Tournoud et al. BMC Bioinformatics (2015) 16:106
DOI 10.1186/s12859-015-0537-9

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

A strategy to build and validate a prognostic
biomarker model based on RT-gPCR gene
expression and clinical covariates

Maud Tournoud'”, Audrey Larue', Marie-Angelique Cazalis?, Fabienne Venet3, Alexandre Pachot?,

Guillaume Monneret?, Alain Lepape® and Jean-Baptiste Veyrieras

1

Abstract

on the test dataset.

estimation, Model optimism

Background: Construction and validation of a prognostic model for survival data in the clinical domain is still an
active field of research. Nevertheless there is no consensus on how to develop routine prognostic tests based on a
combination of RT-gPCR biomarkers and clinical or demographic variables. In particular, the estimation of the model
performance requires to properly account for the RT-qPCR experimental design.

Results: We present a strategy to build, select, and validate a prognostic model for survival data based on a
combination of RT-gPCR biomarkers and clinical or demographic data and we provide an illustration on a real clinical
dataset. First, we compare two cross-validation schemes: a classical outcome-stratified cross-validation scheme and an
alternative one that accounts for the RT-gPCR plate design, especially when samples are processed by batches. The
latter is intended to limit the performance discrepancies, also called the validation surprise, between the training and
the test sets. Second, strategies for model building (covariate selection, functional relationship modeling, and
statistical model) as well as performance indicators estimation are presented. Since in practice several prognostic
models can exhibit similar performances, complementary criteria for model selection are discussed: the stability of the
selected variables, the model optimism, and the impact of the omitted variables on the model performance.

Conclusion: On the training dataset, appropriate resampling methods are expected to prevent from any upward
biases due to unaccounted technical and biological variability that may arise from the experimental and intrinsic
design of the RT-gPCR assay. Moreover, the stability of the selected variables, the model optimism, and the impact of
the omitted variables on the model performances are pivotal indicators to select the optimal model to be validated
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Background

Prognostic survival models refer to the “quantification of
the survival prognosis of patients based on information at
start of follow-up (¢ = 0)” [1]. Here, survival should be
taken in the broadest sense and relates to the probability
of an individual to develop a given outcome over a specific
time. Frequently studied outcomes are the time-to-death
or the time-to-disease progression.
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The development of a prognostic model usually involves
two main steps: model building and validation. The prog-
nostic model is built based on a training or learning
sample set after which the model is validated using test or
validation samples. The quality of a prognostic model is
measured through its performance, i.e. the ability of the
model to correctly predict the prognosis of a patient based
on his observed predictors.

Prognostic model building and validation is an active
field of research in biostatistics: for instance, Steyerberg
[2] presented several successful applications for public
health, clinical practice and medical research. Although
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many prognostic models have been published in the med-
ical literature every year, such models are rarely imple-
mented in clinical practice. This is mainly due to the
lack of generalization of these models, meaning that the
performance of the reported models is not as good on
new independent datasets as they were on the dataset
used to build the model [3]. The three most frequent rea-
sons for this lack of generalization are: i) deficiencies in
the design or in the modeling methods used to derive
the model ii) upward biases regarding the estimation of
the performance, and iii) differences between training
and test samples, including differences in health-care sys-
tems, methods of covariate measurements, and patient
characteristics [4-8].

The objective of this article is to present a strategy for
prognostic survival model building, selection, and valida-
tion for the development of routine prognostic tests based
on a combination of RT-qPCR biomarkers and clinical or
demographic variables and to illustrate it on a real dataset.
We will focus on three main issues: resampling strategy,
performance indicator estimation, and criteria for model
selection.

First, accurate estimation of model performance is a
crucial step in the model validation process. Perfor-
mance estimated on the training samples used for model
building, i.e. apparent performance, is very likely to be
upwardly biased. Resampling methods, such as k-fold
cross-validation and bootstrap [9] are the most common
techniques to estimate the actual performance. Resam-
pling methods should properly capture the intrinsic tech-
nical variability of the biomarker assay. This is particularly
important in RT-qPCR assays or any assay that processes
samples batchwise, where a batch is defined to be a set of
samples that undergo the same experimental conditions.
In this article, we compare two cross-validation strategies;
one method accounts for the technical and/or the biolog-
ical/clinical variability related to the batch design of the
biomarker study, while the other does not.

Second, two methods can be used to estimate the cross-
validated performance indicators: the pooling and the
averaging methods [10,11]. The pooling method estimates
the performance at the end of a cross-validation repetition
whereas the averaging method estimates the performance
within each fold, and performances are then averaged over
folds. The pooling method generally results in a smaller
variance than the averaging method, which might be criti-
cal for small sample size or limited number of folds. How-
ever, depending on the cross-validation strategy, and the
performance indicator considered, the pooling method
can lead to biased estimations [10]. The advantage of both
methods in the context of censored survival data will be
discussed hereafter.

Third, selecting the optimal model is generally a diffi-
cult decision-making step. Indeed, several models might

Page 2 of 15

present similar performances. In this case, model perfor-
mance may not be the sole criterium to select the optimal
model. Complementary criteria for model selection will
be discussed.

Finally, we will detail the construction of the selected
model, and the subsequent validation steps; the complete
strategy is then illustrated on a real dataset: the prognos-
tic of mortality for septic shock patients in intensive care
units.

Methods

Study design

Research protocol

According to the Helskinki declaration [12], the research
protocol must be submitted for consideration, and
approval to an independent ethics committee before the
study begins. The work presented below belongs to a
global study on ICU-induced immune dysfunctions. It
has been approved by a local Institutional Review Board
for ethics (Comité de Protection des Personnes Sud-Est
II) which waived the need for informed consent. Indeed,
this study was observational and biomarkers expressions
were measured on residual blood after completion of rou-
tine follow-up (IRB#11263). This study was also registered
at the French Ministry of Research and Teaching (#DC-
2008-509) and recorded at the Commission Nationale de
I'Informatique et des Libertés.

Sample size

The estimation of sample sizes for the training and test
datasets is pivotal to drive patient inclusion and scale the
corresponding efforts. Unfortunately, up to now there is
no theoretical rational for training sample size estimation
when p < #n (i.e. the number of candidate predictors,
namely p, is lower than the number of patients denoted ).
A simulation study suggested that at least 10 events per
candidate predictor (EPV) seems “prudent” [13], whereas
Vittinghoff et al. [14] found bias and coverage problems
with 5-9 EPV. The limitation of this study is that they
focused on one primary predictor and they treated other
variables as adjustment variables, i.e. they did not study
the bias and coverage of adjustment covariates. Recently,
Dobbin and Song [15] developed a method for sample
size estimation to train a survival risk predictor in high-
dimensional settings. The sample size is defined such that
performance is within a given interval of the optimal.
Application of the method to low-dimensional setting has
not been evaluated by the authors and such an evaluation
was out of the scope of our study. Regarding the sample
size estimation of the test dataset, we propose to rely on
the method devised by Shoenfeld for clinical trials [16].
With the final objective to validate a two-groups prognos-
tic index, the approach can be adapted to test the null
hypothesis of a death hazard ratio equal to one between
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the two prognostic groups (instead of the two arms of a
clinical trial). Following Schoenfeld, the number of events
required to test the null hypothesis Hp : A = 1, under the
alternative hypothesis H; : A = Ay, with a significance
level of & and the power 8 is:

(zp + 21-4)*
papr(n(Ao))?

with z1_, and zg the 1 —« and 8 percentiles of the Normal
distribution, A the hazard ratio for the good vs. the bad
prognostic group under the alternative hypothesis, and
pa and pp the proportion of patients in the 2 prognostic
groups.

RT-qPCR experimental design

The real-time, fluorescence-based Reverse Transcription
quantitative Polymerase Chain Reaction (RT-qPCR) is
widely used to measure the expression levels of genes
[17]. This technology relies on two main steps: the reverse
transcription (RT) of messenger RNA (mRNA) into com-
plementary DNA (cDNA) and the quantification of cDNA
using real-time PCR. In the RT step, samples are pro-
cessed by batch: several samples are processed at the same
time in the same RT run. Moreover, PCR measurements
are performed on PCR plates with a variable number of
wells. Ideally, a batch should be defined so that all the
samples within a batch will be subject to the same experi-
mental conditions from the mRNA extraction to the final
amplification measurements. This can be done by gath-
ering samples based on the technical factors of the entire
analytical chain: sample preparation, RT, and PCR steps.
In particular, samples processed in the same RT run and
with genes expression measured on the same PCR plate
should belong to the same batch. It is also important to
control for balanced patient’s outcomes across batches by
including both survivor and non-survivor patients within
each batch, when studying time-to-death event data. Also,
demographic/clinical variables that are expected to be
both associated with gene expression variables and out-
come should be balanced across batches or included into
the model for statistical adjustment.

Although, RT-PCR is a broadly used and standardized
method, it is still important to pay particular attention
to the control of the technical variability of the measure-
ments. First, the technical variability can be decreased
thanks to normalization methods based on relative quan-
tification. In particular, relative quantifications can be
derived with respect to reference or housekeeping genes
selected for their stable expression across samples [18].
Second, maximizing the number of samples (instead of
maximizing the number of genes) per PCR plate is recom-
mended to favor the comparison of gene expression across
patients [18]. Ideally, this would allow us to measure only
one candidate biomarker at a time within a PCR plate.
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Finally, we recommend that training and test datasets
are acquired in a row, while processing training and test
samples in different PCR batches, so that the techni-
cal/biological variability between the two datasets is not
larger than the technical/biological variability within the
training dataset.

Resampling strategy

Resampling methods allow us to mimic the validation step
within the training dataset only, in order to select models
with good generalization performance. N—times k—fold
cross-validation is a standard resampling method used
to estimate model performance on the training dataset.
Briefly, for each of the N repetitions, the training dataset
is split into two parts: the training-fold and the test-fold
dataset. (Please refer to the discussion for the rational for
the choice of cross validation versus bootstrap as a resam-
pling strategy in this context). The training-fold dataset
includes (k — 1)/k of the training dataset patients and the
test-fold dataset includes the remaining 1/k of the training
dataset patients. The procedure is repeated k times so that
all of the patients are included once in a test-fold dataset.
Each time, the training-fold dataset is used to build the
prognostic model (including data-preprocessing and nor-
malization, variable selection and the estimations of the
model parameters) and to estimate its apparent perfor-
mance; then the corresponding test-fold dataset is used
for (cross)-validated performance estimation. The appar-
ent performance estimated on the training-fold dataset
is expected to be overly-optimistic because the training-
fold dataset is both used to build the model and estimate
its performance. The difference between the apparent
and the validated performance corresponds to the model
optimism. The more complex a model is, the larger the
optimism is expected to be.

Moreover, resampling methods should properly capture
the intrinsic technical variability of the biomarker assay. If
the technical variability between the training and the test
datasets is larger than the technical variability between
the training samples, the performance estimated on the
training samples is likely to be optimistic. The difference
between the estimation of the performance in the train-
ing and the test datasets is called the “validation surprise”
and reflects the lack of generalization of the model. This
problem may happen with RT-qPCR assays or any assay
that processes samples by batch. Hence, the within batch
variability is likely to be smaller than the between batch
variability. As stated in the introduction, we compared
two resampling strategies: strategy A and B. Strategy A is
a stratified cross-validation strategy where test-fold sam-
ples are randomly sampled across batches so that the
proportion of events is the same in each fold. Contrary
to strategy A, strategy B tries to capture the technical
and biological variability between the training and test
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datasets where entire PCR batches are randomly sam-
pled and corresponding patients are set apart for test-fold
data. This strategy does not ensure that the proportion of
events is the same in each fold, except if the batches were
designed to have the same proportion of events. With
resampling strategy B, the variability between the training
and the test fold datasets is expected to mimic the vari-
ability between the training and the test datasets. By doing
so, cross-validated performance should better capture the
between dataset variability with a lower risk of observing
a significant validation surprise.

Model building strategy

A model building strategy is defined by: i) a selection
method providing the eligible covariates to enter into
the model, ii) the functional relationship between each
selected continuous covariate and the outcome, iii) a sur-
vival model, and iv) an optional penalization method
to shrink the model coefficients. Among the available
selection methods, we could cite: ad-hoc inclusion of a
variable in the model, sequential strategies (e.g. back-
ward elimination) using the Akaike Information Crite-
rion (AIC) as selection criterion [19], or L1-penalized
approach: the Cox-lasso model [20], the Cox-adaptive
lasso model [21], and the Cox-SCAD model [22] which
performs covariate selection and estimation at the same
time. For L1-penalized approaches, variations of the L1
penalty parameters naturally lead to different model com-
plexities. These penalized strategies can be used either
as a pure variable selection strategy (meaning that the
selected covariates are subsequently included in a classical
Cox model), or as penalized models (meaning that coeffi-
cients of selected covariates are shrunken towards 0, the
amount of shrinkage being controlled by the L1 penalty
parameters). Regarding functional relationship modeling,
Royston and Altman [23] developed a Multiple Frac-
tional Polynomials (MFP) strategy which performs ade-
quate description of the relationship and variable selection
at the same time. Two parameters are needed to con-
trol for the degree of flexibility of the relationship and
degree of complexity (number of included covariates) of
the model. Again, variations of these two parameters leads
to different strategies for model building. With respect
to the survival model itself, the Cox model is very pop-
ular because of its simplicity, although the proportional
HR assumption has to be checked a posteriori. Moreover,
the standard Cox model assumes independent censor-
ing, conditional to the covariates included in the model.
Finally, a L2 (ridge) penalization step could be also consid-
ered in order to shrink the model coefficients by imposing
a constraint on their effect size [24]. The shrunken coef-
ficients then present a smaller variance. Please refer to
Table 1 for a summary of the prognostic model building
strategies.
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Prognostic model performance

Two main methods can be used to estimate performance
indicators. First, the pooling method estimates the per-
formance indicator at the end of the cross-validation
process, i.e. when the predicted scores are available for
all patients. Second, the averaging method estimates
the performance indicator at the end of each fold. In
this case, the k estimations of the performance indica-
tor are averaged at the end of the cross-validation pro-
cess. The main advantage of the pooling method over
the averaging method is that the performance indica-
tor is expected to present a smaller standard error [10].
However, depending on the resampling strategy and the
prediction score used, the performance indicator estima-
tion obtained with the pooling method could be biased
downward because prediction scores cannot be directly
compared from one fold to another. Performance indica-
tors used in this study fall into three categories: overall
performance measures (Brier score), discrimination mea-
sures (C-index, sensitivity, specificity, AUC) and calibra-
tion measures. Overall performance measures are based
on the difference between predicted and observed out-
comes and discrimination measures are related to the
ability of the model to separate individuals who develop
the outcome from those that do not. Calibration measures
help to make sure that observed and predicted survival
functions are comparable. Model calibration can be eval-
uated by comparing model predicted survival and Kaplan-
Meier survival estimates at a fixed time point (see [25] for
details).

Overall performance measure

The Brier score is a time-dependent measure of the
prediction error [26]. The expected Brier score at time
t is defined as BS(t) = E [(I(T >t) — ﬁ(t|Z))2] where
I(T > t) = 1 if the survival time T > ¢t and 7 (¢|Z) is
the estimated survival function given covariate vector
Z (derived from the fitted model). For the Cox model,
the Breslow [27] estimator of the baseline hazard was
used to estimate the survival at time ¢. Graf et al. [26]
provided an empirical estimation of the Brier score, in
presence of censoring. The predicted survival for each
test-fold sample 7 (¢|Z), depends on the survival distri-
bution in the corresponding training-fold sample. Hence,
if the survival distributions are different between the
training-fold and the test-fold data, the Brier score will be
biased upward. This will typically be the case for unstrat-
ified cross-validation, or when using cross-validation
strategy B when the outcome is unbalanced between
batches. In practice, if the training and test-fold data
outcome distributions are comparable, we recommend
to use the pooling method to estimate the Brier score
because it should lead to a lower standard error and no
bias.



Table 1 Summary of strategies to build prognostic survival models

Strategy

Variable selection method

Functional relationship

Survival model

Coefficients shrinkage

Uni_Cox-[1-9]=*

bwAIC FP Cox- [1-5]
bwAIC FP/C2-3Fac_Cox-[1-5]%*

MFP_Cox- [1-15] «

Lasso-[1-5]«
Lasso_C2-3Fac-[1-5]

aLasso-[1-5]«
aLasso_C2-3Fac-[1-5]«*

SCAD- [1-5]
SCAD C2-3Fac- [1-5]«

Lasso_Cox-[1-5]
Lasso_C2-3Fac_Cox-[1-5]*

Each candidate covariate was selected a
priori and included in a univariate model.
There is 1 suffix number in the model name
per selected covariate

Backward elimination using AIC criterion

MFP  procedure for variable selection
controlled by the parameter select=
0.05,0.10, 0.15. Larger select values corre-
spond to less stringent variable selection.
Suffix in the model name corresponds to a
combination of select and alpha values

L1 penalty for variable selection, controlled
by the parameter A = 0.01,0.1,1,10,100.
Larger A values correspond to sparser models.
Suffix in the model name correspond to the
level of penalization.

L1 penalty for variable selection, controlled
by the parameter A = 0.01,0.1,1,10,100.
Larger A values correspond to sparser models.
Suffix in the model name correspond to the
level of penalization.

L1 penalty for variable selection, controlled
by the parameter A = 0.01,0.1,1,10,100.
Larger A values correspond to sparser models.
Suffix in the model name correspond to the
level of penalization.

L1 penalty for variable selection, controlled
by the parameter A = 0.01,0.1,1,10,100.
Larger X values correspond to sparser models.
Suffix in the model name correspond to the
level of penalization.

All candidate covariate are continuous, and a
linear relationship is assumed

Fractional polynomial to model functional
relationship. The suffix in the model name
corresponds to the degree of flexibility,
controlled with the parameter o« = 0.05,
0.1,0.2,03,04.In the bwAIC_FP/C2-3
Fac_Cox- [1-5] models, variable C2 and
C3 are dichotomized according to expert
knowledge. Larger a values correspond to
more flexible relationships.

Fractional polynomial to model functional
relationship. The parameter a controls the
degree of flexibility, « = 0.05,0.1,0.2,0.3,04.
Larger a values correspond to more flexible
relationships

Linear relationship, except for C2 and
C3  which have been dichotomized
according to expert knowledge in the
Lasso_C2-3Fac_Cox- models.

Linear relationship, except for C2 and
C3  which have been dichotomized
according to expert knowledge in the
alasso_C2-3Fac_Cox- models.

Linear relationship, except for C2 and
C3  which have been dichotomized
according to expert knowledge in the
SCAD Lasso_C2-3Fac_Cox- models.

Linear relationship, except for C2 and
C3  which have been dichotomized
according to expert knowledge in the
Lasso_C2-3Fac_Cox- models.

Cox model

Cox model

Cox model

Lasso Cox model

Adaptive Lasso

Cox model

SCAD Cox model

Cox model

L1 penalty

Adaptive lasso penalty for coefficients
shrinkage (larger coefficients are less
shrinked towards O in the adaptive
lasso model than in the lasso model.

SCAD penalty for coefficients
shrinkage (larger coefficients are less
shrinked towards 0 in the SCAD
model than in the lasso model.

The first column gives the names of the tested strategies. The strategies cover a wide range of state-of-the-art methods from both low and high dimensional settings. The second column details the variable selection method
used; the third column the functional relationship for continuous covariates; the fourth column the survival model; and the last column the coefficients shrinkage strategy if any. The x suffix indicates the index of the
prognostic model falling in the strategy. For example, Uni_Cox—[ 1 — 9] x means that 9 univariate Cox models were built, each of them being suffixed by digit 1 to 9.

901:91 (S107) S21DULIOJUIOIG DNG ‘[D 12 PROUINO

Gl Jo g abed
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Discrimination measures

The C-index or concordance index is: ¢ = P[Z; >
Z;BIT; < T;]. The C-index indicates the probability that
subject j who died at an earlier time 7; than subject i
has a larger Cox model linear predictor (Z;8) than sub-
ject i. This is a time-independent performance indicator.
In practice, linear predictors of the Cox model are com-
parable across test-folds and the pooling method could
be used to estimate the C-index whatever the differences
between training-fold baseline hazards, and hence what-
ever the resampling strategy used (see Additional file 1 for
illustration with simulations).

Heagerty et al. [28] proposed a time-dependent estima-
tor of the cumulative sensitivity and dynamic specificity
for a continuous risk factor and censored survival data.
In the following equations M; is the continuous marker
(or linear predictor of a Cox model in case of a multi-
variate model) for patient i, T; the event time for patient
i,c is a threshold value of this M; marker or index, and
¢ is a time point. The “cumulative/dynamic” definition of
sensitivity/specificity is then:

sensitivity(c;t) = P(M; > c|T; < t)
specificity(c; t) = P(M; < c|T; > ¢t)

Here, the sensitivity(c; £) measures the expected fraction
of subjects with a marker greater than ¢ among the sub-
population of individuals who die before time ¢, and the
specificity(c; t) measures the expected fraction of subjects
with a marker less than c among those who survive beyond
t. The advantage of this definition is that at any time ¢,
we have two groups, those who have already experienced
the event (case group), and those who have not (con-
trol group). These performance indicators thus capture
the discrimination level between individuals who have
the event before time ¢ and the individuals who survive
beyond time ¢ (especially when a particular value of ¢ may
present a scientific and/or clinical interest). In practice, as
for the C-index, the linear predictors of the Cox model
are comparable across test-folds and the pooling strategy
could be used whatever the resampling strategy.

Model selection

In practice, a large number of models need to be eval-
uated. Thus, small differences in cross-validated perfor-
mances of the models have to be interpreted with caution.
In order to narrow down the number of candidate models,
we suggest a two-step model selection strategy. First, one
needs to select a short-list of models with equally good
performance and second apply additional model selection
criteria to retain, ideally, a single model for the evaluation
on the independent test dataset. The proposed additional
selection criteria are: i) the stability of the selected vari-
ables across cross-validation repetitions, ii) the clinical
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interest in the selected variables, iii) the model optimism
and iv) the impact of the omitted variables on the model
performance.

Stability
The stability of the selected variables should be eval-
uated for automatic variable selection methods (e.g.
backward elimination, MFP, L1-penalized Cox models,
..); indeed, a selection method that selects more fre-
quently the same set of covariates from the training-folds
should be preferred, since such a selection method is
less sensitive to the variability of the training dataset
[29]. For selection methods that constrain the num-
ber of variables included into the prognostic model,
the Kuncheva index [30] could be used to assess the
model stability. The Kuncheva index is a stability mea-
sure between —1 and 1, with larger values for more stable
models: KI(model — fold — i, model — fold —j) = (r —
(s2/N)/(s— (s*/N)), with s the number of predictors, r the
number of shared predictors between the training folds
i and j, and N the number of candidate covariates. For
selection methods without constraints on the number of
variables included in the prognostic model, the frequency
of inclusion of each covariate among the training-folds can
be used as an indicator of stability.

Clinical interest

The clinical interest in the selected variables is a less
objective criterion that would require opinion-driven
inputs from biologists and clinicians (which are generally
more difficult to leverage and describe statistically).

Model optimism

The model optimism [2] is defined as the difference
between the actual performance (actual performance in
the targeted population) minus the apparent performance
(the estimated performance from the training dataset).
Model optimism is a consequence of model overfitting.
Thus, we propose estimating the so-called validation sur-
prise as the difference between the apparent performance
estimated directly on the training-fold data (also used for
model building) and the performance estimated on the
test-fold data. Besides, the level of overfitting depends on
the strength of selected predictors [31], the dependence
between predictors, and the complexity of the model.
Indeed, if a model is too complex, it will over-fit the
training data and not generalize well to new data. Hence,
models with high degree of optimism should be avoided
because they are expected to present less generalization
power.

Impact of omitted covariates
Finally, some covariates could be excluded from the set
of candidate covariates in case of limitations of the study
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sample size. The recommendation of 5-10 events per can-
didate covariate in the training dataset could lead to exclu-
sion of some a priori less important variables from the set
of candidate covariates. Hence, it is important to check i)
whether some omitted covariates could still be associated
with survival after adjustment on selected covariates, and
ii) whether model performance could depend on the level
of omitted covariates.

First, similar to Therneau and Grambsch [32], we pro-
pose to use the Martingale residuals to test the residual
association between the survival and each omitted covari-
ate. In case of no association between the Martingale
residuals and the omitted covariate, the covariate was con-
sidered not associated with the survival. In practice, for
each patient in the training-fold datasets, the Martingale
residuals were averaged across all the folds and iterations.

Second, we suggest to test whether the sensitivity and
the specificity depend on omitted covariates using the
following logistic models (in absence of censoring):

logit(P(M; > c|T; < t,2Z;)) = Z;p*™

logit(P(M; < c|T; > t,Z;)) = Z;fP!

where, M; is the linear predictor for patient i of the Cox
model without the omitted covariate, Z; is the omitted
covariate for patient i, 5™ is the log odds ratio of the
correct classification probability among deceased patients
at time ¢ for patients with covariate Z; = 1vs Z; = 0,
and Pl is the log odds ratio of the correct classification
probability among survivor patients at time ¢ for patients
with covariate Z; = 1 vs Z; = 0. For example, if gt > 0,
this means that the sensitivity is increased among patients
with larger Z omitted covariate. Here, the vital status of
each patient has to be known at each time point (i.e. there
is no censoring). Under the assumption of independent
censoring, we could restrict the previous estimation to
patients with known vital status at time ¢, although the
estimation of the impact of omitted covariates will have a
larger variance compared to the case without censoring.
(To compensate for the loss of information due to censor-
ing, we could use inverse probability of censoring weight-
ing or multiple imputations to impute censored failure
times; this would however require further methodologi-
cal development, which is beyond the scope of this paper.)
In practice, it appears reasonable to restrict the evaluation
to a given time-point ¢. Hence, for each omitted covari-
ate, for each iteration, and each threshold ¢, two logistic
models were built (one for sensitivity and one for speci-
ficity). This leads to a high number of models and tests
for significant association between the omitted covariate
and sensitivity/specificity. Given the large number of tests
performed, we might expect several tests to show low
p-values only by chance. Although p-values should be cor-
rected for multiple testing, this additional criterion should
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not be considered as a formal statistical test but rather
as an indicator of a potential association between perfor-
mance indicators and each omitted covariate. Moreover,
in our application, statistical tests are highly corrected and
classical correction methods would tend to be too conser-
vative. Hence, a pragmatic approach would then tend to
avoid selecting a model showing p-values systematically
below a given cutoff, for example 5%.

Model validation

The candidate model is then built based on the entire
training dataset using the selected strategy to build
the prognostic model. The performance indicators are
estimated on the independent test dataset based on
the prognostic model predictions. Confidence intervals
of the performance indicators can be obtained using
bootstrap.

Implementation

The strategy described in the manuscript was imple-
mented with the following R packages: survival, pec,
survivalROC, mfp, rms, MASS, glmnet, penalized.

Results and discussion

The objective of the application was to build a prognos-
tic model of mortality in a multi-centric cohort of 251
septic shock patients in intensive care units. We consid-
ered 3 candidate clinical covariates: the Sequential Organ
Failure Assessment Score (C1) which quantifies the “num-
ber and severity of failed organs” [33], the lactic acid level
(C2), and the white blood cell count (C3) and 6 candidate
genes (G1, G2, G3, G4, G5, G6) whose expression levels
were measured by RT-qPCR. All of the clinical covariates
and gene expressions were measured at the onset of sep-
tic shock. Blood samples were collected using PAXgene
blood RNA tubes (PreAnalytix, Hilden, Germany). Total
RNA was extracted from whole blood using PAXgene™
Blood RNA System Kit (PreAnalytix, Hilden, Germany).
Before RNA elution, the residual genomic DNA was
digested using the Rnase-Free Dnase set (Qiagen, Hilden,
Germany). Extracted RNA was reverse-transcribed into
c¢DNA using SuperScript®VILO™ cDNA Synthesis Kit (Life
Technologies, Chicago, IL). Finally, the PCR was per-
formed on a LightCycler instrument using the standard
Taqman Fast Advanced Master Mix PCR kit according
to the manufacturer’s instructions (Roche Molecular Bio-
chemicals, Basel, Switzerland). PCR was performed with
an initial denaturation step of 10 min at 95°C, followed
by 45 cycles of a touchdown PCR protocol (10 sec at
95°C, 29 sec annealing at 68°C, and 1 sec extension at
72°C). The crossing point estimated by the LightCycler
software was used as the unnormalized gene expression
measure for each gene/sample combination. The gene
expression data were normalized using a single reference



Tournoud et al. BMC Bioinformatics (2015) 16:106

gene. Although it is recommended to use more than one
reference gene [18], we were not able to find more than
a single stable gene using the mixed model proposed by
Dai et al. [34]. The normalization step was not included
in the cross-validation procedure because the normaliza-
tion method was performed on a sample-by-sample basis.
All the candidate covariates were continuous however,
according to expert’s recommendations, C2 and C3 have
also been treated as binary candidate covariates (denoted
by C2—Fac and C3—Fac). All the samples were processed
across 23 PCR batches. The outcomes were censored at
day 14 to avoid considering mortality events not related
to the initial septic shock and to avoid departure from
the proportional hazard assumption in the Cox model.
The Kaplan-Meier estimated survival at day 7 was 0.79
[0.74; 0.84], and Kaplan-Meier estimated survival at day
14 was 0.72 [0.66;0.77]. The training dataset included
156 patients and 44 death events (28%), with samples
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processed over 14 PCR batches. The test dataset included
95 patients and 27 death events (28%), with samples pro-
cessed over 9 PCR batches. Unfortunately, the number of
events was not balanced across batches as the mean and
inter-quartile range for the proportion of events across
batches in the training dataset were 0.23 [0.15;0.30] and
0.26 [0.18;0.31], respectively.

As illustrated in Figure 1, two resampling strategies were
evaluated: A/20—times 5—fold stratified cross-validation
with test-fold samples drawn randomly in the training
dataset, but ensuring an equal number of events in each
test-fold dataset; B/20—times 5—fold cross-validation
with samples from entire PCR batches drawn randomly
to be included in the test fold data. Contrary to strat-
egy B, strategy A does not take into account the within
training sample technical variability due to the batch
processing. However, with strategy B, given the unbal-
anced distribution of death events across batches, the

Train-fold data (A)

4 )

Train data
(eI JoI Jeo)
(o] JoI Je) [ JoI |
Q0000 00000
0e0eo o8
L Je] JeoI ) '
O 000
(L JoI Jeo

N-times k-fold cross-validation

Train-fold data (B)

gey |

Test-fold data (A)

Model building

- Variable selection

- Functional relationship
- Parameters estimation

—=

!

Test-fold data (B)

—> Performances estimation

\

model performance are estimated on the test-fold data.

Figure 1 Patient level (A) vs PCR bacth level (B) resampling strategies. The training dataset includes 5 batches (on the left of the figure). The
figure presents an example of patients resampling in a given fold, and a given iteration. In each batch, gene expression of survivor (open circles) and
non-survivor (plain circles) patients are measured. In strategy A, samples are randomly drawn within batches to be included in the training fold-data.
In strategy B, entire batches are selected and included in the training-fold data. The model building step is performed on the training-fold data and
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outcome distributions are different between and across
corresponding training and test—folds.

Table 1 presents the list of prognostic survival model
building strategies tested here, i.e. the combination of
variable selection methods, functional relationship mod-
eling, survival model, and coefficient shrinkage strategies.
These different strategies were chosen because of their
ability to accommodate with current prognostic modeling
problem as well as to represent the various methodologi-
cal options available to date in this area.

First, we compared the impact of the resampling strate-
gies on the performance indicator estimation obtained
with the pooling and the averaging methods. Figure 2A
presents the cross-validated AUC at day 7 for resam-
pling strategy A where the x-axis corresponds to the AUC
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estimated using the averaging method based on the pre-
dicted survival (note that we would have obtained the
same estimations using the linear predictor of the Cox
model), and the y-axis corresponds to the AUC estimated
with the pooling method using the linear predictor (black
dots), and the predicted survival (red dots). For both
methods, reported estimations were averaged over the 20
repetitions. For all the models, AUC estimations seemed
to be almost equal for both methods, the differences being
larger for survival based estimations. Figure 2B presents
the same results using resampling strategy B. In this latter
case, estimations obtained with the pooling method based
on the predicted survival are biased downward. This is
due to the fact that the number of events is not the same
across batches and, consequently, the predicted survival
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Figure 2 For some models, resampling strategy A (patient level sampling) tends to over-estimate model performance, compared to
sampling strategy B (PCR batch level sampling). Panel A presents the cross-validated AUC at day 7 for all the prognostic models, using
resampling strategy A. The cross-validated AUC is estimated using the pooling method (y-axis) and the averaging method (x-axis); red dots
correspond to AUC estimations based on the predicted survival and black dots to AUC estimations based on the linear predictor (see Methods
section). Panel B presents the cross-validated AUC at day 7 for all the prognostic models, using resampling strategy B. Finally, panel € compares the
cross-validated AUC estimated with strategy A (x-axis) vs. strategy B (y-axis), using the pooling method based on the linear predictor.
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for the test samples are not comparable across batches
and cannot be pooled to estimate the AUC at the end
of the cross-validation process. Finally, Figure 2C com-
pares the cross-validated AUC estimated with the pooling
method using the linear predictor, for strategy B (y-axis)
and strategy A (x—axis). For some models, strategy A
led to larger AUC estimates. Indeed, performance esti-
mated with strategy A could be over-estimated because
the between PCR batch variability was not properly taken
into account. Subsequent results are then reported under
strategy B, with the pooling method based on the linear
predictor only.

Figure 3 presents the performance of the top 30 models
obtained with resampling strategy B (top panel) together
with the frequency of selection of candidate covariates
across the cross—validation iterations (bottom panel).
As we can see, the top 30 models showed highly simi-
lar performances. Among these top 30 models, 22 used
penalized approaches for variable selection (lasso, adap-
tive lasso, and SCAD). As described in Table 1, penalized
model names were suffixed with 1, 2, 3, 4, or 5; the larger
the suffix, the more sparse (less covariates selected) the
model. In general, models suffixed by 1 or 2 selected all
the covariates, models suffixed by 3 selected the 3 clinical
covariates and most of the genes. The models suffixed by
4 were more parsimonious and selected only 2 or 3 clinical
covariates. Interestingly, penalized approaches which are
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traditionally used in high dimensional settings, performed
well here in a p < n setting. The list of the best models
could be drastically shortened retaining a single strategy
per variable selection method or level of penalization for
penalized approaches (i.e. a single model per level of com-
plexity in terms of number of covariates included): e.g. the
Lasso_Cox-4,theUni_ Cox-5, the Lasso-3, and the
Lasso_C2-3Fac_Coxl models. Indeed, retaining very
close models, for example bwAIC FP/C2-3Fac_Cox-5
and Lasso C2-3Fac Cox-4 was of little inter-
est, because these two models always selected the
same covariates and the model coefficients were very
close.

In order to select the best out of four candidate models,
we then looked at additional the performance indicators
previously introduced. Figure 4 panel A and B present the
cross-validated time-dependent AUC and the associated
optimism for the four candidate models, respectively. The
Lasso_Cox-4 model exhibited the best performance
and the smallest optimism, which may be related to the
fact that it was the most parsimonious among the four
models.

Based on this observation, we thus decided to select the
Lasso_Cox-4 model as the best candidate and checked
that its performance did not depend on omitted clini-
cal covariates. For illustration purpose, we present the
impact of a potentially omitted clinical covariate CO (age
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cross-validated time-dependent AUC for the 4 candidate models using strategy B (PCR batch level sampling). Panel B the cross-validated using
strategy B time-dependent “validation surprise” computed from the AUC for the 4 candidate models.

of the patient) on the model performance. This clinical
covariate was omitted because we had to limit the number
of candidate covariates to respect the “5 to 10 EPV” rule
for the training set sample size. First, Martingale resid-
uals of the Lasso_Cox-4 model were plotted against
the omitted CO covariate and, a loess smoothing spline
was added to better evaluate the degree of residual sur-
vival association with the CO covariate. As can be seen
in Figure 5B, the CO covariate seemed to be slightly asso-
ciated with the Martingale residuals, indicating that the
model fit could be improved by adding the CO covariate
and that the model performance may differ for differ-
ent CO values. To further explore this effect, Figure 5A
presents the association between time-dependent sensi-
tivity and specificity at day 7 and the CO covariate. In our
application the vital status was known for all the patients
at day 7: they fell into two categories, already deceased
or still alive; hence there was no difficulty to fit a logis-
tic model to test the effect of the omitted covariate on
the sensitivity and specificity. In Figure 5A, each boxplot

corresponds to the odds ratio of association for all the
cross-validation repetitions for a given ¢ value cut-off on
the linear predictor of the Lasso Cox-4 (red points
indicating OR with p-value below 5%). As can be seen in
Figure 5A, the CO covariate was slightly associated with
very high sensitivity leading to larger sensitivity for peo-
ple with larger CO values, while the prognostic model
seems to present a higher specificity for people with larger
CO values, although not significant for most odd-ratios.
The same approach was used for other covariates and
no evidence of association was found for Lasso_Cox-4
model. Thus, we confirmed that this strategy is the best
one here and can be retained for the subsequent val-
idation step. Again, note that the p-values should be
interpreted with caution due to the large number of test
performed.

Finally, the entire training dataset was used to build
the prognostic model. The final Lasso Cox-4 model
included the following covariates: C1: HR= 1.14 (p =
0.01), C2: HR= 1.16 (p = 0.0002), G2: HR= 0.62 (p =
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A Association between CO covariate and sensitivity/specificity
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Figure 5 Omitted covariate is associated with time-dependent sensitivity and specificity (Panel A) and Martingale residuals (Panel B) in
the selected model (Lasso_Cox—4). Panel A presents the association between the CO omitted covariate and the time-dependent sensitivity and
specificity at day 7. Each boxplot corresponds to the odds ratio (OR) across all the cross-validation iterations, for a given cut-off on the linear
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0.06), and G3: HR= 1.64 (p = 0.02). Although, not often Figure 6 compares the cross-validated performances
selected in the cross-validation process, G2 and G3 were  estimated on the training dataset using strategy A (blue
selected on the whole training dataset. line), strategy B (red line) and validated performances
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on the test dataset (black line), for the Lasso Cox-4
selected model. The cross-validated time-dependent AUC
estimated with strategy A and B were comparable. The
validated AUC on the test dataset decreased more impor-
tantly after day 7, than the cross-validated estimations,
although the training cross-validated AUC fall within
the confidence intervals of the test dataset validated
AUC.

Discussion

In this article, we presented and illustrated a complete
process to train, select and validate a biomarker prognos-
tic model based on RT-qPCR gene expression and clinical
covariates. We discussed two resampling strategies: A) a
stratified cross-validation resampling strategy, where test-
fold samples were randomly sampled within batches but
ensuring that the number of events was the same across
folds and B) a cross-validation strategy that takes into
account the study design and the fact that samples were
processed by batch. In this strategy, entire batches were
set apart in the test-fold data to capture the impact of
the technical and biological variability on performance
estimation. An expected benefit of the resampling strat-
egy B, was the selection of markers less sensitive to the
batch-to-batch variability, leading to better generaliza-
tion. Indeed, training and test samples were processed
in different batches and it was interesting to capture the
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Figure 6 The validation surprise observed with strategy B (PCR
batch level sampling) is smaller than the validation surprise
observed with strategy A (patient level sampling). Strategy A
cross-validated time-dependent AUC (blue); strategy B cross-validated
time-dependent AUC (red); validated time-dependent AUC on the
test dataset (black) and bootstrap confidence intervals (grey polygon)
(95% of the boostrap samples distribution) for the Lasso_Cox—4
model.

Page 13 of 15

potential validation surprise during the cross-validation
process due to batch sample processing. In our exam-
ple, we found that the cross-validated AUC was larger
when estimated with strategy A than with strategy B for
some models. As a recommendation, we suggest carry-
ing out both resampling strategies and choosing the most
conservative, cross-validated AUC estimation scheme for
model selection. It is interesting to evaluate the impact of
the resampling strategy on the performance estimation.
Unfortunately, strategy B could lead to a test-fold data out-
come distribution that is very different from training-fold
data outcome distribution when batches are unbalanced
with respect to the outcome. In this case, it is not pos-
sible to estimate overall performance indicators based on
the predicted survival (such as the Brier score), because
mean survival in the training and test-fold data would
be too different. On the contrary, discrimination perfor-
mance indicators (eg. C-index, AUC), can be estimated
without bias, using the pooling or averaging method,
when defined on predicted scores insensitive to differ-
ences between training-fold and test-fold outcome distri-
bution. For example, the linear predictor of a Cox model,
that treats the baseline hazard as a nuisance parameter
can be used as a predictive score from which to derive the
performance indicator.

The bootstrap is also another well-established resam-
pling strategy. For survival data, Gerds and Schumacher
[9] have derived an analogue of the 0.632+ bootstrap error
estimator introduced by Efron and Tibshirani [35]. This
approach could indeed be preferred over cross-validation
which is known to yield upwardly biased error estimates
since only a subset of the training set is used to train the
model. Nevertheless, it is not straightforward to extend
the batch sampling strategy to the bootstrap procedure
as the 0.632+ estimator will no longer hold since here
the probability that an observation belongs to a given
bootstrap sample is no longer 0.632.

Although cross-validated performance was the dom-
inant criterion for model selection, we used additional
criteria to weigh the estimated prediction performance at
the expense of other risks of generalization failure. The
proposed criteria are i) the stability of the selected vari-
ables across cross-validation repetitions, ii) the clinical
interest in the selected variables, iii) the model optimism,
and iv) the impact of the omitted variables on the model
performance.

A natural extension of our work is to build a prognos-
tic index that would make the selected biomarker model
more useful clinically. This prognostic index will facilitate
the clinical interpretation of the model outcome by strat-
ifying patients into a small number of risk categories: for
instance, distinguishing low-risk, intermediate and high-
risk patients. One possibility is to create the prognostic
index by defining cutoffs on the linear predictor of the
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selected and validated prognostic biomarker model in
order to define the desired risk categories. We recom-
mend estimating the cutoffs by a cross-validation process
similar to the one used to select the prognostic model as
we believe this strategy yields better results than the one
based on defining cutoffs for each individual marker and
then combining them to create ad-hoc prognostic groups.

In case of predictor variables with missing values, it is
possible to perform Multiple Imputations (MI). The idea
of MI is to create m “completed datasets” with filled-in
missing values. The imputation model for the missing val-
ues should contain all the candidate predictors, all the
covariates that could be associated with the covariates
with missing values, the event status and the survival time
[36]. The analysis is then performed on the m completed
datasets using standard tools, and the results are com-
bined into one final estimate using the Rubin’s rule [37]. In
the context of prognostic model building, two difficulties
remain: how to perform variable selection and how to esti-
mate model performance based on the imputed datasets?
Wood et al. [38] compared different approaches to per-
form backward stepwise variable selection, and concluded
that the only method that preserved the type I error was
to select covariates based on the Rubin’s rule estimated
p-values at each step of the backward stepwise proce-
dure. Musoro et al. [39] presented a procedure based on
bootstrap resampling and multiple imputations to per-
form both variables selection via lasso and estimation of
prognostic model performance. The authors recommend
incorporating the MI procedure within the resampling
step, i.e. to draw m completed datasets for each boot-
strap sample. Briefly, for a given bootstrap sample, lasso
estimates are averaged over all the imputed datasets to
build a final model (meaning that zero and non-zero coef-
ficients are averaged). Validated performance is then esti-
mated on imputed datasets including all the samples (not
only the bootstrap samples). Using this resampling frame-
work in simulations, the internal estimated optimism was
the closest to the external estimated optimism. An alter-
native approach is proposed by Chen et al. [40] who
performed group-lasso to consistently select covariates
across imputed datasets.

Finally, additional future work would be needed to
validate our strategy in high-dimensional settings (p >>
n), in particular for microarray based prediction model
building. In microarray studies, samples are also pro-
cessed by batch, and it is also relevant to set apart
entire batches in test-fold data. Of course, some statisti-
cal aspects may change to accommodate the specificity of
the high-dimensional setting (e.g. the sizing strategy of the
training dataset, see for instance [15]). As for the present
RT-qPCR study, an evaluation based on real datasets will
be required to validate our approach on other transcrip-
tomic platforms.
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Conclusions

In conclusion, we presented resampling methods in order
to estimate the performance of RT-qPCR prognostic
models on a training dataset. These methods are expected
to prevent any upward biases due to unaccounted tech-
nical and biological variability that may arise from
the experimental and intrinsic design of the RT-qPCR
assay.

Although the estimation of the performance of the can-
didate models is a pivotal indicator to help select the best
model, the final decision of selecting one or a few models
requires consideration of additional criteria. We propose
to use the stability of the selected variables, the model
optimism, and the impact of the omitted variables on the
model performance. These criteria should be weighted in
accordance with the objective of the study.

Model building strategies developed in high-
dimensional settings can also be very efficient in low-
dimensional settings, in particular for covariate selection
and coefficient penalization. In our example dataset
with more individuals than variables, penalized survival
models yielded the highest performances.
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