and distributivity. This makes the set of polynomials in n
variables with coefficients in K into a commutative ring, and the study of such objects
is the subject of commutative algebra. A field is a commutative ring in which every
nonzero element has a multiplicative inverse.

We can evaluate a polynomial f = ∑
cd1...dn xd1

1 . . . xdn
n at a point (a1, . . . , an) ∈

K n by substituting a1, . . . , an for the variables x1, . . . , xn respectively, obtaining an
expression

∑
cd1...dn ad1

1 . . . adn
n and carrying out all the multiplications and additions

in the field K . We denote the resulting element of K as f (a1, . . . , an).
A polynomial equation is an expression f = g for some polynomials f and g.

A point a ∈ K n satisfies this equation if f (a) = g(a). Since this is equivalent to
f (a) − g(a) = 0, we can always write a polynomial equation as p = 0 for some
polynomial p. A point satisfying this equation is called a root of p. A polynomial in
one variable with coefficients in K need not have any roots in K . But there is always a
field containing K , called the algebraic closure K̄ of K , such that every nonconstant
univariate polynomial with coefficients in K̄ has a root in K̄ . The field of complex
numbers is the algebraic closure of the field of real numbers.

The multiplicity of a root of a polynomial denotes how many linear factors of that
polynomial vanish at that root. (Every polynomial factorizes into linear factors over
the algebraic closure of its coefficient field.) For example, the multiplicity of the root

123

58 R. S. Datta

1 of the polynomial (x − 1)2 is 2. A polynomial equation of degree d in one variable
has d complex roots (counted with multiplicity); this is the Fundamental Theorem of
Algebra.

A system of polynomial equations in n variables over K is a finite set of polyno-
mial equations in n variables over K , and a point in K n satisfies, or is a root of, this
system if it satisfies all the constituent equations. The study of solution sets of poly-
nomial systems is called algebraic geometry. Recent years have seen a renaissance
in computational algebraic geometry; the interested reader is referred for example to
Cox et al. (1997). The subsequent volume (Cox et al. 198) contains more information,
particularly about finding the roots of polynomial systems. The book (Sturmfels 2002)
surveys techniques for solving polynomial systems and includes a chapter on finding
Nash equilibria. Dickenstein and Emiris (2005) is a recent summary of the state of the
art of solving polynomial systems. Sommese and Wampler (2005) explains numeri-
cal algebraic geometry and is written for a general technical audience (rather than a
mathematical one).

We now fix the game-theoretic notation we shall use. The concepts we describe here
can be found in a standard game theory text such as Osborne and Rubinstein (1994).
A normal form game with a finite number of players, each with a finite number of pure
strategies, is specified as follows. The set of players is denoted as I = {1, . . . , N }.
Associated to the players are finite disjoint sets of pure strategies S1, . . . , SN . We
require that |Si | ≥ 2 for each i . Write S = ∏

i∈I Si for the set of pure strategy profiles.
For each i let di = |Si | − 1, and write the set Si as {si0, . . . , sidi }. So a pure strategy
profile s ∈ S can be written as s = (s1, . . . , sN), where for each i , we have si = si j

for some j with 0 ≤ j ≤ di . Let D = ∑
i∈I (|Si | − 1). So

∑
i∈I |Si | = D + N .

The set �i of mixed strategies of player i is the set of all functions σi : Si → [0, 1]
with

∑di
j=0 σi (si j) = 1. Write � = ∏

i∈I �i for the set of strategy profiles. Write
�−i = ∏

j∈I−{i} � j . We will call an element of �−i a (−i)-strategy profile. Write
S−i = ∏

j∈I−{i} S j . We will call an element of S−i a pure (−i)-strategy profile.
Write σ−i for the image of σ ∈ � under the projection π−i onto �−i . Write σi j =
σi (si j) for j = 0, . . . , di . A game format is a specification of a number of play-
ers N and the number of pure strategies each player has, specified by the numbers
d1, . . . , dN . Without loss of generality we can require that d1 ≥ d2 ≥ · · · ≥ dN .

The game is specified by describing the payoff function ui : S → R for each player.
The i th player’s expected payoff from a strategy profile σ is given by multilinearity
as

ui (σ) =
∑

s∈S

ui (s)σ1(s1) . . . σN (sN).

By abuse of notation, write ui (σi , σ−i) for the i th player’s expected payoff from the
strategy σ whose i th component is σi and whose other components are defined by
π−i (σ) = σ−i .

A mixed strategy σ ∗
i of player i is a best response to the (−i)-strategy profile σ−i if

for every mixed strategy σi of player i , we have ui (σ
∗
i , σ−i) ≥ ui (σi , σ−i). A strategy

profile σ ∗ is a Nash equilibrium if for each player i , the mixed strategy σ ∗
i is a best

response to σ ∗−i .

123

Finding all Nash equilibria of a finite game using polynomial algebra 59

We can rewrite the expected payoff to player i as follows:

ui (σi , σ−i) =
∑

s∈S

ui (si , s−i)σ1(s1) · · · σN (sN)

=
∑

si ∈Si

∑

s−i ∈S−i

ui (si , s−i)σ1(s1) · · · σN (sN)

=
∑

si ∈Si

σi (si)
∑

s−i ∈S−i

ui (si , s−i)σ1(s1) · · · σi−1(si−1)σi+1(si+1) · · · σN (sN)

=
di∑

j=0

σi j ui (si j , σ−i).

We see that the function ui (si j , σ−i) is a polynomial with real-valued coefficients.
For each s−i = (s1 j1, . . . , s(i−1) ji−1 , s(i+1) ji+1 , . . . , sN jN) ∈ S−i , the contribution to
ui (si j , σ−i) from the outcome (si j , s−i) is the squarefree monomial

σ1 j1 · · · σ(i−1) ji−1σ(i+1) ji+1 · · · σN jN

(which may be interpreted as the conditional probability that the outcome will occur,
given that player i chooses pure strategy si j), multiplied by the real-valued coeffi-
cient ui (si j , s−i) (the payoff to player i for that outcome). The following proposition
describes the system of polynomial equations whose nonnegative solutions give the
Nash equilibria.

Proposition 1 The sequence of real numbers

(σ10, . . . , σ1d1 , . . . , σN0, . . . , σNdN)

constitutes a Nash equilibrium if and only if for some sequence of real numbers

(v10, . . . , v1d1 , . . . , vN0, . . . , vNdN),

the σi j ’s and vi j ’s satisfy the following system (∗) of 2(D + N) polynomial equations
in 2(D + N) unknowns:

ui (si j , σ−i) + vi j = ui (si0, σ−i) + vi0 for each i ∈ I and for j = 1, . . . , di ,

σi jvi j = 0 for each i ∈ I and for j = 0, . . . , di , (∗)

di∑

j=0

σi j = 1 for each i ∈ I ,

and all the σi j ’s and vi j ’s are nonnegative.

Proof �⇒: Suppose σ is a Nash equilibrium. Certainly all the σi j ’s are nonnega-

tive and
∑di

j=0 σi j = 1 for each i ∈ I . For each i ∈ I and j = 0, . . . , di , let

123

60 R. S. Datta

vi j = ui (σ) − ui (si j , σ−i). Then vi j ≥ 0 since σi is a best response to σ−i . The
quantities ui (si j , σ−i) + vi j are all equal to ui (σ) and hence to each other.

It remains to show that σi jvi j = 0.

σi jvi j = σi j
(
ui (σ) − ui (si j , σ−i)

)

= σi j
(
ui (σ) − ui (si j , σ−i)

) − ui (σ) +
di∑

l=0

σilui (sil , σ−i)

=
⎛

⎜
⎝

di∑

l = 0
l �= j

σilui (sil , σ−i)

⎞

⎟
⎠ − (1 − σi j)ui (σ)

=
⎛

⎜
⎝

di∑

l = 0
l �= j

σilui (sil , σ−i)

⎞

⎟
⎠ −

⎛

⎜
⎝

di∑

l = 0
l �= j

σil

⎞

⎟
⎠ ui (σ)

=
di∑

l = 0
l �= j

σil (ui (sil , σ−i) − ui (σ)) .

Since σ is a best response to (sil , σ−i) for each l, we have ui (sil , σ−i) − ui (σ) ≤ 0
for each l. Since the σi j ’s and vi j ’s are nonnegative, we must have σi jvi j = 0.
⇐�: Suppose the σi j ’s and vi j ’s are nonnegative and satisfy the polynomial system.
Let σ be the strategy profile defined by σi (si j) = σi j . Fix a player i and suppose σ ′

i is

a mixed strategy of player i . Then
∑di

j=0(σ
′
i j − σi j) = 0, so there must be some j for

which σ ′
i j − σi j ≥ 0. Without loss of generality suppose that σ ′

i0 − σi0 ≥ 0. Then

ui (σ) − ui (σ
′
i , σ−i) =

di∑

j=0

(σi j − σ ′
i j)ui (si j , σ−i)

=
di∑

j=0

(σi j − σ ′
i j)

(
ui (si j , σ−i) − ui (si0, σ−i)

)

=
di∑

j=1

(σi j − σ ′
i j)(vi0 − vi j)

= (
(1 − σi0) − (1 − σ ′

i0)
)
vi0 +

di∑

j=1

σ ′
i jvi j

= (σ ′
i0 − σi0)vi0 +

di∑

j=1

σ ′
i jvi j ≥ 0.

Thus σi is a best response to σ−i for each i , and σ is a Nash equilibrium. ��

123

Finding all Nash equilibria of a finite game using polynomial algebra 61

In the statement of the proposition, we have included D polynomial equations
ui (si j , σ−i) + vi j = ui (si0, σ−i) + vi0, singling out the 0th pure strategy of the
i th player. In fact, these D polynomial equations imply the polynomial equations
ui (si j , σ−i) + vi j = ui (sil , σ−i) + vil for all pairs of pure strategies si j and sil of the
i th player. We have picked these D polynomial equations since they are sufficient,
and to emphasize that we have the same number of equations as unknowns.

We call the vi j ’s complementary slack variables. If vi j > 0, that is, the payoff
ui (si j , σ−i) to player i for strategy si j is strictly less than the equilibrium payoff
ui (σ), then σi j = 0, that is, strategy si j cannot be a component of the mixed strategy
of player i . Conversely, if σi j > 0 (which must hold for some j), then the payoff to
player i of pure strategy si j must equal the equilibrium payoff.

3 What kind of geometric object is the set of Nash equilibria?

In this section, we explain what kind of geometric object the set of Nash equilibria
is, briefly explaining the needed mathematical concepts as we go. We hope that this
will suggest to the interested reader some of the branches of mathematics that may be
useful for the game theorist, but the reader may skip this section without loss, referring
back to it only for unfamiliar terms.

We have seen that the set of Nash equilibria is the set of real solutions to a system of
polynomial equations and inequalities with real coefficients. Inequalities can only be
defined over ordered sets; the field of complex numbers, for example, is not ordered.
A set of real points given by a system of polynomial equations and inequalities is
called a semialgebraic variety, and the special case when the system does not involve
inequalities is called a real algebraic variety. Thus the set of Nash equilibria of a game
is a semialgebraic variety. Real algebraic geometry is the study of real algebraic vari-
eties and semialgebraic varieties. This area of algebraic geometry has many features
of special interest (quite apart from its usefulness in applications). (For example, over
the real numbers any system of equations f1 = 0, . . . , fn = 0 is equivalent to a single
equation f 2

1 + f 2
2 +· · ·+ f 2

n = 0.) It so happens that Nash’s contribution to real alge-
braic geometry was seminal, although he did not relate it to game theory. The two main
references for real algebraic geometry are Bochnak et al. (1998) and Basu et al. (2003).

The set of points in the plane with x ≥ 0 and y ≥ 0 is the nonnegative quadrant,
the set of points in 3-space with x ≥ 0, y ≥ 0, and z ≥ 0 is the nonnegative octant,
and similarly the set of points in R

n all of whose coordinates are nonnegative is the
nonnegative orthant. In this case, the inequalities state simply that we are interested
in those solutions to the polynomial system which lie in the nonnegative orthant.

In the system (∗) of polynomial equations, we can substitute each σi j with ρ2
i j and

each vi j with r2
i j , where the ρi j ’s and the ri j ’s are new unknowns. This induces a new

system (∗∗) of polynomial equations in the ρi j ’s and ri j ’s. (For example, ρ2
i j r

2
i j = 0,

∑di
j=0 ρ2

i j = 1, and so forth.) Each real-valued solution to (∗∗) corresponds to a

Nash equilibrium, since σi j=ρ2
i j and vi j=r2

i j automatically satisfy the nonnegativi-

ty constraints. However, there may be up to 2D+N solutions to (∗∗) for each Nash

123

62 R. S. Datta

equilibrium, since if σi j is positive we can set each ρi j equal to either its positive or
negative square root, and similarly for vi j .

A transformation of a set X is a 1–1 correspondence of X with itself. A group of
transformations is a set G of transformations such that for each transformation in G,
its inverse transformation is also in G, and for each pair of transformations in G, their
composition is also in G. We consider the composition of two transformations in G to
be their product in G. (Note that this product is not necessarily commutative.) We say
that the group of transformations acts on the set X which it transforms. Given any set
T of transformations {g1, . . . , gn}, we can form the group generated by the generators
g1, . . . , gn by taking all products of elements of T and their inverses. An orbit of the
group action is the set of images of a single point in X under all the transformations in
G. Every point in an orbit is the image of every other point under some transformation
in G. To form the quotient of X by G, we can take one point from each orbit.

Each (n − 1)-dimensional hyperplane in R
n defines a special transformation, the

reflection which takes each point in R
n to its opposite point on the other side of the

hyperplane. In particular, the transformation of R
2(D+N) which takes ρi j into −ρi j and

leaves all other coordinates unchanged is a coordinate reflection, as is the one which
takes ri j into −ri j . A group of transformations generated by reflections is called a
reflection group. In particular, let G be the group of transformations generated by the
aforementioned coordinate reflections. Then for any transformation g ∈ G, for any
real-valued solution (ρ, r) of (∗∗), its image g(ρ, r) also satisfies (∗∗). Indeed, g
simply changes the signs of some of the coordinates of (ρ, r). Thus the set of real-
valued solutions to (∗∗) is a symmetric real algebraic variety V , with G as its group
of symmetries.

We can take the quotient of V by G by, for example, considering only those points
of V lying in the nonnegative orthant. The group G takes this orthant to each other
orthant. There is exactly one point of V in the nonnegative orthant for each Nash equi-
librium, obtained by taking the nonnegative square root of each coordinate of the Nash
equilibrium. So the set of Nash equilibria is the quotient of a real algebraic variety by
a reflection group. In fact, any semialgebraic variety defined by a system of polyno-
mial equations and inequalities in which none of the inequalities are strict, is also the
quotient of a real algebraic variety by a reflection group. For each inequality constraint
f (x1, . . . , xn) ≥ 0, we can define a new variable v and change the inequality constraint
into two constraints f (x1, . . . , xn) − v = 0 and v ≥ 0, then proceed as above.

4 Eliminating the complementary slack variables

In this section, we will eliminate the complementary slack variables from the system
(∗). We arrive at a set of polynomial systems (E). Those solutions of one of the sys-
tems (E) which satisfy all the nonnegativity constraints (including the ones on the
complementary slack variables) are Nash equilibria. In the rest of the paper, we will
explain how to solve such a polynomial system (E).

Elimination theory in commutative algebra solves polynomial systems by eliminat-
ing variables using Gröbner basis techniques, as we describe later on. But in this case
we can eliminate the complementary slack variables using only elementary methods.

123

Finding all Nash equilibria of a finite game using polynomial algebra 63

In the appendix to this paper, we carry out steps similar to those carried out by a
Gröbner basis algorithm to eliminate the complementary slack variables, again using
only elementary methods. The interested reader may wish to peruse the appendix to
get a flavor of what Gröbner basis algorithms do. The appendix concludes that for a
generic game, at each solution either for every player all but one of the complementary
slack variables are positive, corresponding to a pure strict Nash equilibrium, or for at
least two players at least two of them are zero. (The meaning of “generic” used here is
also defined.) Finding pure strict Nash equilibria is a combinatorial procedure which
does not require any polynomial algebra. Therefore we do not discuss it further in
this article, but assume that we have already found all pure strict Nash equilibria (if
any exist), and are now interested in finding the other Nash equilibria, which requires
solving polynomial systems.

Any solution to the system (∗) induces a partition of P
def= ∪i∈I Si into two subsets,

the subset P0 such that vi j = 0 for all si j ∈ P0 and the subset P+ such that vi j > 0 for
all si j ∈ P+. If we make a choice of such a partition, then σi j = 0 for all si j ∈ P+, so
eliminating these strategies and considering the reduced game, the system (∗) reduces
to the system (E):

ui (si j , σ−i) = ui (si0, σ−i) for each i ∈ I and for j = 1, . . . , di , (Ei j)
di∑

j=0

σi j = 1 for each i ∈ I, (Ei0)

and all the σi j ’s are nonnegative. (A root of the polynomial equations of the system
(E) which does not satisfy the nonnegativity constraints, perhaps because it is not even
real, is called a quasi-equilibrium.) After solving the system (E) to find a candidate
σ , we have to check that for each strategy si j of the original game which we had elim-
inated, vi j = ui (σ) − ui (si j , σ−i) is indeed nonnegative. In that case σ is a solution
to the original system (∗) and hence a Nash equilibrium of the original game. To find
all the Nash equilibria, we can perform this procedure for all partitions (P0, P+) for
which at least one snm ∈ P0 for each player n. As noted above, for a generic game
there will not be a Nash equilibrium for which there is exactly one player for which
at least two si j ’s are in P0.

From now on we will restrict our attention to solving systems of the form (E).
The paper (McKelvey and McLennan 1997) describes this system, which along with
the constraints σi j > 0 for all the σi j ’s, gives the totally mixed Nash equilibria. The
Gambit software package (McKelvey et al. 2006) finds all Nash equilibria recur-
sively, by finding totally mixed Nash equilibria of each reduced game by solving the
corresponding system. This algorithm for finding all Nash equilibria is described for
example in Herings and Peeters (2005) and Datta (2003a).

5 Solving an instance of the polynomial system

In this section, we begin considering how to solve systems of the form (E), by looking
at certain special systems which are relatively easy to solve. We shall see later that
this is the first step in solving generic systems.

123

64 R. S. Datta

For any s ∈ S, with si = si ji for each i ∈ I , we write

ui
j1... jN

= ui (s1 j1, s2 j2 , . . . , s(i−1) ji−1 , si ji , s(i+1) ji+1 , . . . , sN jN)

− ui (s1 j1, s2 j2 , . . . , s(i−1) ji−1 , si0, s(i+1) ji+1 , . . . , sN jN).

In particular ui
j1... jN

= 0 if ji = 0. Then the equation (Ei j) is

d1∑

j1=0

· · ·
di−1∑

ji−1=0

di+1∑

ji+1=0

· · ·
dN∑

jN =0

ui
j1... ji−1 j ji+1... jN

σ1 j1 . . . σ(i−1) ji−1σ(i+1) ji+1 . . . σN jN =0.

How do we solve an equation like this? We note in passing that if all the coefficients
ui

j1... ji−1 j ji+1... jN
had the same sign, we would know that either all the monomials

vanished, or σi j = 0 and vi j > 0. However, this condition depends on the choice of
which strategy in Si to label as si0, so to check whether it ever arises would require
checking the difference between every pair ui (si j1, s−i) − ui (si j0 , s−i).

Well, if the equation factored, it would be easy to solve. That is, if we could find
numbers µ

(i j)
k jk

for k ∈ I − {i} and sk jk ∈ Sk such that

d1∑

j1=0

· · ·
di−1∑

ji−1=0

di+1∑

ji+1=0

· · ·
dN∑

jN =0

ui
j1... ji−1 j ji+1... jN

σ1 j1 . . . σ(i−1) ji−1σ(i+1) ji+1 . . . σN jN

=
∏

k∈I−{i}

⎛

⎝
dk∑

jk=0

µ
(i j)
k jk

σk jk

⎞

⎠ ,

then we could solve the equation by setting
∑dk

jk=0 µ
(i j)
k jk

σk jk equal to zero for some
k ∈ I − {i}.

The factorization holds if and only if the coefficients of each monomial

σ1 j1 . . . σ(i−1) ji−1σ(i+1) ji+1 . . . σN jN

on both sides of the equation are equal. The coefficient on the left-hand side is
ui

j1... ji−1 j ji+1... jN
, and the coefficient on the right-hand side is

∏
k∈I−{i} µ

(i j)
k jk

. Thus

we have a system of equations
∏

k∈I−{i} µ
(i j)
k jk

= ui
j1... ji−1 j ji+1... jN

. Equivalently we

have the system of linear equations
∑

k∈I−{i} log |µ(i j)
k jk

| = log |ui
j1... ji−1 j ji+1... jN

|
together with sign conditions

∏
k∈I−{i} sign(µ

(i j)
k jk

) = sign(ui
j1... ji−1 j ji+1... jN

). Unfortu-
nately this linear system is overdetermined and hence usually inconsistent. We have
∏N

k = 1
k �= i

(di + 1) equations in only
∑N

k = 1
k �= i

(di + 1) unknowns µ
(i j)
k jk

. So in general, equa-

tion (Ei j) does not factorize.
Nevertheless, suppose all the equations (Ei j) did factorize. How would we solve

the whole system (E) then? For one thing we would substitute σk0 = 1 − ∑dk
jk=1 σk jk

123

Finding all Nash equilibria of a finite game using polynomial algebra 65

into each linear factor
∑dk

jk=0 µ
(i j)
k jk

σk jk to get an affine linear factor

µ
(i j)
k0 +

dk∑

j=1

(
µ

(i j)
k jk

− µ
(i j)
k0

)
σk jk .

(“Affine” just means that it includes a constant term.) We set λ
(i j)
k jk

= µ
(i j)
k jk

− µ
(i j)
k0 for

jk = 1, . . . , dk and λ
(i j)
k0 = µ

(i j)
k0 .

We will now construct a particular system in which all the equations factorize, and
solve that. In this case the solution method reduces to a combinatorial choice of which
set of linear factors to set to zero. For this purpose, it will be convenient to have avail-
able a totally nonsingular matrix. An m × n matrix M = (mi j) is totally nonsingular
if for every k ≤ min(m, n), for every subset R ⊆ {1, . . . , m} with |R| = k and every
subset C ⊆ {1, . . . , n} with |C | = k, the k × k submatrix of M given by (mi j) i ∈ R

j ∈ C
is

nonsingular.
Let f : N → R>0 be any injection of N into R>0. We can use the algorithm in

Fig. 1 to construct a totally singular n × n matrix for any n. We start with the 1 × 1
matrix (m11) = (f (1)), which is clearly totally nonsingular. The problem of filling
in a matrix while maintaining some condition is called a matrix completion problem.
Torregrosa et al. (2007) shows that we can construct a totally nonsingular matrix by
filling in the entries one at a time, as in the algorithm in Fig. 1. In fact, at each stage
there are only finitely many possible values of the next entry which would violate the
condition, so all we have to do is avoid those values. Therefore each while loop in
the algorithm will always terminate. Since the partially filled-in matrix is symmetric,
and mi j does not violate the condition, setting m ji = mi j cannot violate it either, and
we can keep the matrix symmetric. For example, here is the totally nonsingular 6 × 6
matrix given by the algorithm in Fig. 1, with f (k) = 2k−1:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 8 16 32
2 −4 16 −32 128 −256
4 16 −16 −128 1024 −256
8 −32 −128 −64 4096 4096

16 128 1024 4096 −256 1024
32 −256 −256 4096 1024 −1024

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

As a matter of fact, a random matrix will be totally nonsingular with probability
one. However, if we do use a random matrix we should check that it is indeed totally
nonsingular. Since checking this may take a long time, it may be useful to build a large
totally nonsingular matrix once and for all and keep it around.

Now assume we have a totally nonsingular D×D matrix M with entries mi j . Define
n(i, j) = j + ∑i−1

k=1 dk . So if we write the equations (Ei j) in sequence (E11), . . . ,

(E1d1), . . . , (EN1), . . . , (ENdN), then the n(i, j)th equation in the sequence is (Ei, j).

Set λ
(i j)
klk

= mn(i, j)lk for lk > 0 and λ
(i j)
k0 = −1. This defines a particular system (S)

123

66 R. S. Datta

Fig. 1 One possible algorithm to compute a totally nonsingular matrix

of equations which factorizes, with the λ
(i j)
k j ’s as the coefficients in the affine linear

factors in equation (Ei j).
Notice that we do not use all D2 entries of M . For each player i , we use

∑
k∈I−{i} dk

rows and di columns of M . Thus we could just use a totally nonsingular matrix with
D − mini∈I di rows and maxi∈I di columns.

For example, for a game of 3 players with 3 pure strategies each, using the above
6 × 6 totally nonsingular matrix, we arrive at the system:

(σ21 + 2σ22 − 1)(σ31 + 2σ32 − 1) = 0,

(2σ21 − 4σ22 − 1)(2σ31 − 4σ32 − 1) = 0,

(4σ11 + 16σ12 − 1)(4σ31 + 16σ32 − 1) = 0,

(8σ11 − 32σ12 − 1)(8σ31 − 32σ32 − 1) = 0,

(16σ11 + 128σ12 − 1)(16σ21 + 128σ22 − 1) = 0,

(32σ11 − 256σ12 − 1)(32σ21 − 256σ22 − 1) = 0.

If we replaced the 1 in each factor by
∑dk

jk=1 σk jk and expanded out the polyno-
mials, we could determine for which payoff functions this is the system (Ei j). For
instance, in the second equation the coefficient of σ22σ31 becomes −9, so this says
u1(s12, s22, s31)−u1(s10, s22, s31) = −9. The coefficient of σ20σ30 becomes 1, so this
says u1(s12, s20, s30) − u1(s10, s20, s30) = 1. With this information we can construct
games for which this is the system (Ei j).

Now to find all the solutions to this system, we define a D × D matrix P by
Pn(i, j)n(k,l) = 0 if i = k and Pn(i, j)n(k,l) = 1 if i �= k. In the example of a game with

123

Finding all Nash equilibria of a finite game using polynomial algebra 67

3 players, each with 3 pure strategies, we have

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

We associate the n(i, j)th row with the equation (Ei j) and the n(i, j)th column with
the variable σi j . So an entry of P is 1 if and only if the corresponding variable appears
in the corresponding equation.

The reader is familiar with the determinant of a matrix, which is the sum of certain
signed products of entries of the matrix. The permanent of a matrix is the sum of those
same products of entries of the matrix, but without the signs. In other words, for a
D × D matrix P , the permanent of P is the sum over all permutations τ of 1, . . . , D
of the products

∏D
n=1 Pnτ(n).

To find a solution of (S), we pick D entries of P whose product contributes 1 to
the permanent of P . In other words, we pick a permutation τ of 1, . . . , D such that∏D

n=1 Pnτ(n) = 1. For example, the italicized entries below represent such a choice:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now if τ(n(i, j)) = n(k, l), this tells us to make equation (Ei j) hold by setting the

factor 1 + ∑dk
jk=1 λ

(i j)
k jk

σk jk equal to zero. In the above example, the above choice tells
us to set:

σ31 + 2σ32 − 1 = 0,

2σ21 − 4σ22 − 1 = 0,

4σ11 + 16σ12 − 1 = 0,

8σ31 − 32σ32 − 1 = 0,

16σ11 + 128σ12 − 1 = 0,

32σ21 − 256σ22 − 1 = 0.

Now we have a system of di linear equations in the di variables σi j , for each i . Since
we chose the coefficients from a totally nonsingular matrix, each system of di linear

123

68 R. S. Datta

equations has a unique solution. In this case, we find:

σ11 = 7

16
, σ12 = − 3

64
, σ21 = 21

32
, σ22 = 5

64
, σ31 = 17

24
, σ32 = 7

48
.

(Clearly this particular solution does not satisfy the nonnegativity constraints, which
we would also have to check if we were interested in the Nash equilibria of this
particular game.)

Notice that this procedure would give us the same set of equations multiple times.
For example, the choice of D other entries in P represented by the italicized entries
below:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

gives the same system of equations. The problem is that for each set of di columns
corresponding to the variables σi1, . . . , σidi , we can apply any permutation to that
set of columns without affecting the meaning of our choice. So if we carried out this
procedure naïvely, it would repeat each solution

∏
i∈I di ! times. We should avoid solv-

ing the same system twice. However, if we obtain the same solution from a different
choice of which factor in each of the equations to set to zero, then we should perturb
our totally nonsingular matrix so this doesn’t happen, for reasons which will become
clear later.

Carrying out this procedure, we find all 10 roots of (E). We list the values of
(σ11, σ12, σ21, σ22, σ31, σ32) below, along with the corresponding permutations of
1, . . . , D:

(
3

64
,

1

512
,

3

4
,

1

8
,

3

16
,

1

64

)

, 5, 6, 1, 2, 3, 4

(
7

32
,

3

128
,

21

16
,
−5

32
,

5

12
,
−1

24

)

, 4, 6, 1, 5, 2, 3

(
17

96
,

7

384
,

21

16
,
−5

32
,

7

8
,

3

16

)

, 3, 6, 1, 5, 2, 4

(
5

48
,

−1

192
,

129

160
,

31

320
,

5

12
,
−1

24

)

, 4, 5, 1, 6, 2, 3

(
7

16
,
−3

64
,

129

160
,

31

320
,

7

8
,

3

16

)

, 3, 5, 1, 6, 2, 4

(
7

32
,

3

128
,

33

80
,

−7

160
,

7

4
,
−3

8

)

, 4, 6, 2, 5, 1, 3

(
17

96
,

7

384
,

33

80
,

−7

160
,

17

24
,

7

48

)

, 3, 6, 2, 5, 1, 4

123

Finding all Nash equilibria of a finite game using polynomial algebra 69

(
5

48
,

−1

192
,

21

32
,

5

64
,

7

4
,
−3

8

)

, 4, 5, 2, 6, 1, 3

(
7

16
,
−3

64
,

21

32
,

5

64
,

17

24
,

7

48

)

, 3, 5, 2, 6, 1, 4

(
3

16
,

1

64
,

3

64
,

1

512
,

3

4
,

1

8

)

, 3, 4, 5, 6, 1, 2

We note that the first and last of these satisfy the nonnegativity constraints, and hence
are Nash equilibria. (The reader may notice some symmetries between pairs of the
solutions. This is because we happened to use the same region of M for all the players.)

We can find the rest of the solutions of the system (∗) corresponding to this same
game too. Suppose we require vi j to be positive instead of vanishing. Then the variable
σi j goes away from every equation and the equation (Ei j) is replaced by the equation
σi j = 0. In the above example, suppose we require v31 to be positive. Then we obtain
a new system

(σ21 + 2σ22 − 1)(2σ32 − 1) = 0,

(2σ21 − 4σ22 − 1)(4σ32 − 1) = 0,

(4σ11 + 16σ12 − 1)(16σ32 − 1) = 0,

(8σ11 − 32σ12 − 1)(32σ32 − 1) = 0,

σ31 = 0,

(32σ11 − 256σ12 − 1)(32σ21 − 256σ22 − 1) = 0.

This system corresponds to the n(i, j), n(i, j) minor of M , which is also totally non-
singular. We can use the same matrix P , but zero out the n(i, j)th row and n(i, j)th
column and set the n(i, j), n(i, j) entry to 1. In our example:

P ′
i j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 0 1
0 0 1 1 0 1
1 1 0 0 0 1
1 1 0 0 0 1
0 0 0 0 1 0
1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now we follow the same procedure as above, performing the cofactor expansion of
the permanent along the n(i, j)th row. For example, the product of italicized entries

123

70 R. S. Datta

below contributes 1 to the permanent of this matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 0 1
0 0 1 1 0 1
1 1 0 0 0 1
1 1 0 0 0 1
0 0 0 0 1 0
1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The corresponding system is:

σ21 + 2σ22 − 1 = 0,

2σ21 − 4σ22 − 1 = 0,

4σ11 + 16σ12 − 1 = 0,

32σ32 − 1 = 0,

σ31 = 0,

32σ11 − 256σ12 − 1 = 0.

Its solution is:

σ11 = 17

96
, σ12 = 7

384
,

σ21 = 3

4
, σ22 = 1

8
,

σ31 = 0, σ32 = 1

32
.

This at least satisfies the nonnegativity constraints on the σi j ’s. If we are interested in
the Nash equilibria of this game, we also have to check that it satisfies the nonnegativity
constraints on the vi j ’s, namely, that v31 ≥ 0. We substitute the σi j ’s into

(16σ11 + 128σ12 − 1)(16σ21 + 128σ22 − 1),

the expected payoff to player 3 from playing σ31, obtaining 225/2, which is strictly
greater than zero. So this solution to the polynomial system is not a Nash equilibrium,
since s31 is a strictly better response to σ−3 than the value of σ3 given by this solution.

In this way we see that our specially constructed factorizable game of a given format
(N ; d1, . . . , dN) contains subgames of every smaller format (N ′ : d ′

1, . . . , d ′
N ′), with

N ′ ≤ N and d ′
i ≤ di for each i , such that the subgames are also factorizable. As we

will see, we only need to solve one (or a few) of the factorizable polynomial systems
for each format in the manner we have described so far.

Geometrically, by constructing the D × D totally nonsingular matrix M , we picked
D vectors in D-dimensional space, such that not only are these all distinct points, but
if we project any m of them onto any m-dimensional coordinate subspace, the images

123

Finding all Nash equilibria of a finite game using polynomial algebra 71

are all also distinct. The condition that two particular such images coincide is an equa-
tion, which is satisfied only on a subset of real D-dimensional space of strictly lower
dimension. So every open subset of real D-dimensional space does not satisfy the
condition, almost everywhere. Since there are only finitely many of these conditions,
every open subset does not satisfy any of them, almost everywhere. In particular, we
could construct a totally nonsingular matrix such that all the nonnegativity constraints
of our factorizable game also held with strict inequality. However, while this would
provide an example of a game with the maximal possible number of totally mixed
Nash equilibria, it would not be particularly relevant to the use we will be making of
our specially constructed factorizable games.

6 Polyhedra and polynomial systems

In this section, we explain how polyhedra are associated to polynomial systems. The
combinatorics of the associated polyhedra will enable us to count the number of
solutions of a generic polynomial system. The game-theoretic case is a particularly
beautiful and clear example of this relationship, but the reader may skip this section
without loss.

With a system of polynomial equations is associated a polyhedral subdivision, that
is, a polyhedron which is subdivided into cells, each of which is also a polyhedron,
glued together along their faces. We illustrate this for a game of 3 players with 2
pure strategies each, since in this case the polyhedral subdivision is 3-dimensional.
Using the same totally nonsingular matrix, we obtain the following system of factored
equations:

(σ21 − 1)(σ31 − 1) = 0, (1)

(2σ11 − 1)(2σ31 − 1) = 0, (2)

(4σ11 − 1)(4σ21 − 1) = 0. (3)

Expanding this out, we obtain

σ21σ31 − σ21 − σ31 + 1 = 0, (4)

4σ11σ31 − 2σ11 − 2σ31 + 1 = 0, (5)

16σ11σ21 − 4σ11 − 4σ21 + 1 = 0. (6)

A monomial xα1
1 xα2

2 · · · xαn
n in n variables can be represented by the lattice point

(α1, . . . , αn) ∈ N
n of its exponents. For example, the lattice of monomials in two

variables x and y is depicted in Fig. 2.
The Newton polytope of a polynomial equation is the convex hull of the lattice

points of the monomials occuring in that equation. In our example system in 3 vari-
ables σ11, σ21, and σ31, the Newton polytope of Eq. 4 is depicted in Fig. 3, the Newton
polytope of Eq. 5 is depicted in Fig. 4, and the Newton polytope of Eq. 6 is depicted
in Fig. 5.

123

72 R. S. Datta

Fig. 2 The monomial lattice in
two variables

Fig. 3 The Newton polytope of
σ21σ31 − σ21 − σ31 + 1 = 0

Fig. 4 The Newton polytope of
4σ11σ31 − 2σ11 − 2σ31 + 1 = 0

The Minkowski sum of an n-dimensional polytope with vertices V01, . . . , V0m0 and
an n-dimensional polytope with vertices V11, . . . , V1m1 is the convex hull of the points
V0i + V1 j in n-dimensional space, for i = 1, . . . , m0 and j = 1, . . . , m1. Figure 6
depicts the Minkowski sum of the Newton polytopes of Eqs. 4 and 5. We can think of
the Minkowski sum as translating one of the polytopes along each edge of the other

123

Finding all Nash equilibria of a finite game using polynomial algebra 73

Fig. 5 The Newton polytope of
16σ11σ31 −4σ11 −4σ21 +1 = 0

Fig. 6 Minkowski sum of a pair
of Newton polytopes

polytope. Here we have colored the edges as if we first translated the dotted polytope
along each edge of the dashed polytope. The dotted edges came from the original
dotted polytope, and the dashed edges came from edges of the dashed polytope along
which we translated. Notice that we can do this in more than one way. For example,
we could have colored the edges as if we translated the dashed polytope along each
edge of the dotted polytope first. Such a coloring of the Minkowski sum gives us a
mixed subdivision, which in this case has two cells, the two cubes in Fig. 6.

Finally, the Minkowski sum of all three of our Newton polytopes is depicted in
Fig. 7. A cell of a mixed subdivision is mixed if each color delineates only edges
(or possibly vertices) in the cell, not higher-dimensional faces. In Fig. 7, the top left
front cube is not mixed, because two of its faces are dashed squares, and the top right
front cube is not mixed, because two of its faces are dotted-and-dashed squares. We
see that two of the cells in this mixed subdivision are mixed. Each mixed cell tells
us how to obtain certain solutions to the factorizable polynomial system. Namely, in
each polynomial equation, we should look at the edges with the corresponding color
in the mixed cell, and set the factor(s) corresponding to the directions of those edges
to zero. In the game-theoretic case, there will be exactly one solution corresponding
to each mixed cell, since the polynomial system has degree at most 1 in any variable.

For example, Fig. 8 depicts the bottom mixed cell of the mixed subdivision. To find
the solution corresponding to this mixed cell, we should set the factor σ21 − 1 to zero

123

74 R. S. Datta

Fig. 7 Minkowski sum of three
newton polytopes

Fig. 8 One mixed cell of the
mixed subdivision

in Eq. 1; we should set the factor 2σ31 − 1 to zero in Eq. 2; and we should set the
factor 4σ11 − 1 to zero in Eq. 3. This gives us the solution

σ11 = 1

4
, σ21 = 1, σ31 = 1

2
.

Figure 9 depicts the top mixed cell of the mixed subdivision. To find the solution
corresponding to this mixed cell, we should set the factor σ31 − 1 to zero in Eq. 1; we
should set the factor 2σ11 − 1 to zero in Eq. 2; and we should set the factor 4σ21 − 1
to zero in Eq. 3. This gives us the solution

σ11 = 1

2
, σ21 = 1

4
, σ31 = 1.

123

Finding all Nash equilibria of a finite game using polynomial algebra 75

Fig. 9 Another mixed cell of
the mixed subdivision

In the game-theoretic case, the cells of the mixed subdivision are always D-dimen-
sional cubes (or hypercubes). The matrix P in this example is

⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦

Recall that the rows correspond to equations, and the columns correspond to vari-
ables. A permutation which contributes to the permanent will tell us which equation
corresponds to each variable. The edges of the mixed cube going in the direction cor-
responding to that variable will correspond with that equation, and the linear factor
containing that variable in that equation will be set to zero.

7 Finding all Nash equilibria by polyhedral homotopy continuation

In this section, we turn to the solution of generic games. We have taken considerable
trouble to find all Nash equilibria of one particular kind of specially constructed game.
The good news is that once we have done this for one particular game format, we can
easily solve any generic game of that format.2 Furthermore, we can even more easily
look for one or a few of the Nash equilibria, look for Nash equilibria with some partic-
ular small support, and so forth. The key idea is to “morph” the specially constructed
polynomial system into the polynomial system we are actually interested in. As we
do this, the solutions to (E) for the specially constructed game will also morph into
solutions to (E) for the game of interest. Moreover, this procedure is “embarrassingly
parallel”. The morphing of each solution is independent of the morphing of every other
solution. We can partition the solutions to (E) for the specially constructed game into

2 It is not quite true that we only need to solve one game of each format. Something untoward could happen
on the way from this game to the one we are interested in; e.g., we could run into a game whose set of Nash
equilibria is positive-dimensional. So we should have the solutions to a few of the specially constructed
games ready to hand. We can make more such games by using different regions of our totally nonsingular
matrix.

123

76 R. S. Datta

subsets, and hand each subset to a different processor. If somewhere along the way
a morphed solution begins to look disappointing (for example, it doesn’t look like it
will end up satisfying the nonnegativity constraints, or it starts to have an imaginary
component that we fear won’t go away), we can always stop morphing that solution
and come back to it later if more promising ones do not pan out.

We should emphasize that the techniques we are describing apply to generic games.
A generic game has a finite number of Nash equilibria, by the generic finiteness the-
orem of Harsanyi (1973). On the other hand, it is possible to construct games whose
set of Nash equilibria includes the set of solutions to any arbitrary polynomial system
with real coefficients (Datta 2003b). This set may be a curve, a surface, or a higher-
dimensional manifold. In this case, solving the polynomial system would be much
more complicated than the techniques we have described. We refer the reader to the
text (Basu et al. 2003) on solving polynomial systems with real coefficients.

Readers may be familiar with the homotopy continuation method under the guise
of “tracing procedures”, such as the techniques of Lemke–Howson or Govindan and
Wilson. To solve a polynomial system by the homotopy continuation method, we cre-
ate a family F of polynomial systems f1t = 0, f2t = 0, . . . , fmt = 0 parametrized by
a variable t lying in [0, 1], such that the polynomial system we want to solve is f11 =
0, f21 = 0, . . . , fm1 = 0, and the polynomial system f10 = 0, f20 = 0, . . . , fm0 = 0,
called the starting system, is easy to solve. We consider each polynomial system in F
to lie in some topological space such that for any particular point, the map of the poly-
nomial space which evaluates the polynomial at that point is continuous. We require
the map from [0, 1] to this space to be continuous, or in other words a homotopy. Now
suppose (x1, . . . , xn) satisfies the polynomial system f1t0 , . . . , fmt0 , and t1 is near t0.
Since the homotopy is continuous, f1t1, . . . , fmt1 must be near f1t0 , . . . , fmt0 , and so
f1t1(x1, . . . , xn) must lie near zero, f2t1(x1, . . . , xn) must lie near zero, and so forth.
Therefore, since polynomial functions are also continuous, we can look for a root of
the system f1t1 , . . . , fmt1 near (x1, . . . , xn). We make a prediction, i.e., we guess a
possible root of f1t1 , . . . , fmt1 near (x1, . . . , xn), and then a correction, i.e., we find
an actual root near our guess, using Newton’s method for example. Once we have
one, we can proceed to the next iteration for t2 near t1, and so forth. At the end we
will have a path from our original root (x1, . . . , xn)t=0 to a root (x1, . . . , xn)t=1 of
the desired system. Herings and Peeters (2009) presents a survey of previous uses of
homotopy continuation methods in game theory. The book (Sommese and Wampler
2005) gives a recent survey of numerical methods for solving polynomial systems,
including detailed treatment of homotopy continuation, and in particular polyhedral
homotopy continuation.

If we fix the number of equations, and the Newton polytopes of each equation,
then the set of such polynomial systems becomes a vector space over the coefficient
field. Each monomial occurring in each equation corresponds to a basis element of
this vector space, and a particular polynomial system is uniquely specified by giving
the coefficients of all the monomials in all the equations. In particular, if the coef-
ficient field is R then this space of polynomial systems is a finite-dimensional real
vector space. Hence, it is equipped with a topology, the usual topology of such spaces.
We will call the number of equations together with the Newton polytopes of each
equation the shape of a polynomial system. Polyhedral homotopy continuation is

123

Finding all Nash equilibria of a finite game using polynomial algebra 77

simply homotopy continuation among polynomial systems of the same shape. The
word “polyhedral” refers to the polyhedral subdivision introduced in the previous
section.

The Bernstein–Kouchnirenko theorem (Bernstein 1975; Kouchnirenko 1976) tells
us that the number of 0-dimensional complex roots, none of whose components are
zero, of every generic polynomial system of a given shape is the same. This number is
called the Bernstein number of the system. Polyhedral homotopy continuation (Huber
and Sturmfels 1995) provides an alternate constructive proof of this fact. Thus, if we
apply polyhedral homotopy continuation to a generic polynomial system we will find a
unique (possibly complex) root of the system in question at the end of each path leading
from one of the roots of the starting system. McKelvey and McLennan (1997) applied
the Bernstein–Kouchnirenko theorem to find the number of complex roots of the poly-
nomial system (E) for a generic game: it is the permanent of the matrix P , divided
by

∏
i∈I di !. Furthermore, they constructed games in which all these roots are actual

Nash equilibria, i.e., they are real and nonnegative. In Datta (2003a) we generalized
this theorem to polynomial systems obeying special conditions, such as those arising
from graphical games, i.e., games in which the payoffs to some players depend only
on the strategies chosen by a subset of the other players. Briefly put, the special con-
ditions imply that some of the entries in P are zero. This means that the polynomial
system will have a smaller number of roots (in some cases, none), and thus leads to a
tighter upper bound on the number of totally mixed Nash equilibria for such games.

In general, the most difficult part of polyhedral homotopy continuation is comput-
ing the mixed subdivision, finding a polynomial system which is generic, and using
the mixed subdivision to find all the roots. Once all this is done, we can follow a simple
linear homotopy (i.e., of the form ft = (1 − tk) f0 + tk f1 for some k ≥ 1) from this
starting system to the desired system, which is relatively straightforward. Therefore
polyhedral homotopy continuation is particularly well-suited in the case of game the-
ory, since we know exactly how to find and solve a starting system. The system (Ei j) is
an example of a multihomogeneous system. Every monomial appearing in one of these
equations has the same degree, namely 1, in all of player 1’s variables put together,
the same degree, namely 1, in all of player 2’s variables put together, and so forth. In
the same way multihomogeneous systems are generally easy to solve by polyhedral
homotopy continuation. As we saw, adding in the conditions (Ei0) does not make the
problem more difficult, although it does mean multihomogeneity no longer holds. The
system (E) is a linear product family, as described in Section 8.4.3 of Sommese and
Wampler (2005).

We may not even need to find all the roots of the starting system before starting to
find the Nash equilibria of the desired game. Once we have a single root of the starting
system, we can start tracing it. However, if we are unlucky the corresponding root of
the desired game may not be nonnegative or even real, in which case we will have to
go find another root of the starting system to trace. McLennan (2002) describes the
expected number of real roots of a random multihomogeneous system of polynomial
equations, and gives the lower bound as the square root of the Bernstein number (the
number of complex roots of a generic game).

Let’s expand out our factorizable polynomial system for the game of 3 players with
3 pure strategies each.

123

78 R. S. Datta

σ21σ31 + 2σ21σ32 + 2σ22σ31 + 4σ22σ32 − σ21 − 2σ22 − σ31 − 2σ32 + 1 = 0,

4σ21σ31 − 8σ21σ32 − 8σ22σ31 + 16σ22σ32 − 2σ21 + 4σ22 − 2σ31 + 4σ32 + 1 = 0,

16σ11σ31 + 64σ11σ32 + 64σ12σ31 + 256σ12σ32 − 4σ11 − 16σ12

−4σ31 − 16σ32 + 1 = 0,

64σ11σ31 + 256σ11σ32 + 256σ12σ31 + 1024σ12σ32

−8σ11 − 32σ12 − 8σ31 − 32σ32 + 1 = 0,

256σ11σ21 + 2048σ11σ22 + 2048σ12σ21 + 16384σ12σ22

−16σ11 − 128σ12 − 16σ21 − 128σ22 + 1 = 0,

1024σ11σ21 − 8192σ11σ22 − 8192σ12σ21 + 65536σ12σ22

−32σ11 + 256σ12 − 32σ21 + 256σ22 + 1 = 0.

We can make an input file for the polyhedral homotopy continuation software PHC
(Verschelde 1999) which specifies this polynomial system. Since PHC orders the vari-
ables according to the order they have appeared in the file, we will write the equations
in the reverse order from the system listed above, so that the variables will appear in
the order σ11, σ12, σ21, σ22, σ31, σ32. Here is the input file game_of_3_x_3_x_3_
start_phc:

6
1 - 32∗s11 + 256∗s12 - 32∗s21 + 256∗s22
+ 1024∗s11∗s21 - 8192∗s11∗s22 - 8192∗s12∗s21 + 65536∗s12∗s22;
1 - 16∗s11 - 128∗s12 - 16∗s21 - 128∗s22
+ 256∗s11∗s21 + 2048∗s11∗s22 + 2048∗s12∗s21 + 16384∗s12∗s22;
1 - 8∗s11 - 32∗s12 - 8∗s31 - 32∗s32
+ 64∗s11∗s31 + 256∗s11∗s32 + 256∗s12∗s31 + 1024∗s12∗s32;
1 - 4∗s11 - 16∗s12 - 4∗s31 - 16∗s32
+ 16∗s11∗s31 + 64∗s11∗s32 + 64∗s12∗s31 + 256∗s12∗s32;
1 - 2∗s21 + 4∗s22 - 2∗s31 + 4∗s32
+ 4∗s21∗s31 - 8∗s21∗s32 - 8∗s22∗s31 + 16∗s22∗s32;
1 - s21 - 2∗s22 - s31 - 2∗s32
+ s21∗s31 + 2∗s21∗s32 + 2∗s22∗s31 + 4∗s22∗s32;

The first line specifies the number of equations, and the rest of the file specifies the
equations. Since an unknown can only consist of up to 5 characters, we denote the
variable σ11 by s11 in the file, and so forth.

We could find the roots of this factorizable system using PHC itself (in which
case we should tell PHC about the linear product structure of our equations), or
using other programs in the manner described above. We will list the 10 roots of
the starting system we found before in another input file for PHC, which we call
game_of_3_x_3_x_3_start_phc.roots. Here is the beginning of that file,
including the first two roots:

10 6
==
solution 1 :
t : 0.00000000000000E+00 0.00000000000000E+00

123

Finding all Nash equilibria of a finite game using polynomial algebra 79

m : 1
the solution for t :
s11 : 4.68750000000000e-02 0.00000000000000E+00
s12 : 1.95312500000000e-03 0.00000000000000E+00
s21 : 7.50000000000000e-01 0.00000000000000E+00
s22 : 1.25000000000000e-01 0.00000000000000E+00
s31 : 1.87500000000000e-01 0.00000000000000E+00
s32 : 1.56250000000000e-02 0.00000000000000E+00
== err : 0.000E+00 = rco : 1.000E+00 = res : 0.000E+00 ==
solution 2 :
t : 0.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s11 : 2.18750000000000e-01 0.00000000000000E+00
s12 : 2.34375000000000e-02 0.00000000000000E+00
s21 : 1.31250000000000e+00 0.00000000000000E+00
s22 : -1.56250000000000e-01 0.00000000000000E+00
s31 : 4.16666666666667e-01 0.00000000000000E+00
s32 : -4.16666666666667e-02 0.00000000000000E+00
== err : 0.000E+00 = rco : 1.000E+00 = res : 0.000E+00 ==

The first line indicates that the file contains 10 solutions in 6 unknowns. Here t
denotes the homotopy parameter, and m denotes the multiplicity of each root. A line
such as

s11 : 4.68750000000000e-02 0.00000000000000E+00

indicates that at this solution, the variable s11 has real part 0.046875 and imaginary
part 0. The lines

the solution for t :

and

== err : 0.000E+00 = rco : 1.000E+00 = res : 0.000E+00 ==

are lines that would have been included by PHC if it had written this solution file
itself, so we include them also even if we didn’t use PHC to generate these solutions.

Finally, we write an input file game_of_3_x_3_x_3_phc with an example of
another polynomial system of the same shape, which we would like to solve:

6
1 - 2∗s11 + 3∗s12 - 5∗s21 + 7∗s22
- 7∗s11∗s21 - 5∗s11∗s22 - 3∗s12∗s21 + 2∗s12∗s22;
7 - 3∗s11 - 5∗s12 + 2∗s21 - 3∗s22
- 7∗s11∗s21 + 3∗s11∗s22 + s12∗s21 - s12∗s22;
3 - 5∗s11 - 3∗s12 - 2∗s31 + 2∗s32
+ 5∗s11∗s31 + 7∗s11∗s32 - 7∗s12∗s31 + s12∗s32;
2 - 3∗s11 - 5∗s12 - 7∗s31 + 7∗s32
+ 5∗s11∗s31 + 3∗s11∗s32 - 2∗s12∗s31 - s12∗s32;
1 - 2∗s21 - 3∗s22 + 7∗s31 - 5∗s32
- s21∗s31 + 2∗s21∗s32 + 5∗s22∗s31 + 3∗s22∗s32;

123

80 R. S. Datta

1 - s21 + 2∗s22 - 3∗s31 - 5∗s32
+ 7∗s21∗s31 - 2∗s21∗s32 + 5∗s22∗s31 + 3∗s22∗s32;

Now we can invoke PHC with the -p option, indicating that we already have a
starting system and its solutions. Responding to the prompts, we specify that the target
polynomial system is in the file game_of_3_x_3_x_3_phc, that we want PHC to
write the output to a file game_of_3_x_3_x_3_phc.output and the solutions
to a separate file game_of_3_x_3_x_3_phc.roots, and that we already have
a start system in file game_of_3_x_3_x_3_start_phc with solutions in file
game_of_3_x_3_x_3_start_phc.roots. At this point we are presented with
several menus allowing us to change different options for controlling the homotopy
continuation. At each point we can enter 0 to accept the default options. Finally we
are presented with:

No more input expected. See output file for results.

and, possibly after some delay depending on how big our system is (in this case, there
is no noticeable delay), the program exits. Now we can look at the solution file we
specified game_of_3_x_3_x_3_phc.roots:

10 6
==
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s11 : 5.52632039981343E-01 1.29171976073713E+00
s12 : -1.53240191264371E+00 -4.25943189689837E-01
s21 : 9.41581793200150E-02 -6.89962841355063E-01
s22 : 4.25278257933885E-03 1.43036622569914E+00
s31 : 2.32439674939101E-01 4.46695512464090E-01
s32 : -3.51970339164687E-01 2.04469018836310E-01
== err : 8.996E-16 = rco : 7.083E-02 = res : 7.383E-15 ==

We see that each component of this solution has a nonzero imaginary part. So
this solution is not of interest to us. Looking further down in the file, we see another
solution:

solution 3 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s11 : 1.27522488578381E+00 0.00000000000000E+00
s12 : 7.45738698011832E-01 -3.26265223399926E-55
s21 : -1.04186142941727E-01 4.07831529249908E-55
s22 : -1.12076297688423E+00 6.52530446799852E-55
s31 : -5.09803187724616E-01 -1.02304887506437E-55
s32 : 4.44045922481355E-01 -2.65090494012440E-55
== err : 5.009E-16 = rco : 6.629E-02 = res : 3.664E-15 ==

Here the imaginary parts occurring in the various components are very small, and
could be due to numerical error. The eighth solution is similar. To test our hypoth-
esis, we make another file game_of_3_x_3_x_3_phc.real_roots in which

123

Finding all Nash equilibria of a finite game using polynomial algebra 81

we include only these two roots, setting their imaginary parts to zero and renumbering
them in sequence:

2 6
==
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s11 : 1.27522488578381E+00 0.00000000000000E+00
s12 : 7.45738698011832E-01 0.00000000000000E+00
s21 : -1.04186142941727E-01 0.00000000000000E+00
s22 : -1.12076297688423E+00 0.00000000000000E+00
s31 : -5.09803187724616E-01 0.00000000000000E+00
s32 : 4.44045922481355E-01 0.00000000000000E+00
== err : 5.009E-16 = rco : 6.629E-02 = res : 3.664E-15 ==
solution 2 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s11 : 6.39293179706243E-02 0.00000000000000E+00
s12 : -2.16568143357771E+00 0.00000000000000E+00
s21 : 4.93650795841189E+01 0.00000000000000E+00
s22 : -1.96619254862997E+01 0.00000000000000E+00
s31 : -6.49203588219902E-01 0.00000000000000E+00
s32 : -1.51339980038990E+00 0.00000000000000E+00
== err : 2.780E-13 = rco : 1.820E-05 = res : 1.670E-13 ==

Then we ask PHC to validate them by calling it with the -v option, and selecting
option 2 from the resulting menu, “Evaluation of the residuals using multi-precision
arithmetic”. This causes PHC to evaluate each polynomial system at our candidate
roots, obtaining the residuals (the magnitudes of their images, which were supposed
to vanish). We look in the file game_of_3_x_3_x_3_phc.validation_of_
real_roots for the section beginning THE RESIDUALS:

THE RESIDUALS with 16 decimal places :
residual 1 : 1.2838672747E-14
residual 2 : 6.530598545E-13

So we suspect that these roots are indeed real. Since they do not satisfy the nonnegativ-
ity constraints, they are not Nash equilibria. (Note well that even if all the components
of a given solution were real and nonnegative, we would still have to check that
s11 + s12 <= 1, s21 + s22 <= 1, and s31 + s32 <= 1.)

Thus, we can compute a library of starting systems for games of various formats.
This initial computation may take a long time (indeed, computing the permanent is
N P-hard), but only has to be done once (or a few times) for games of each format.
Once we have done this, for any given game, we can look in the library for an appro-
priate starting system along with its roots, parcel out the roots among the processors
we are using (possibly according to some heuristic scheme if we believe some of them

123

82 R. S. Datta

are more likely to lead to Nash equilibria), and hand the starting system, the desired
system, and the subset of roots to each processor.

If we wish, we can use interval computation along the path to each root to get a
verified bound on where the final root is. However, interval techniques become compu-
tationally expensive in higher dimensions. For example, in D dimensions an “interval”
might be a box with 2D corners.

8 Solving polynomial systems using Gröbner bases

So far we have discussed polyhedral homotopy continuation, which is predominantly
a numerical method for solving particular polynomial systems. In this section, we
discuss other, more symbolic methods of solving polynomial systems. Gröbner bases
methods have great power to provide geometric insight and answer more general
questions about games of a given format. We also briefly discuss resultants.

Recall that monomials correspond to points of the lattice N
n . A monomial order is

a total order � of N
n , such that for any α, β, γ ∈ N

n , if α � β then α + γ � β + γ .
In other words, a monomial order is a total order which is compatible with addition
of the points in N

n , which corresponds to multiplication of monomials.
An example of a monomial order is the lexicographic order, which is defined as

follows. First define some ordering on the variables, e.g., xn � xn−1 � · · · � x2 � x1.
Then the lexicographic order can be defined recursively on the number n of variables:
xαn

n � xβn
n if and only if αn ≤ βn , and xα1

1 xα2
2 · · · xαn

n � xβ1
1 xβ2

2 · · · xβn
n if and only if

either α1 ≤ β1, or α1 = β1 and xα2
2 · · · xαn

n � xβ2
2 · · · xβn

n .
Suppose we are given two polynomials in n variables, f1(x1, . . . , xn) and f2(x1, . . .,

xn). The set of monomials occurring with nonzero coefficients in fi is the support Ai

for each i . (Recall that the Newton polytope is the convex hull of the corresponding
lattice points.) Using the lexicographic order, we can write the elements of Ai in a
unique way as mi0, mi1, . . . , mi ji such that mi0 ≺ mi1 ≺ · · · ≺ mi ji . Then we can
write the polynomial equations as

f1(x1, . . . , xn) = a j1 m1 j1 + · · · + a1m11 + a0m10

and

f2(x1, . . . , xn) = b j2 m2 j2 + · · · + b1m11 + b0m10.

Here m1 j1 is called the leading monomial of f1, α j1 m1 j1 is called the leading term of
f1, and α j1 is called the leading coefficient of f1, and similarly for f2.

Now that we have a definite order in which to write the monomials, we can use
long division to divide one polynomial by another. This is very much like long division
in arithmetic (in fact, in a sense, it’s easier, since there’s nothing to guess). Suppose
m1 j1 = xα1

1 xα2
2 · · · xαn

n and m2 j2 = xβ1
1 xβ2

2 · · · xβn
n . To divide f1 by f2, we would write

f1 and underneath it a j1 b−1
j2

xα1−β1
1 xα2−β2

2 · · · xαn−βn
n f2. When this is not a proper poly-

nomial because β j > α j for some j , i.e., the monomial m2 j2 does not divide m1 j1 ,
we’re already done: the quotient is 0 and the remainder is f2 itself. Otherwise, we

123

Finding all Nash equilibria of a finite game using polynomial algebra 83

subtract this from f1 and write a term a j1 b−1
j2

xα1−β1
1 xα2−β2

2 · · · xαn−βn
n in the quotient.

The leading term of f1 cancels out, and the leading monomial of the difference is
strictly smaller. Then we repeat this process again on this result, adding another term
to the quotient, until either we can’t use the leading term of f2 to cancel the leading
term of the result, or the result is zero. Then this last difference is the remainder, and
we have written down all of the quotient. The process has to terminate because the
leading monomials keep getting smaller and smaller.

Suppose that the two polynomial equations f1(x1, . . . , xn) = 0 and f2(x1, . . . , xn)

= 0 hold. From these two polynomial equations we can derive some more polyno-
mial equations which are logical consequences of them. Let γi = max(αi , βi) for
i = 1, . . . , n, and write γ = (γ1, . . . , γn). Since a j1 �= 0 and b j1 �= 0, we have the
following equation:

a−1
j1

xγ1−α1
1 xγ2−α2

2 · · · xγn−αn
n f1 − b−1

j2
xγ1−β1

1 xγ2−β2
2 · · · xγn−βn

n f2 = 0.

Alternatively, we could use instead the equation

b j2 xγ1−α1
1 xγ2−α2

2 · · · xγn−αn
n f1 − a j1 xγ1−β1

1 xγ2−β2
2 · · · xγn−βn

n f2 = 0,

which does not require that a j1 �= 0 or b j2 �= 0. We have chosen the polynomi-
als with which to multiply f1 and f2 in order to cancel the leading terms of f1
and f2. This polynomial is called the S-polynomial S(f1, f2) of f1 and f2. Clearly
S(f1, f2)(x1, . . . , xn) = 0 also.

Now we can divide S(f1, f2) by f1, getting an equation S(f1, f2) = q1 f1 + r1 for
polynomials q1 and r1, and then divide r1 by f2, getting r1 = q2 f2+r2 for polynomials
q2 and f2. (It is unfortunately the case that the final remainder r2 depends on the order
in which we divided by f1 and f2.) We have that r2 = S(f1, f2) − q1 f1 − q2 f2, so in
particular, r2(x1, . . . , xn) = 0. Thus, if r2 is nonzero, we have a logical consequence
of our polynomial equations, and we can throw it into our polynomial system. Our
polynomial system is now { f1, f2, r2}.

Now if we repeat the process, taking S-polynomials of pairs of polynomials in our
new system and dividing each S-polynomial by all the polynomials in our new system,
we may find more polynomial equations to throw into the system. It is a fact from
commutative algebra that this process, called Buchberger’s algorithm, will always
terminate (i.e., finally all the remainders will be zero), and the (finite) system we have
at the end is called a Gröbner basis.

Gröbner bases have many nice properties, but what will be important to us for
solving polynomial systems is elimination theory. If we compute a Gröbner basis of a
polynomial system in the lexicographic order with xn � xn−1 � · · · � x1, then those
elements of the Gröbner basis involving only xn will tell us exactly the polynomial
equations in xn alone which are logical consequences of the polynomial system. We
can find the roots (if we prefer, only the real roots) of a polynomial equation in one
variable, which gives us the possible values of xn . Those elements of the Gröbner basis
involving only xn−1 and xn will tell us exactly the polynomial equations in xn−1 and xn

which are the logical consequences of the polynomial system. We can substitute in the

123

84 R. S. Datta

possible values of xn we got before, to get the possible alternative polynomial equa-
tions that xn−1 alone could satisfy. Thus we can get the possible values of (xn−1, xn).
Continuing in this way, we can get all the possible values of (x1, . . . , xn). If the system
is positive-dimensional, we won’t be able to do this n times. But the generic finiteness
theorem of Harsanyi (1973) tells us that a generic game has a finite number of Nash
equilibria, i.e., the associated polynomial systems are zero-dimensional.

Let’s use the software package Singular (Greuel et al. 2001) to compute the
Gröbner basis of a game of 3 players with 2 pure strategies each.

Here the second parenthesized expression gives the unknowns. As before we write
s10 for σ10 and so forth. In the first parenthesized expression, the first element denotes
the characteristic of the ring. To compute over the rational numbers Q we set the char-
acteristic to 0. The rest of the elements denote parameters. In this case, the parameter
u1ijk denotes u1(s1i , s2 j , s3k) − u1(s10, s2 j , s3k), the parameter u2ijk denotes
u2(s1i , s2 j , s3k) − u2(s1i , s20, s3k), and so forth. Finally, lp means to use the lexico-
graphic order.

Next we specify our polynomial system:

> poly g1=u1100*s20*s30+u1101*s20*s31+u1110*s21*s30+u1111*s21*s31;
> poly g2=u2010*s10*s30+u2011*s10*s31+u2110*s11*s30+u2111*s11*s31;
> poly g3=u3001*s10*s20+u3011*s10*s21+u3101*s11*s20+u3111*s11*s21;
> poly g4=s10+s11-1;
> poly g5=s20+s21-1;
> poly g6=s30+s31-1;

Finally we ask Singular to compute a Gröbner basis:

> ideal G=g1,g2,g3,g4,g5,g6;
> G = groebner(G);

We ask Singular to display the Gröbner basis it computed:

> G;
G[1]=s30+s31-1
G[2]=s20+s21-1
G[3]=s10+s11-1

G[4]=(u1100*u2011*u3101-u1100*u2011*u3111-u1100*u2111*u3001+
u1100*u2111*u3011-u1101*u2010*u3101+u1101*u2010*u3111+
u1101*u2110*u3001-u1101*u2110*u3011-u1110*u2011*u3101+
u1110*u2011*u3111+u1110*u2111*u3001-u1110*u2111*u3011+
u1111*u2010*u3101-u1111*u2010*u3111-u1111*u2110*u3001+
u1111*u2110*u3011)*s21+
(u1100*u2010*u3111-u1100*u2011*u3111-u1100*u2110*u3011+

123

Finding all Nash equilibria of a finite game using polynomial algebra 85

u1100*u2111*u3011-u1101*u2010*u3111+u1101*u2011*u3111+
u1101*u2110*u3011-u1101*u2111*u3011-u1110*u2010*u3101+
u1110*u2011*u3101+u1110*u2110*u3001-u1110*u2111*u3001+
u1111*u2010*u3101-u1111*u2011*u3101-u1111*u2110*u3001+
u1111*u2111*u3001)*s31+
(-u1100*u2010*u3111-u1100*u2011*u3101+u1100*u2011*u3111+
u1100*u2110*u3011+u1100*u2111*u3001-u1100*u2111*u3011+
u1101*u2010*u3101-u1101*u2110*u3001+u1110*u2010*u3101-
u1110*u2110*u3001-u1111*u2010*u3101+u1111*u2110*u3001)

G[5]=(-u1100*u2011*u3011+u1100*u2011*u3111+u1100*u2111*u3011-
u1100*u2111*u3111+u1101*u2010*u3011-u1101*u2010*u3111-
u1101*u2110*u3011+u1101*u2110*u3111+u1110*u2011*u3001-
u1110*u2011*u3101-u1110*u2111*u3001+u1110*u2111*u3101-
u1111*u2010*u3001+u1111*u2010*u3101+u1111*u2110*u3001-
u1111*u2110*u3101)*s11+
(-u1100*u2010*u3001+u1100*u2010*u3011+u1100*u2011*u3001-
u1100*u2011*u3011+u1100*u2110*u3001-u1100*u2110*u3011-
u1100*u2111*u3001+u1100*u2111*u3011+u1101*u2010*u3001-
u1101*u2010*u3011-u1101*u2011*u3001+u1101*u2011*u3011-
u1101*u2110*u3001+u1101*u2110*u3011+u1101*u2111*u3001-
u1101*u2111*u3011+u1110*u2010*u3001-u1110*u2010*u3011-
u1110*u2011*u3001+u1110*u2011*u3011-u1110*u2110*u3001+
u1110*u2110*u3011+u1110*u2111*u3001-u1110*u2111*u3011-
u1111*u2010*u3001+u1111*u2010*u3011+u1111*u2011*u3001-
u1111*u2011*u3011+u1111*u2110*u3001-u1111*u2110*u3011-
u1111*u2111*u3001+u1111*u2111*u3011)*s21*s31+
(u1100*u2010*u3001-u1100*u2010*u3011-u1100*u2011*u3001+
u1100*u2011*u3011-u1100*u2110*u3001+u1100*u2110*u3011+
u1100*u2111*u3001-u1100*u2111*u3011-u1110*u2010*u3001+
u1110*u2010*u3011+u1110*u2011*u3001-u1110*u2011*u3011+
u1110*u2110*u3001-u1110*u2110*u3011-u1110*u2111*u3001+
u1110*u2111*u3011)*s21+
(u1100*u2010*u3001-u1100*u2010*u3011+u1100*u2010*u3111-
u1100*u2011*u3001+u1100*u2011*u3011-u1100*u2011*u3111-
u1100*u2110*u3001+u1100*u2111*u3001-u1101*u2010*u3001+
u1101*u2010*u3011-u1101*u2010*u3111+u1101*u2011*u3001-
u1101*u2011*u3011+u1101*u2011*u3111+u1101*u2110*u3001-
u1101*u2111*u3001-u1110*u2010*u3101+u1110*u2011*u3101+
u1110*u2110*u3001-u1110*u2111*u3001+u1111*u2010*u3101-
u1111*u2011*u3101-u1111*u2110*u3001+u1111*u2111*u3001)

*s31+
(-u1100*u2010*u3001+u1100*u2010*u3011-u1100*u2010*u3111+
u1100*u2011*u3001+u1100*u2110*u3001-u1100*u2111*u3001-
u1101*u2010*u3011+u1101*u2010*u3111+u1110*u2010*u3101-
u1110*u2011*u3001-u1110*u2110*u3001+u1110*u2111*u3001+
u1111*u2010*u3001-u1111*u2010*u3101)

G[6]=(-u1100*u2010*u3111+u1100*u2011*u3111+

123

86 R. S. Datta

u1100*u2110*u3011-u1100*u2111*u3011+u1101*u2010*u3111-
u1101*u2011*u3111-u1101*u2110*u3011+u1101*u2111*u3011+
u1110*u2010*u3101-u1110*u2011*u3101-u1110*u2110*u3001+
u1110*u2111*u3001-u1111*u2010*u3101+u1111*u2011*u3101+
u1111*u2110*u3001-u1111*u2111*u3001)*s31ˆ2+
(2*u1100*u2010*u3111-u1100*u2011*u3111-
2*u1100*u2110*u3011+u1100*u2111*u3011-u1101*u2010*u3111+
u1101*u2110*u3011-2*u1110*u2010*u3101+u1110*u2011*u3101+
2*u1110*u2110*u3001-u1110*u2111*u3001+u1111*u2010*u3101-
u1111*u2110*u3001)*s31+
(-u1100*u2010*u3111+u1100*u2110*u3011+u1110*u2010*u3101-
u1110*u2110*u3001)

(We have reformatted the output.) The Gröbner basis has 6 elements. The first three
elements tell us how to find s10 in terms of s11, s20 in terms of s21, and s30 in
terms of s31. The last element G[6] is a quadratic polynomial in s31 alone. We can
solve this equation to find the possible values of s31. The fourth element G[4] tells
us how to obtain s21 once we have s31, and the fifth element G[5] tells us how to
obtain s11 once we have s31 and s21.

Any particular 2×2×2 game is specified by particular values of the parameters, so
we can just substitute them in and solve the resulting system. Having the Gröbner basis
gives us important information about how the geometry of the solution set varies with
the parameters. For instance, if the coefficient of s312 in G[6] vanishes, then this
polynomial only has degree 1 and hence only one real root. We can consider the dis-
criminant of the quadratic equation G[6]. Writing ui

s = ui (si j , s−i), the discriminant
becomes:

(
2u1

100u2
010u3

111 − u1
100u2

011u3
111 − 2u1

100u2
110u3

011 + u1
100u2

111u3
011 − u1

101u2
010u3

111

+ u1
101u2

110u3
011−2u1

110u2
010u3

101+u1
110u2

011u3
101+2u1

110u2
110u3

001−u1
110u2

111u3
001

+ u1
111u2

010u3
101 − u1

111u2
110u3

001

)2 − 4
(
−u1

100u2
010u3

111 + u1
100u2

011u3
111

+ u1
100u2

110u3
011 − u1

100u2
111u3

011 + u1
101u2

010u3
111 − u1

101u2
011u3

111 − u1
101u2

110u3
011

+ u1
101u2

111u3
011 + u1

110u2
010u3

101 − u1
110u2

011u3
101 − u1

110u2
110u3

001 + u1
110u2

111u3
001

− u1
111u2

010u3
101 + u1

111u2
011u3

101 + u1
111u2

110u3
001 − u1

111u2
111u3

001

)

×
(
−u1

100u2
010u3

111 + u1
100u2

110u3
011 + u1

110u2
010u3

101 − u1
110u2

110u3
001

)
.

The set of payoff functions where the discriminant is zero is a real algebraic variety
in the space of 2 × 2 × 2 games, the discriminant variety. It partitions the space of
2 × 2 × 2 games into a region where the discriminant is positive, in which case the
polynomial system has two real roots, and a region where the discriminant is negative,
in which case the polynomial system has no real roots.

The reader was already familiar with the discriminant of the quadratic formula, but
the same phenomenon will happen with equations of higher degrees in more variables
(Gelfand et al. 1994). We saw in our example that only a single polynomial of the

123

Finding all Nash equilibria of a finite game using polynomial algebra 87

Gröbner basis was nonlinear, and this is true in general for generic games in normal
form, by Theorem 9 of Herings and Peeters (2005). For higher-degree polynomial sys-
tems there could be several discriminant varieties, with various implications about the
geometry of the solution set. The SALSA team of INRIA Rocquencourt and LIP6 in
France has produced a Maple package DV which will analyze the discriminant varieties
for a parametric polynomial system Lazard and Rouillier (2007), and Montes (2002)
has independently produced another such Maple package DisPGB. (These analyze
the implications of the discriminantal equations being zero or nonzero for the complex
solutions of the polynomial system. In the example above, we considered in addition
the implications of the discriminant being positive or negative on the real solutions.)

Specifically, Gabriela Jeronimo, Daniel Perrucci, and Juan Sabia have recently
explained how to obtain a parametric representation of the totally mixed Nash equi-
libria. (As we know, this means we can get a parametric representation of all the Nash
equilibria by considering various possible supports.) They give polynomial-time algo-
rithms for describing the set of totally mixed Nash equilibria, using multihomogeneous
resultants. The resultant of a polynomial system is a polynomial equation in the coeffi-
cients of the system which must hold in order for the system to have a root. Resultants
are a key tool in the solution of polynomial systems. The parametric equations charac-
terize the geometry of the space of games and provide an effective method for finding
all the roots. We look forward eagerly to the implementation of these algorithms in a
software package, which we hope will lead to many new insights in game theory.

9 Finding all Nash equilibria in Gambit

The Gambit software package incorporates a variety of tools for finding Nash equi-
libria and studying other properties of games. We briefly discuss here the method used
by Gambit to find all Nash equilibria prior to the release of 30 January 2007. (This
release, current as of this writing, includes an experimental option to use PHC to find
all Nash equilibria.)

Gambit solves the polynomial systems defining the Nash equilibria by subdivid-
ing the product of simplices (where each simplex is the subset of R

di defined by
σi1 + · · · + σidi = 1, σi j ≥ 0 for all j) into small boxes and looking at the Taylor
series of each polynomial in the system. We can, for instance, evaluate the D poly-
nomials (f1, . . . , fD) at one corner σ of such a box, giving a vector (y1, . . . , yD).
Then any point in the box is no further than the diagonally opposite corner, and we
can plug this distance into the Taylor series of the polynomials about the corner to
determine a bound on how far the image of any other point σ ′ of the box can lie from
(y1, . . . , yD). If this bound is less than ||(y1, . . . , yD)||2, then no point in the box can
be a root of the polynomial system. If it is not, then Gambit looks for a root in the
box using Newton’s method. If such a root is found, then Gambit tries to see whether
it can determine that no other roots may exist within the box, again using the Taylor
series of the polynomials. If it can, then it is done with this box, but if not, then it
subdivides the box into 2D smaller boxes and looks at those.

This method has the advantage that it will only find real roots which satisfy the non-
negativity constraints. However, it does not scale well with higher dimensions. Using

123

88 R. S. Datta

polyhedral homotopy continuation with factorizable starting systems, finding all Nash
equilibria of games of much larger formats should become practical. However, it may
be useful to use a similar Taylor series technique on the augmented system (the one
including the variable t) along the way to each root of the target system, to see whether
we can derive a bound ensuring that the target root will not be real and nonnegative
(i.e., a Nash equilibrium). In that case we can abandon this particular path. Here we
are just travelling along a 1-dimensional interval [0, 1], so the problem of having to
subdivide into an exponential number 2D of smaller boxes does not arise.

Gambit also provides an option to compute Nash equilibria via heuristic search on
the supports of the game (Porter et al. 2008), through an implementation contributed
by Litao Wei. Heuristic search is complementary to using polynomial algebra to find
Nash equilibria. It can tell us which of the many possible supports to look at first.
The choice of support tells us which polynomial systems to solve (possibly none, if
we find a pure Nash equilibrium on the support and are satisfied with not looking any
further).

10 Conclusion

In this paper, we have described the polynomial systems which characterize the Nash
equilibria of a game. We have explained how to construct and solve a factorizable
start system and then use polyhedral homotopy continuation to solve games of a
given format. We have also explained how to use Gröbner bases to gain insight into
how the geometry of the solution set of these polynomial systems varies over the
space of games of a particular format. Finally, we have reviewed the current use of
Gambit for finding all Nash equilibria of a game. We suggest that Gambit may be
able to find all Nash equilibria of games of larger formats than is currently possible,
by incorporating polyhedral homotopy continuation from factorizable nondegenerate
start systems. Alternatively, or in addition, Gambit may implement the algorithm of
Jeronimo, Perrucci, and Sabia to find all Nash equilibria of a game. We sincerely hope
that the possibility of analyzing larger games will enable game theorists to make more
realistic models of strategic interaction.

Appendix

In this appendix, we eliminate the complementary slack variables from the system (∗).
We carry out steps similar to the steps carried out by a Gröbner basis algorithm, but in
this case we only need elementary methods. We find that for a generic game, at each
solution either for every player all but one of the complementary slack variables are
positive, corresponding to a pure strict Nash equilibrium, or for at least two players at
least two of them are zero.

Fix a player i ∈ I , a pure strategy si j ∈ Si of player i , and a pure strategy sklk ∈ Sk

for every other player k ∈ I −{i}, giving a pure (−i)-strategy profile s−i ∈ S−i . Then
the system (∗) implies that

ui (si j , σ−i) + vi j = ui (si0, σ−i) + vi0.

123

Finding all Nash equilibria of a finite game using polynomial algebra 89

Multiplying through by

∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk ,

which we denote by p(s−i), and using that σkmk vkmk = 0, we find that

⎛

⎝ui (si j , s−i)
∏

k∈I−{i}
σklk + vi j

⎞

⎠
∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk

=
⎛

⎝ui (si0, s−i)
∏

k∈I−{i}
σklk + vi0

⎞

⎠
∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk .

Every other term in ui (si j , σ−i) is killed by one or more of the vkmk ’s, and similarly for

ui (si0, σ−i). Next, we substitute 1 −∑dk
mk = 0
mk �= lk

σkmk for σklk in each factor of the prod-

uct
∏

k∈I−{i} σklk , and note that every nonconstant term in the resulting polynomial is
also killed by one or more of the vkmk ’s. Finally, we have

(
vi j − vi0 + ui (si j , s−i) − ui (si0, s−i)

) ∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk = 0,

an equation involving only the complementary slack variables. Clearly, for this equa-
tion to hold, either vi j − vi0 + ui (si j , s−i) − ui (si0, s−i) or one of the vkmk ’s must
vanish.

In this way we obtain a system of equations in the vi j ’s, which we denote by (V).
Denote by (Vi) the subsystem corresponding to fixing player i above, and by (Vi,s−i)

the subsystem corresponding to fixing player i and the pure (−i)-strategy profile s−i .
If p(s−i) �= 0 for some s−i ∈ S−i , then the system of equations (Vi,s−i) reduces

to vi j = vi0 + ui (si0, s−i) − ui (si j , s−i) for each j = 1, . . . , di . The solutions to this
system along with the nonnegativity constraints vi j ≥ 0 lie along a ray parametrized
by vi0, with

vi0 ≥ di
max
j=0

(
ui (si j , s−i) − ui (si0, s−i)

)
.

Only for those j = 0, . . . , di at which ui (si j , s−i) − ui (si0, s−i) attains its maximum

can vi j ever vanish; the rest of the vi j ’s must be positive. But since
∑di

j=0 σi j = 1
with σi j ≥ 0, at least one σi j must be positive, and thus since σi jvi j = 0 for all
j , at least one vi j must vanish. Therefore we have a unique solution, the point with

vi0 = maxdi
j=0(ui (si j , s−i)−ui (si0, s−i)). Let us denote this point by q(s−i) ∈ R

di +1
≥0 .

123

90 R. S. Datta

For generic games, the point q(s−i) corresponding to s−i will be different from the
point q(s′−i) corresponding to s′−i for any other s′−i ∈ S−i . By this we mean that for
q(s−i) to equal q(s′−i) imposes an extra condition on the payoff function, which is
only satisfied on a semialgebraic subvariety of the space of games of lower dimension.
For a fixed game format, the set of all payoff functions is a finite-dimensional real
vector space whose coordinates are ui (s) for all players i and pure strategy profiles
s. This is the space of games of that format. The condition that q(s−i) equals q(s′−i)

is equivalent to one of a set of alternatives, each of which is an equation and a set of
inequalities. The equation defines a hyperplane in the space of games, and so is of
lower dimension. So generically, q(s−i) is different from q(s′−i). This also implies
that q(s−i) �= q(s′−i) almost everywhere, and that q(s−i) �= q(s′−i) on a dense open
subset of the space of games.

Thus for generic games, the system (Vi) reduces to the following |S−i | + 1 alter-
natives: either

p(s−i) = 0 for all s−i ∈ S−i , (Vp
i)

or for some s∗−i ∈ S−i , we have the system (V
s∗−i
i):

p(s−i) = 0 for all s−i ∈ S−i − {s∗−i }, (V
s∗−i p
i)

and

(vi0, . . . , vidi) = q(s∗−i). (V
s∗−i q
i)

For generic games, exactly one of the vi j ’s will vanish at the point q(s∗−i).
We now introduce some notation from logic. The symbol ∧ means “and” and the

symbol ∨ means “or” (in the Boolean sense). Suppose ϕ0 and ϕ1 are Boolean expres-
sions. Then the expression ϕ0 ∧ ϕ1, meaning “ϕ0 and ϕ1”, is the conjunction of ϕ0
and ϕ1. The expression ϕ0 ∨ ϕ1, meaning “ϕ0 or ϕ1”, is the disjunction of ϕ0 and ϕ1.
Suppose ϕ0, . . . , ϕn are Boolean expressions. Then

∧n
i=0 ϕi denotes the conjunction

of ϕ0, . . . , ϕn , and
∨n

i=0 ϕi denotes the disjunction of ϕ0, . . . , ϕn . The distributive law
holds for conjunction and disjunction just as it holds for multiplication and addition.

Lemma 1 The solutions of the system (Vp
i) are given by

N∨

k = 1
k �= i

dk∨

j=0

dk∨

l = 1
l > j

(vk j = 0) ∧ (vkl = 0).

Proof We proceed by induction on the number N of players. First suppose N = 2.
Without loss of generality, fix i = 2. Then each s−i is s1 j for some j . The equation

(Vp
2,s1 j

) is p(s1 j) = ∏d1
l = 0
l �= j

v1l = 0, which holds if and only if
∨d1

l = 0
l �= j

(v1l = 0). So

the system (Vp
2) holds if and only if

∧d1
j=0

∨d1
l = 0
l �= j

(v1l = 0). We show by induction on

123

Finding all Nash equilibria of a finite game using polynomial algebra 91

d1 that this expression is equal to
∨d1

j=0

∨d1
l = 1
l > j

(v1 j = 0) ∧ (v1l = 0) which equals
∨2

k = 1
k �= 2

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0). For d1 = 1,

1∧

j=0

1∨

l = 0
l �= j

(v1l = 0) =
1∧

j=0

(v1(1− j) = 0)

= (v11 = 0) ∧ (v10 = 0)

=
1∨

j=0

1∨

l = 1
l > j

(v1 j = 0) ∧ (v1l = 0)

Now assume that
∧d1

j=1

∨d1
l = 1
l �= j

(v1l = 0) = ∨d1
j=1

∨d1
l = 2
l > j

(v1 j = 0) ∧ (v1l = 0). Then

d1∧

j=0

d1∨

l = 0
l �= j

(v1l = 0)

=
(

d1∨

l=1

(v1l = 0)

)

∧
d1∧

j=1

d1∨

l = 0
l �= j

(v1l = 0)

=
(

d1∨

l=1

(v1l = 0)

)

∧
d1∧

j=1

⎛

⎜
⎝(v10 = 0) ∨

d1∨

l = 1
l �= j

(v1l = 0)

⎞

⎟
⎠

=
(

d1∨

l=1

(v1l = 0)

)

∧
⎛

⎜
⎝(v10 = 0) ∨

d1∧

j=1

d1∨

l = 1
l �= j

(v1l = 0)

⎞

⎟
⎠

=
(

d1∨

l=1

(v1l = 0)

)

∧
⎛

⎜
⎝(v10 = 0) ∨

d1∨

j=1

d1∨

l = 2
l > j

(v1 j = 0) ∧ (v1l = 0)

⎞

⎟
⎠

=
(

d1∨

l=1

(v10 = 0) ∧ (v1l = 0)

)

× ∨
⎛

⎜
⎝

(
d1∨

l=1

(v1l = 0)

)

∧
d1∨

j=1

⎛

⎜
⎝(v1 j = 0) ∧

⎛

⎜
⎝

d1∨

l = 1
l > j

(v1l = 0)

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

=
⎛

⎜
⎝

0∨

j=0

d1∨

l = 1
l > j

(v1 j = 0) ∧ (v1l = 0)

⎞

⎟
⎠

123

92 R. S. Datta

× ∨
⎛

⎜
⎝

⎛

⎝
d1∨

j=1

(v1 j = 0)

⎞

⎠ ∧
d1∨

j=1

⎛

⎜
⎝(v1 j = 0) ∧

⎛

⎜
⎝

d1∨

l = 1
l > j

(v1l = 0)

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

=
⎛

⎜
⎝

0∨

j=0

d1∨

l = 1
l > j

(
v1 j = 0

) ∧ (v1l = 0)

⎞

⎟
⎠ ∨

d1∨

j=1

⎛

⎜
⎝(v1 j = 0) ∧

⎛

⎜
⎝

d1∨

l = 1
l > j

(v1l = 0)

⎞

⎟
⎠

⎞

⎟
⎠

=
di∨

j=0

d1∨

l = 1
l > j

(v1 j = 0) ∧ (v1l = 0).

Now assume the lemma holds for any number of players less than N . Fix i ∈ I −{N }.
Suppose that

∨N
k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0) holds. Fix n ∈ I − {i} and

j, m ∈ Sn with j �=m such that vnj=0 and vnm = 0. Consider a pure strategy sklk ∈ Sk

for every player k ∈ I − {i}, giving a pure (−i)-strategy profile s−i ∈ S−i . The
equation (Vp

i,s−i
) is

p(s−i) =
∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk = 0.

Either ln = j , in which case the product vanishes since it includes vnm ; or ln = m,
in which case the product vanishes since it includes vnj ; or snln ∈ Sn − {snj , snm}, in
which case the product vanishes since it includes both vnj and vnm . Thus the equation
(Vp

i,s−i
) holds. So the system (Vp

i) is satisfied.

Conversely, suppose the system (Vp
i) holds. If there exist j, m ∈ SN with j �= m

such that vN j = 0 and vNm = 0, then
∨N

k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0)

holds, so assume there do not exist such j, m ∈ SN . Then there exists j ∈ SN such
that vNm �= 0 for all sNm ∈ SN −{sN j }. Write S′−i = ∏

k∈I−{i,N } Sk . Consider all ele-
ments of S−i given by pure strategies sklk ∈ Sk for k ∈ I−{i, N } and sNlN = sN j ∈ SN .
Thus s−i has the form s−i = (s′−i , sN j) for some s′

i ∈ S′
i . The equation (Vp

i,s−i
) is

p(s−i) =
∏

k∈I−{i}

dk∏

mk = 0
mk �= lk

vkmk =
⎛

⎜
⎝

∏

k∈I−{i,N }

dk∏

mk = 0
mk �= lk

vkmk

⎞

⎟
⎠

dN∏

m = 0
m �= j

vNm = 0.

Since vNm �= 0 for all sNm ∈ SN − {sN j }, this equation is equivalent to the equation

p(s′−i) = ∏
k∈I−{i,N }

∏dk
mk = 0
mk �= lk

vkmk = 0. By the induction hypothesis, these equations

imply that
∨N−1

k = 1
k �= i

∨dk
j=0

∨dk
l = 1
> j

(vk j = 0)∧ (vkl = 0) holds. Thus
∨N

k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0) holds. ��

123

Finding all Nash equilibria of a finite game using polynomial algebra 93

Lemma 2 Fix i ∈ I and fix pure strategies sklk ∈ Sk for each k ∈ I − {i}, defining a

(−i)-strategy profile s∗−i ∈ S−i . Then the solutions of the system (V
s∗−i p
i) are given by

N∧

k = 1
k �= i

(vklk = 0) ∨
N∨

k = 1
k �= i

dk∨

j=0

dk∨

l = 1
l > j

(vk j = 0) ∧ (vkl = 0).

Proof Suppose
∧N

k = 1
k �= i

(vklk = 0) ∨ ∨N
k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0) holds.

If

N∨

k = 1
k �= i

dk∨

j=0

dk∨

l = 1
l > j

(vk j = 0) ∧ (vkl = 0)

holds, then by Lemma 1, the system (Vp
i) holds so a fortiori the system (V

s∗−i p
i) holds.

Suppose
∧N

k = 1
k �= i

(vklk = 0) holds. Let s−i ∈ S−i − {s∗−i } with components sknk ∈ Sk .

Then

p(s−i) =
N∏

k = 1
k �= i

dk∏

mk = 0
mk �= nk

vkmk .

Since s−i �= s∗−i , there is some k ∈ I − {i} such that nk �= lk . Then vklk appears in the

product, and so p(s−i) = 0. So the system (V
s∗−i p
i) holds.

Conversely, suppose
∧N

k = 1
k �= i

(vklk = 0)∨∨N
k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0)∧ (vkl = 0)

does not hold. Since
∧N

k = 1
k �= i

(vklk = 0) does not hold, there is some k′ ∈ I − {i} such

that vk′lk′ �= 0. Also since
∨N

k = 1
k �= i

∨dk
j=0

∨dk
l = 1
l > j

(vk j = 0) ∧ (vkl = 0) does not hold,

for each k ∈ I − {i}, either vk j �= 0 for all sk j ∈ Sk , or vknk = 0 for a single sknk ∈ Sk

and vkmk �= 0 for all mk with skmk ∈ Sk − {sknk }. In either case, there is some nk

with sknk ∈ Sk such that vkmk �= 0 for all mk with skmk ∈ Sk − {sknk }. In particular,
for k′ we can choose nk′ �= lk′ , because in the former case, any nk′ other than lk′ will
do, and in the latter case, the single nk′ with vknk′ = 0 must not be equal to lk′ , since
vk′lk′ �= 0. Define s−i ∈ S−i with components sknk ∈ Sk such that vkmk �= 0 for all mk

with skmk ∈ Sk − {sknk }, for all k ∈ I − {i, k′}, and nk′ �= lk′ . Then

p(s−i) =
N∏

k = 1
k �= i

dk∏

mk = 0
mk �= nk

vkmk �= 0

123

94 R. S. Datta

by the choice of the nk’s. Since nk′ �= lk′ , we have s−i ∈ S−i −{s∗−i }. So (V
s∗−i p
i,s−i

) does

not hold and the system (V
s∗−i p
i) does not hold. ��

Corollary 1 The system (Vi) holds if and only if either

N∨

k = 1
k �= i

dk∨

j=0

dk∨

l = 1
l > j

(vk j = 0) ∧ (vkl = 0),

or for some pure strategies skl ∈ Sk for each k ∈ I − {i} defining a (−i)-strategy
profile s∗−i ∈ S−i , we have

(vi0, . . . , vidi) = q(s∗−i),

vklk = 0 for each k ∈ I − {i},

and

vkmk �= 0 for all mk �= lk , for each k ∈ I − {i}.

Proof This follows from our characterization of (Vi), Lemmas 1 and 2. We impose
the condition

vkmk �= 0 for all mk �= lk , for each k ∈ I − {i}

in the latter alternative because otherwise, the former alternative holds. ��
Suppose we have a solution of the system (V) in which the latter alternative holds

for some i ∈ I . As noted earlier, for a generic game, exactly one vi j = 0 (the
one for which ui (si j , s−i) − ui (si0, s−i) attains its maximum, i.e., the one for which
ui (si j , s−i) is maximum) and the rest are zero. So the former alternative cannot hold
for any k ∈ I . Define li by vili = 0, and let s∗ = (sili , s∗−i) ∈ S. For each k ∈ I ,
the payoff uk(sklk , s∗−k) must be the maximum among uk(skl , s∗−k). Since vkl �= 0 for
l �= lk , we must have σkl = 0 for l �= lk , so σklk = 1. That is, σ is the pure strategy
profile s∗. So this is the case of a pure strict Nash equilibrium s∗, that is, one for which
the pure strategy s∗

k is a strictly better response to s∗−k than any other pure strategy of
k, for each k ∈ I .

Note well that this is a weaker condition than that s∗ be an equilibrium in dominant
strategies. For example, consider a game of two players who each can take one of two
actions, in which the payoff to each player is the same if they take the same action and
strictly less if they take opposite actions. This game has two pure strict Nash equilibria,
corresponding to both players taking the same one of the two actions. But neither of
the actions is a dominated strategy for either of the players.

Suppose the latter alternative holds for some i ∈ I and both vi j = 0 and vi j ′ = 0
for some j �= j ′. Then this makes the former alternative true for every k ∈ I − {i}.

123

Finding all Nash equilibria of a finite game using polynomial algebra 95

Proposition 2 Suppose σ is a Nash equilibrium of a generic game, and σ is not a pure
strict Nash equilibrium. Then there are two players i, k ∈ I with i �= k and two pure
strategies each, si j0 , si j1 ∈ Si with j0 �= j1 and skl0 , sklk ∈ Sk with l0 �= l1, such that
ui (si j0 , σ−i) = ui (si j1 , σ−i) = ui (σ) and uk(skl0 , σ−k) = uk(skl1, σ−k) = uk(σ).

Proof The first alternative in Corollary 1 must hold for each i ∈ I . Pick a player
n ∈ I . The condition

N∨

k = 1
k �= n

dk∨

j=0

dk∨

l = 1
l > j

(vk j = 0) ∧ (vkl = 0)

means there is k �= n and pure strategies skl0 , skl1 ∈ Sk with vkl0 = vkl1 = 0, i.e.,
uk(skl0 , σ−k) = uk(skl1, σ−k) = uk(σ). This makes (Vm) hold for every player m ∈
I −{k}. For k itself, the condition

∨N
i = 1
i �= k

∨di
j=0

∨di
l = 1
l > j

(vi j = 0)∧(vil = 0) means there

is i �= k and pure strategies si j0 , si j1 ∈ Si with ui (si j0, σ−i) = ui (si j1, σ−i) = ui (σ).
��

In this case we cannot isolate σi j0 and σi j1 simply by looking at the best responses
for i , and similarly with k. We must solve the polynomial system (∗).

As noted before, at least one vnm must vanish for every n ∈ I . In the conditions
of the proposition, the least complex case is that exactly one vnm vanishes for each
n ∈ I − {i, k}, say vnmn ; that vi j > 0 for j �= j0 and j �= j1; and that vkl > 0 for
k �= k0 and k �= k1. Then each player n ∈ I − {i, k} executes pure strategy snmk .
Furthermore i does not execute pure strategy si j with any probability for j �= j0 and
j �= j1, and k does not execute pure strategy skl with any probability for l �= l0 and
l �= l1. Then the system (∗) reduces to the system for a game with two players, which
we renumber as 1 and 2, with two pure strategies each, which we renumber as s10,
s11, s20, and s21. Write ui

jl = ui (s1 j , s2l). In this case the system (∗) is:

u1
00σ20 + u1

01σ21 = u1
10σ20 + u1

11σ21,

u2
00σ10 + u2

10σ11 = u2
01σ10 + u2

11σ11,

σ10 + σ11 = 1,

σ20 + σ21 = 1.

Substituting 1 − σ11 for σ10 and 1 − σ21 for σ20, we obtain

(u1
11 − u1

10 − u1
01 + u1

00)σ21 = u1
00 − u1

10,

(u2
11 − u2

10 − u2
01 + u2

00)σ11 = u2
00 − u2

01.

Notice that the equilibrium found by this system need not be totally mixed; for instance,
u1

00 − u1
10 could equal zero, in which case σ2 = s20, or u1

11 − u1
01 could equal zero. in

which case σ2 = s21. (If they are both zero, then player 1 has no control over player
1’s own payoff and hence every mixed strategy of player 1 is a best response. So the

123

96 R. S. Datta

requirement that 1 play a best response, which leads to the first equation, does not
impose any constraint on the strategy σ21 of player 2.) Similarly, u2

00 − u2
01 could

equal zero, in which case σ1 = s10, or u2
11 − u2

10 could equal zero, in which case
σ1 = s11. Both of these cases may even occur, in which case the root of the system is
a pure Nash equilibrium.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Heidelberg: Springer (2003)
Bernstein, D.N.: The number of roots of a system of equations. Funct Anal Appl 9, 183–185 (1975)
Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Heidelberg: Springer (1998)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Heidelberg: Springer (1997)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Heidelberg: Springer (1998)
Datta, R.S.: Algebraic Methods In Game Theory. Ph.D. thesis, University of California at Berkeley (2003a)
Datta, R.S.: Universality of Nash equilibria. Math Oper Res 28, 424–432 (2003b)
Datta, R.S.: Using computer algebra to find Nash equilibria. In: Proceedings of the 2003 International Sym-

posium on Symbolic and Algebraic Computation, pp. 74–79 (electronic). ACM, New York (2003c)
Dickenstein, A., Emiris, I.Z. (eds.): Solving Polynomial Equations. Heidelberg: Springer (2005)
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Deter-

minants. Basel: Birkhäuser (1994)
Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2.0. A computer algebra system for polynomial com-

putations. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de
(2001)

Harsanyi, J.: Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2, 235–250 (1973)
Herings, P.J.-J., Peeters, R.: A globally convergent algorithm to compute all Nash equilibria for n-person

games. Ann Oper Res 137, 349–368 (2005)
Herings, P.J.-J., Peeters, R.: Homotopy methods to compute equilibria in game theory. Econ Theory (2009)

(this issue)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math Com-

put 64, 1541–1555 (1995)
Kouchnirenko, A.G.: Newton polytopes and the Bezout theorem. Funct Anal Appl 10, 233–235 (1976)
Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J Symb Comput 42, 636–667 (2007)
McKelvey, R., McLennan, A.: The maximal number of regular totally mixed Nash equilibria. J Econ

Theory 72, 411–425 (1997)
McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game theory, version

0.2006.01.20 (2006). Available at http://econweb.tamu.edu/gambit/
McLennan, A.M.: The expected number of real roots of a multihomogeneous system of polynomial equa-

tions. Am J Math 124, 49–73 (2002)
Montes, A.: A new algorithm for discussing Groebner bases with parameters. J Symb Comput 33, 183–

208 (2002)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory. Cambridge: MIT Press (1994)
Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash equilibrium. Games Econ

Behav 63, 642–662 (2008)
Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering

and Science. Singapore: World Scientific (2005)
Sturmfels, B.: Solving Systems of Polynomial Equations. American Mathematical Society, Providence

(2002)
Torregrosa, J.R., Jordán, C., el Ghamry, R.: The nonsingular matrix completion problem. Int J Contemp

Math Sci 2, 349–355 (2007)
Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy

continuation. ACM Trans Math Softw 25, 251–276 (1999)

123

http://www.singular.uni-kl.de
http://econweb.tamu.edu/gambit/

	Finding all Nash equilibria of a finite game using polynomial algebra
	Abstract
	1 Introduction
	2 The system of polynomial equations
	3 What kind of geometric object is the set of Nash equilibria?
	4 Eliminating the complementary slack variables
	5 Solving an instance of the polynomial system
	6 Polyhedra and polynomial systems
	7 Finding all Nash equilibria by polyhedral homotopy continuation
	8 Solving polynomial systems using Gröbner bases
	9 Finding all Nash equilibria in Gambit
	10 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

