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Abstract

Driven by the increasing economic burden associated with bone injury and disease, biomaterial development for
bone repair represents the most active research area in the field of tissue engineering. This article provides an
update on recent advances in the development of bioactive biomaterials for bone regeneration. Special attention is
paid to the recent developments of sintered Na-containing bioactive glasses, borate-based bioactive glasses, those
doped with trace elements (such as Cu, Zn, and Sr), and novel elastomeric composites. Although bioactive glasses
are not new to bone tissue engineering, their tunable mechanical properties, biodegradation rates, and ability to
support bone and vascular tissue regeneration, as well as osteoblast differentiation from stem and progenitor cells,
are superior to other bioceramics. Recent progresses on the development of borate bioactive glasses and trace
element-doped bioactive glasses expand the repertoire of bioactive glasses. Although boride and other trace
elements have beneficial effects on bone remodeling and/or associated angiogenesis, the risk of toxicity at high
levels must be highly regarded in the design of new composition of bioactive biomaterials so that the release of
these elements must be satisfactorily lower than their biologically safe levels. Elastomeric composites are superior to
the more commonly used thermoplastic-matrix composites, owing to the well-defined elastic properties of
elastomers which are ideal for the replacement of collagen, a key elastic protein within the bone tissue. Artificial
bone matrix made from elastomeric composites can, therefore, offer both sound mechanical integrity and flexibility
in the dynamic environment of injured bone.
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Introduction
Tissue engineering is ‘the application of principles and
methods of engineering and life sciences to obtain a fun-
damental understanding of structure-function relation-
ships in normal and pathological mammalian tissue, and
the development of biological substitutes to restore,
maintain, or improve tissue function’ (Skalak and Fox
1993). A common approach is to harvest an expansion
of living tissue in vitro and design of biomaterial scaf-
folds to provide appropriate structural support to match
the tissue of interest. Scaffolds are then loaded with
numbers of cells and numbers for implantation, which
allows surgeons to manipulate local tissue environments,
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providing more physiological alternatives to standard
approaches in reconstructive surgery (Bell 2000).
There are several requirements of scaffold materials to

meet the demands of tissue engineering. Firstly, biocom-
patibility of the substrate materials is imperative. The
material must not elicit an unresolved inflammatory
response nor demonstrate immunogenicity or cytotoxi-
city. As with all materials in contact with the human
body, tissue scaffolds must be easily sterilizable to pre-
vent infection (Chaikof et al. 2002). This applies notably
for bulk degradable scaffolds, where both the surface
and the bulk material must be sterile. In addition, the
mechanical properties of the scaffold must be sufficient
to prevent structural failure during handling and during
the patient's normal activities. A further requirement for a
scaffold, particularly in bone engineering, is a controllable
interconnected porosity that can direct cells to grow into
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a physical structure and to support vascularisation. A
typical porosity of 90% as well as a pore diameter of at
least 100 μm is known to be compulsory for cell pene-
tration and a proper vascularization of the ingrown tis-
sue (Griffith 2002; Karageorgiou and Kaplan 2005;
Levenberg and Langer 2004; Mikos and Temenoff
2000). Other desirable aspect concerns the cost-
effectiveness of scaffold processing toward industrial-
scale production to reliably generate net-like structures
with a nominal range of porosities.
Materials used for bone tissue engineering scaffolds

include the following: (1) natural or synthetic polymers
such as proteins, thermoplastics, hydrogels, thermoplas-
tic elastomers (Berger et al. 2004; Drotleff et al. 2004;
Mano et al. 2004; Tirelli et al. 2002) and chemically
cross-linked elastomers (Chen et al. 2008b), (2) bioactive
ceramics such as calcium phosphates and bioactive
glasses or glass ceramics (Hench 1998; Kim et al. 2004;
Levenberg and Langer 2004), (3) composites of polymers
and ceramics (Boccaccini et al. 2005; Hedberg et al.
2005; Kim et al. 2004; Niiranen et al. 2004; Yao et al.
2005; Zhang et al. 2004), and (4) metallic materials such
as titanium and magnesium alloys (Lefebvre et al. 2008).
From the material science point of view, bone is a nat-
ural composite of inorganic calcium phosphate apatite
and biological polymers including collagens, which are
deposited by residence osteocytes. The composite system
of polymers and ceramics is apparently a logic choice for
bone tissue engineering, as demonstrated by the
huge research efforts worldwide using these materials
(Boccaccini et al. 2005; Di Silvio and Bonfield 1999; Gittens
and Uludag 2001; Hedberg et al. 2005; Jiang et al. 2005;
Khan et al. 2004; Kim et al. 2004; Li and Chang 2004; Lu
et al. 2005; Luginbuehl et al. 2004; Mano et al. 2004;
Maquet et al. 2004; Niiranen et al. 2004; Xu et al. 2004; Yao
et al. 2005; Zhang et al. 2004).
The present authors previously reviewed biodegradable

thermoplastic polymers and bioactive ceramics, includ-
ing strategies for fabrication of composite scaffolds with
defined microstructure and mechanical properties, and
methods of in vitro and in vivo evaluation (Rezwan et al.
2006). Over the past 10 years, new processes of Na-
containing bioactive glasses and new bioactive glass
compositions doped with various trace elements have
been developed aiming at healthy bone growth and/or
vascularization (Rahaman et al. 2011). Meanwhile
degradable elastomeric polymers have gained increasing
attentions in the field of tissue engineering, mainly
because of the inherent structural elasticity of biological
tissues. Composite scaffolds made from bioceramics and
chemically cross-linked elastomers have proven benefi-
cial in terms of both biocompatibility and their opera-
tion over a wide range of elastic moduli (Chen et al.
2010a; Liang et al. 2010). This article aims to provide an
update on the progress of biomaterials developed for
bone tissue engineering, with a specific focus on bio-
active glasses and elastomeric composites that show
potentials to advance bone tissue engineering, while the
rest of biomaterials in bone tissue engineering are
reviewed briefly for a complete overview.

Biodegradable and surface erodible thermoplastic
polymers
Based on their mechanical properties, polymeric biomater-
ials can be classified as elastomers and non-elastomeric
thermoplastics. This section will provide a brief review on
biodegradable thermoplastics. Comprehensive discus-
sions of these polymers and their physical properties
have been provided in great detail elsewhere (Chen and
Wu 2005; Gunatillake et al. 2003a; Iroh 1999; Kellomäki
et al. 2000; Kumudine and Premachandra 1999; Lu and
Mikos 1999; Magill 1999; Middleton and Tipton 2000;
Ramakrishna et al. 2004; Rezwan et al. 2006; Seal et al.
2001; Yang et al. 2001).
The most widely utilized biodegradable synthetic poly-

mers for 3D scaffolds in tissue engineering are saturated
aliphatic polyesters, typically poly-α-hydroxy esters in-
cluding poly(lactic acid) (PLA), poly(glycolic acid) (PGA)
(Gollwitzer et al. 2005; Seal et al. 2001), poly(E-caprolac-
tone) (PCL) (Pitt et al. 1981), and their copolymers
(Jagur-Grodzinski 1999; Kohn and Langer 1996; Mano
et al. 2004; Seal et al. 2001). The chemical properties of
these polymers allow hydrolytic degradation through de-
esterification. Once degraded, the lactic and glycolic acid
monomers are metabolized naturally by tissues. Due to
these properties, PLA, PGA, PCL, and their copolymers
have successfully been applied in a number of biomedi-
cal devices, such as degradable sutures and bone internal
fixation devices (BiofixW, Bionx Implants Ltd., Tampere,
Finland) which have been approved by the US Food and
Drug administration (Mano et al. 2004). However,
abrupt release of these acidic degradation products can
cause a strong inflammatory response (Bergsma et al.
1993; Martin et al. 1996). In general, their degradation
rates decrease in the following order: PGA>PLA>PCL.
Their blends have been shown to degrade faster than
their pure counterparts (Dunn et al. 2001). Poly lactate-
glycolic acid (PLGA) can completely degrade in several
months in vivo, whereas poly-L-lactate (PLLA) and PCL
take 3 to 5 years or more to completely degrade in vivo
(Rich et al. 2002; Yang et al. 2001).
Of particular significance for applications in tissue

engineering is the acidic degradation products of PLA,
PGA, PCL, and their copolymers that have been impli-
cated in adverse tissue reactions (Niiranen et al. 2004;
Yang et al. 2001). Researchers have incorporated basic
compounds to stabilize the pH of the environment sur-
rounding the polymer and to control its degradation,
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such as bioactive glasses and calcium phosphates (Dunn
et al. 2001; Heidemann et al. 2001; Rich et al. 2002). The
possibility of counteracting this acidic degradation is
another important reason proposed for the use of com-
posites (Boccaccini and Maquet 2003).
Other properties of thermoplastics of special interest

include their excellent processability to generate a wide
range of degradation rates, mechanical, and chemical
properties achieved by the use of various molecular
weights and stoichiometric ratios. Scaffolds produced in
this can be mechanically strong and matched to specific
tissue types, but their compliance is not reversible.
Given that elastic stretchability is a major mechanical
property of living tissue, including collagens of different
bone types, elastomeric polymers that can provide sus-
tainable elasticity and structural integrity are thought to
be mechanically more advantageous than thermoplastic
(non-elastomeric) polymers. Over the past 10 years, there
have been an increasing number of research groups work-
ing on the development of biodegradable elastomeric bio-
materials for bone tissue engineering applications (Li et al
2012; Kim and Mooney 2000; Niklason et al. 1999; Seliktar
et al. 2003; Stegemann and Nerem 2003; Waldman et al.
2004; Wang et al. 2002a).
There is a family of hydrophobic polymers that

undergo a heterogeneous hydrolysis process that is pre-
dominantly confined to the polymer-water interface.
This property is referred to as surface eroding as
opposed to bulk-degrading behavior. Three representa-
tive surface erodible polymers are poly(anhydrides) (poly
(1,3-bis-p-carboxyphenoxypropane anhydride) (Domb
and Langer 1999a) and poly (erucic acid dimer anhy-
dride) (Domb and Langer 1999b), poly(ortho esters)
(POE) (Andriano et al. 2002; Solheim et al. 2000), and
polyphosphazenes (Allcock 2002; Magill 1999; (Lauren-
cin et al. 1993, 1996b). These surface bioeroding poly-
mers have been intensively investigated as drug delivery
vehicles. The surface-eroding characteristics offers three
key advantages over bulk degradation when used as scaf-
fold materials: (1) retention of mechanical integrity over
the degrading lifetime of the device, owing to the mainte-
nance of mass to volume ratio, (2) minimal toxic effects
(i.e., local acidity), owing to lower solubility and concen-
tration of degradation products, and (3) significantly
enhanced bone ingrowth into the porous scaffolds, owing
to the increment in pore size as the erosion proceeds
(Shastri et al. 2002).

Biodegradable thermoplastic rubbers
Synthetic elastomers can be divided into two categories:
thermoplastic elastomers and cross-linked elastomers,
based on the type of ‘cross-link’ used to join their mole-
cular chains. Unlike cross-linked elastomers, where the
cross-link is a covalent bond created during the
vulcanization process, the cross-link in thermoplastic
elastomers is a weaker dipole or hydrogen bond, or takes
place in one of the phases of the material. Linear ther-
moplastic elastomers usually consist of two separated
microphases: crystalline, hydrogen-bonded hard seg-
ments and amorphous soft segments. The crystalline or
hard segments function as cross-linkers which provide
mechanical strength and stiffness, whereas soft segments
provide the flexibility (Hiki et al. 2000).

Poly (ε-caprolactone) copolymers with glycolide or lactide
PCL, PGA, and PLA are rigid and have a poor flexibility.
In order to provide better control over the degradation
and mechanical properties without sacrificing biocom-
patibility, PCL-based materials have been copolymerized
or blended with other hydroxyacids or polymers to pro-
duce elastomeric biomaterials. PCL-based copolymers
with glycolide and lactide are elastomeric materials. Poly
(lactide-co-caprolactone) (PLACL) synthesized by Cohn
and Salomon (2005) demonstrates remarkable mechani-
cal properties, with Young's modulus, UTS, and strain at
break being up to 30 MPa, 32 MPa, and 600%,
respectively.
The degradation rate of the PCL-based copolymers

varies over a wide range by the change in the ratio of
monomers. In general, the copolymers degrade faster
than each homopolymer alone. PCL-co-GA scaffolds
synthesized by Lee et al. (2003), for example, lost 3% of
their initial mass after 2-week incubation in PBS and
50% after a 6-week incubation, whereas it takes 6–
12 months and 2–3 years for PGA and PCL to degrade,
respectively (Cohn and Salomon 2005). PGA-co-CL
(PGACL) and PLA-co-CL (PLACL) polymers were initi-
ally developed for engineering smooth muscle-
containing tissues (e.g., blood vessels and urinary blad-
der) (Keun Kwon et al. 2005; Lee et al. 2003; Matsumura
et al. 2003a, b). Both were soon after investigated for
their potential applications in bone tissue engineering
(Gupta et al. 2009; Webb et al. 2004; Zilberman et al.
2005).

Polyhydroxyalkanoates
Polyhydroxyalkanoates are aliphatic polyesters as well,
but produced by microorganisms under unbalanced
growth conditions (Doi et al. 1995; Li et al. 2005). These
polyesters are generally biodegradable (via hydrolysis)
and thermoprocessable, making them attractive as bio-
materials for medical devices and tissue engineering
scaffolds (Chen and Wu 2005). Polyhydroxybutyrate has
been investigated for the repair of bone, nerves, blood
vessels, urinary tissue, and those of the gastrointestinal
tract.
Poly 3-hydroxybutarate (P3HB) is rigid and brittle,

with a strain at break typically less than 5%. This
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thermoplastic material can easily be woven or com-
pressed into textiles with a satisfactory flexibility (Chen
and Wu 2005). P3HB has been intensively investigated
for bone tissue applications and produces a consistently
favorable bone tissue adaptation response with no evi-
dence of an undesirable chronic inflammatory response
after implantation periods up to 12 months (Duvernoy
et al. 1995; Kalangos and Faidutti 1996). Bone is formed
close to the material and subsequently becomes highly
organized, with up to 80% of the implant surface lying in
direct apposition to newly mineralized bone. The materi-
als showed no evidence of extensive structural break-
down in vivo during the implantation period of the
study (Doyle et al. 1991).
Among the PHAs, poly 4-hydroxybutyrate (Freier

2006; Grabow et al. 2004; Martin and Williams 2003;
Martin et al. 1999; Rao et al. 2010) and copolymers of 3-
hydroxybutyrate and 4-hydroxybutyrate (Freier 2006;
Grabow et al. 2004; Sudesh and doi 2005), including
P3HB-co-3HV (3-hydroxyvalerate) (Avella et al. 2000),
P3HB-co-3HD (3-hydroxydecanoate) (Avella et al. 2000),
and P3HB-co-3HH (3-hydroxyhexanoate), have been
demonstrated to have superb elasticity, with an elonga-
tion at break of 400 to 1,100%. The major progress for
these materials has so far been in cardiovascular tissue
engineering (Martin and Williams 2003; Shum-Tim
et al. 1999); however, for bone tissue engineering, P3HB-
3HH showed improved attachment, proliferation, and
differentiation of rabbit bone marrow cells (Wang et al.
2004; Yang et al. 2004) and chondrocytes (Deng et al.
2002, 2003; Zhao et al. 2003a, b; Zheng et al. 2003,
2005) compared to PLLA. Despite the relatively small
amount of research on their applications in bone and
cartilage engineering, the potential of the above-
mentioned soft elastomeric PHAs should not be ignored,
and much research is needed to explore their application
as bone engineering scaffolds.

Polyurethane
Polyurethanes (PUs) are a large family of polymeric
materials with an enormous diversity of chemical com-
positions, mechanical properties, tissue-specific biocom-
patibility, and biodegradability (Lamba et al. 1998;
Santerre et al. 2005; Zdrahala 1996). PUs are generally
synthesized with three components: a diisocyanate, a
polyol, and a chain extender (usually a diamine or diol)
by step growth polymerization (Ganta et al. 2003;
Szycher 1999). The resultant polyurethanes are phase-
segregated polymers composed of alternating polydis-
persed blocks of ‘soft’ segments (made of macropolyols)
and ‘hard’ segments (made of diisocyanates and chain
extenders). Because of the differences in polarity between
the hard (polar) and soft (nonpolar) segments, segmen-
ted PU elastomers can undergo microphase separation
to form hard and soft domains. The soft domains are
rubbery and amorphous at room temperature due to a
glass transition temperature of less than 0°C. The hard
domains, which result in the induction of hydrogen
bonding between urethane and urea groups in the hard
segments of adjacent polymer chains, function as physi-
cal cross-links that resist flow when stress is applied to
the materials (Guelcher 2008). The mechanical proper-
ties, as well as the biodegradation rate, can be tuned by
modifying the structure of the hard and soft segments
and/or changing the relative fractions of the hard and
soft segments.
Historically, PUs had been used in permanent medical

devices; they were actually subjected to hydrolysis, oxi-
dation, and enzymatic degradation (Jayabalan et al. 2000;
Pinchuk 1994). The soft segments generally dominated
the degradation characteristics of PUs, and a high con-
tent of soft segments tends to increase the degradation
rate (Pinchuk 1994). Many attempts were made to resist
biodegradation processes (Zdrahala 1996). Converse to
this, more recent attempts have been made to enhance
the biodegradability of PUs. Over the past two decades,
scientists have been utilizing the flexible chemistry of
PU materials to design degradable polymers for tissue
engineering, including both hard (Saad et al. 1997) and
soft types (Alperin et al. 2005; Borkenhagen et al. 1998;
Fujimoto et al. 2007; McDevitt et al. 2003). These mate-
rials have taken advantage of processes such as hydroly-
tic mechanisms and have varied molecular structure to
control hydrolysis rates.
In contrast to degradation behavior of PLA, PGA, and

PLGA, PUs demonstrated no significant pH change in
the microenvironment of their degradation products,
instead showing a linear degradation rate with no auto-
catalytic effect (Guan et al. 2005). However, the degrada-
tion products of PUs could be toxic when aromatic
diisocyanates (e.g. 4,4′-methylenediphenyl diisocyanate
and toluene diisocyanate) are used. To address this pro-
blem, aliphatic diisocyanates (e.g., lysine diisocyanate
(LDI) and 1,4-diisocyanatobutane (BDI)) have been
used as the replacements of aromatic diisocyanates
(Gunatillake et al. 2003b; Lamba et al. 1998; Pinchuk
1994) in PUs that are designed to be biodegradable.
In general, PUs are recognized to have good blood and

tissue compatibility (Fromstein and Woodhouse 2006;
Zdrahala and Zdrahala 1999). PUs made with LDI as the
diisocyanate demonstrated no significantly detrimental
effects on cell viability, growth, and proliferation in vitro
and in vivo. Subcutaneous implantation in rats revealed
that LDI-based PUs did not aggravate capsule formation,
accumulation of macrophages, or tissue necrosis (Zhang
et al. 2002). Excellent reviews on biocompatibility of PUs
can be found in a number of books (Fromstein and
Woodhouse 2006; Lamba et al. 1998; Zdrahala and
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Zdrahala 1999) and a number of topic reviews
(Christenson et al. 2007; Griesser 1991; Guelcher 2008;
Santerre et al. 2005; Szycher et al. 1996; Zdrahala
1996; Zdrahala and Zdrahala 1999).
Most aliphatic diisocynate-based poly(ester urethane

urea)s (PEUU)s have a Young's modulus (at small strains)
of several tens of megapascals and an impressively large
breaking strain in the range of 100 to 1,000% (Guan and
Wagner 2005; Hong et al. 2010). PU rubbers made from
PEUU: BDI/PCL, PEUU: BDI/PCL-polycarbonate, and
PCUU: BDI/polycarbonate show a super elasticity, with
the elongation at break and resilience being 600% to
800% and 99% to 100%, respectively, (Guan and Wagner
2005; Hong et al. 2010).
In addition to their tunable mechanical and biodegrad-

able properties, PU elastomers also have a good proces-
sibility. They can be fabricated into highly porous
scaffolds by a number of foaming techniques, such as
thermally induced phase separation (Guan et al. 2005)
salt leaching/freeze-drying (Gogolewski and Gorna 2007;
Gogolewski et al. 2006; Spaans et al. 1998a, 1998b), wet
spinning (Gisselfalt et al. 2002; Liljensten et al. 2002),
and electrospinning (Stankus et al. 2004, 2007). By
applying the fabrication techniques mentioned above,
different porosities, surface-to-volume ratios, and three-
dimensional structures with concomitant changes in
mechanical properties can be achieved to suit a wide
range of tissue engineering, including bone and soft tis-
sues (Guelcher 2008). Table 1 provides a summary of
the applications of PUs in bone tissue engineering.
From the point of view of biodegradation, PHAs and

PUs could, in principle, be used in tissue engineering as
implants that require a longer retention time or a higher
stability in the surrounding environment, but which
eventually absorb. This might be useful for tissues with
slower healing and remodeling times or with an inability
to maintain innate structural integrity (e.g., muscle).
Their slow degradation profile (2 to 3 years) has limited
their applications in bone tissue engineering, as the heal-
ing rate of bone is typically 6 to 12 weeks (Kakar and
Einhorn 2008). Hence, suitable elastomeric polymers
with faster degradation kinetics that matches the healing
profile of bone tissue remain to be explored. For this,
recently developed degradable, chemically cross-linked
polyester elastomers provide considerable potential (see
the ‘Biodegradable chemically cross-linked elastomers’
section).

Biodegradable chemically cross-linked elastomers
Poly(propylene fumarate)
Poly(propylene fumarate) (PPF) is an unsaturated linear
polyester. Like PLA and PGA, the degradation products
of PPF (i.e., propylene glycol and fumaric acid) are bio-
compatible and readily removed from the body. The
double bond along the backbone of the polymer permits
cross-linking in situ, which causes a moldable composite
to harden within 10 to 15 min. Mechanical properties
and degradation time of the composite may be con-
trolled by varying the PPF molecular weight. Therefore,
preservation of the double bonds and control of molecu-
lar weight during PPF synthesis are critical issues (Payne
and Mikos 2002). PPF has been suggested for use as a
scaffold for guided tissue regeneration, often as part of
an injectable bone replacement composite (Yaszemski
et al. 1995). It also has been used as a substrate for
osteoblast cultures (Peter et al. 2000). The development
of composite materials combining PPF and inorganic
particles, e.g., HA or bioactive glass, has not been inves-
tigated to a large extent in comparison with the exten-
sive research efforts dedicated to PLGA- and PLA-based
composites.

Poly(polyol sebacate)
Poly(polyol sebacate) (PPS) is a family of cross-linked
polyester elastomers, developed for soft tissue engineer-
ing (Wang et al. 2002a). Polyol and sebacic acid are both
endogenous monomers found in human metabolites
(Ellwood 1995; Natah et al. 1997; Sestoft 1985); hence,
PPSs generally show little toxicity to host tissues (Chen
et al. 2011a; Wang et al. 2003). Poly(glycerol sebacate)
(PGS) is the most extensively evaluated member of the
PPS family, with most in vitro data demonstrating that
PGS has a very good biocompatibility (Fidkowski et al.
2005a; Gao et al. 2007; Motlagh et al. 2006; Sundback
et al. 2005; Sundback et al. 2004; Wang 2004). Poly(xyli-
tol sebacate) (PXS) has also been developed using xylitol,
a well-studied monomer in terms of biocompatibility
and pharmacokinetics in humans (Ellwood 1995; Natah
et al. 1997; Sestoft 1985; Talke and Maier 1973). As a
metabolic intermediate in the mammalian carbohydrate
metabolism, xylitol enters the metabolic pathway slowly
without causing rapid fluctuations of blood glucose
levels (Natah et al. 1997; Winkelhausen and Kuzmanova
1998). Inspired by the good biocompatibility of xylitol,
Langer's group was the first to develop PXS (Bruggeman
et al. 2008b, 2010). An in vitro evaluation of biocompat-
ibility of PXS, poly(sorbitol sebacate) (PSS), and poly
(mannitol sebacate) (PMS) polymers showed that they
supported primary human foreskin fibroblasts in terms
of cellular attachment and proliferation with the excep-
tion of PSS and PMS that were synthesised at the ratio
of 1:1 (polyol/sebacic acid) (Bruggeman et al. 2008a).
In vivo assessment of PGS was first conducted by sub-

cutaneous implantation of 3-mm-thick material in Sprague–
Dawley rats (Wang et al. 2002b, 2003; Wang 2004).
This evaluation showed that PGS induced an acute
inflammatory response but no chronic inflammation,
while PLGA caused both. The PGS implants in rats



Table 1 Bone tissue engineering applications of polyurethanes

Animal models Polyurethane scaffolds Major conclusions Reference

Iliac crest (sheep) Porous scaffolds synthesized from
HMDI, PEO-PPO-PEO, and PCL at
various ratios. Pore size, 300 to
2,000 μm; porosity, 85%

At 18 and 25 months, all the defects in the ilium
implanted with polyurethane bone substitutes
had healed with new bone.

Gogolewski and
Gorna (2007),
Gogolewski et al. (2006)

The extent of bone healing depended on the
chemical composition of the polymer from which
the implant was made.

The implants from polymers with the incorporated
calcium-complexing additive were the most effective
promoters of bone healing, followed by those
with vitamin D and polysaccharide-containing polymer.

There was no bone healing in the control defects.

Bone marrow
stromal cells

BDI with PCL films Bone marrow stromal cells were cultured on rigid
polymer films under osteogenic conditions for up
to 21 days. This study demonstrated the suitability
of this family of PEUUs for bone tissue engineering
applications.

Kavlock et al. (2007)

Femoral condyle LTI with PCL-co-PGA-co-PDLLA Extensive cellular infiltration deep to the implant
and new bone formation at 6 weeks

Dumas et al. (2010)

Chondrocytes Porous scaffolds synthesized
from HMDI with PCL and ISO

Although the covalent incorporation of the isoprenoid
molecule into the polyurethane chain modified the surface
chemistry of the polymer, it did not affect the viability of
attached chondrocytes.

Eglin et al. (2010)

The change of surface characteristics and the more open
pore structure of the scaffolds produced from the
isoprenoid-modified polyurethane are beneficial for the seeding
efficiency and the homogeneity of the tissue-engineered
constructs.
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were completely absorbed after 60 days without scar-
ring or permanent damage to tissue structure (Wang
2004). Another in vivo investigation via subcutaneously
implanted PGS films in the same species has shown that
PGS has excellent biocompatibility, inducing only a
mild inflammatory response (Pomerantseva et al. 2009).
In vivo applications of PGS in the nerve (Sundback
et al. 2005), vascular (Bettinger et al. 2005b, 2006;
Kemppainen and Hollister 2010; Motlagh et al. 2006),
and myocardial (Stuckey et al. 2010) tissue engineering
consistently show a mild foreign body response in terms
of both acute and chronic inflammations. Subcutaneous
implantation of PXSs in Lewis rats has shown improved
biocompatibility when compared to PLGA implants
(Bruggeman et al. 2008b). Up to now, reports on PXS
have indicated that these elastomers could be viable
candidates as biodegradable medical devices that can
offer structural integrity and stability over a clinically
required period (Bruggeman et al. 2010). PSS and PMS
polymers also exhibit better in vivo biocompatibility
than PLGA, evidenced by mild acute inflammatory
reactions and less fibrous capsules formation during
chronic inflammation (Bruggeman et al. 2008a).
PGS was reported to be completely resorbed 60 days

after implantation in rats (Wang et al. 2003). This com-
paratively faster degradation rate of PGS in vivo was also
reported by Stuckey et al. (2010) who used PGS sheets as
a pericardial heart patch. They found that the PGS patch
was completely resorbed after 6 weeks. These examples of
in vivo degradation indicate that aqueous enzymatic
action, combined with dynamic tissue movements and
vascular perfusion, might enhance the enzymatic break-
down of ester bonds in PGS and, thus, facilitate the hydro-
lytic weakening of this material in vivo.
Most recently, an in vitro enzymatic degradation

protocol was reported to be able to simulate and quanti-
tatively capture the features of in vivo degradation of
PGS-based materials (Liang et al. 2011). In the study,
PGS and PGS/BioglassW composites were subjected to
enzymatic degradation in tissue culture medium or a
buffer solution at the pH optima in the presence of
defined concentrations of an esterase. The in vitro enzy-
matic degradation rates of the PGS-based materials were
markedly higher in the tissue culture medium than in
the buffered solution at the optimum pH 8. The in vitro
enzymatic degradation rate of PGS-based biomaterials
cross-linked at 125°C for 2 days was approximately 0.5
to 0.8 mm/month in tissue culture medium, which falls
within the range of in vivo degradation rates (0.2 to
1.5 mm/month) of PGS cross-linked at similar condi-
tions. Enzymatic degradation was also further enhanced
in relation to cyclic mechanical deformation.
Briefly, PGS and the related PPS family are rapidly

degrading polymers (several weeks) (Chen et al. 2012b; Li
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et al. 2012; Liang et al. 2011). Up to now, there is only
one report on the application of PPS as a scaffolding
material for bone tissue engineering (Chen et al. 2010d).
Nonetheless, it must be emphasized that among the
above-reviewed degradable polymers, the rapid degrada-
tion kinetics of the PPS family best matches the healing
profile of bone, which has complete healing rates of 6 to
12 weeks (Kakar and Einhorn 2008).

Bioactive ceramics
A common feature of bioactive glasses and ceramics is a
time-dependent, kinetic modification of the surface that
occurs upon implantation. The surface forms a biologi-
cally active hydroxycarbonate apatite (HCA) layer, which
provides the bonding interface with tissues. The HCA
phase that forms on bioactive implants is chemically and
structurally equivalent to the mineral phase in bone,
providing interfacial bonding (Hench 1991, 1998). The
in vivo formation of an apatite layer on the surface of a
bioactive ceramic can be reproduced in a protein-free
and acellular simulated body fluid, which is prepared to
have an ionic composition similar to that of the human
blood plasma, as described previously (Kokubo et al.
2003). Typical mechanical properties of the bioactive
ceramic phases discussed in this article are listed in
Table 2.

Dilemmas in developing biomaterials for bone tissue
engineering
Since almost two-thirds of the weight of bone is hydro-
xyapatite Ca10(PO4)6(OH)2, it seems logical to use this
ceramic as the major component of scaffold materials
for bone tissue engineering. Actually, hydroxyapatite and
related calcium phosphates (CaP) (e.g., β-tricalcium
phosphate) have been intensively investigated (1990;
Burg et al. 2000; Hench and Wilson 1999; LeGeros and
LeGeros 2002). As expected, calcium phosphates have
an excellent biocompatibility due to their close
Table 2 Mechanical properties of hydroxyapatite, 45 S5 Biogl

Ceramics Compression
strength (MPa)

Tensile
strength (MPa)

Elastic m

Hydroxyapatite >400 approximately 40 approxim

45 S5 BioglassW approximately 500 42 35

A-W 1,080 215 (bend) 118

Parent glass of A-W NA 72 (bend) NA

BioveritW I 500 140 to 180 (bend) 70 to 90

Cortical bone 130 to 180 50 to 151 12 to 18

NA, not applicable.
resemblance to bone mineral chemical and crystal struc-
ture (Jarcho 1981; Jarcho et al. 1977). Although they
have not shown osteoinductive ability, they certainly
possess osteoconductive properties as well as a
remarkable ability to bind directly to bone (Denissen
et al. 1980; Driskell et al. 1973; Hammerle et al. 1997;
Hollinger and Battistone 1986). A large body of
in vivo and in vitro studies have reported that calcium
phosphates, no matter in which form (bulk, coating,
powder, or porous) or phase (crystalline or amorphous)
they are in, consistently support the attachment, differ-
entiation, and proliferation of osteoblasts and
mesenchymal cells, with hydroxyapatite being the best
one among them (Brown et al. 2001).
Crystalline calcium phosphates have long been known

to have very prolonged degradation times in vivo, often
in the order of years (Rezwan et al. 2006; Vacanti et al.
2000). Nanosized carbonated HA is a stable component
of natural bone, though it metabolizes like all tissues.
Hence, it would be fundamentally wrong if one expected
HA to rapidly degrade in a physiological environment.
In fact, clinical investigation has recently demonstrated
that implanted hydroxyapatites and calcium phosphates
are virtually inert, remaining within the body for as long
as 6 to 7 years post-implantation (Marcacci et al. 2007).
This should make HA less favored as a scaffold material
for use in tissue engineering. The degradation rates of
amorphous HA and TCP are high, but they are too fra-
gile to build a 3D porous network.
The properties of synthetic calcium phosphates vary

significantly with their crystallinity, grain size, porosity,
and composition. In general, the mechanical properties
of synthetic calcium phosphates decrease significantly
with increasing content of amorphous phase, micropor-
osity, and grain size. High crystallinity, low porosity, and
small grain size tend to give higher stiffness, higher
compressive and tensile strength, and greater fracture
toughness (Kokubo 1999a; LeGeros and LeGeros 1999).
assW, glass-ceramics, and human cortical bone

odulus (GPa) Fracture
toughness ðMPa

ffiffiffiffiffiffi
mÞp Reference

ately 100 approximately 1.0 Hench (1999),
LeGeros and LeGeros (1999)

0.5 to 1 Hench (1999),
Hench and Kokubo (1998)

2.0 Kokubo (1999b)

0.8 Kokubo (1999b)

1.2 to 2.1 Holand and Vogel (1993)

6 to 8 Keaveny and Hayes (1993),
Moore et al. (2001),
Nalla et al. (2003),
Zioupos and Currey (1998)
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It has been reported that the flexural strength and frac-
ture toughness of dense hydroxyapatite are much lower
in dry compared to aqueous conditions (de Groot et al.
1990).
Comparing the properties of hydroxyapatite and related

calcium phosphates with those of bone (Table 2), it is
apparent that the bone has a reasonably good compressive
strength, though it is lower than that of hydroxyapatite,
and better tensile strength and significantly better fracture
toughness than hydroxyapatite. The apatite crystals in the
bone tissue make it strong enough to tolerate compressive
loading. Combined with macroscale stress fibers, and the
typically tubular structure of long bone or mesh-like struc-
ture of flatter bone, the high tensile strength and fracture
toughness are attributed to flexible collagen fibers. Hence,
calcium phosphates alone cannot be used for load-bearing
scaffolds in spite of their good biocompatibility and
osteoconductivity.
A major challenge in bone tissue engineering is to

develop a scaffolding material that is mechanically
strong and yet biodegradable. To engineer bone tissue,
which is hard and functions to support the body, the
scaffold material must be strong and tough. Ideally, the
scaffold needs to be degradable, as this biodegradation
would avoid the detrimental effects of a persisting for-
eign substance and allow its gradual replacement with
the new bone. Unfortunately, in this context, mechanical
strength and biodegradability counteract each other. In
general, mechanically strong materials (e.g., crystalline
hydroxyapatite, Ti alloys, and crystalline polymers) are
virtually inert and remain part of the repaired bone,
while biodegradable materials (e.g., amorphous hydro-
xyapatite and glasses) tend to be mechanically fragile.
This forms the greatest challenge in the design of biocera-
mics for bone engineering at load-bearing sites, but there
are processing approaches such as sintering of 45 S5 Bio-
glassW (Chen and Boccaccini 2006a), for example, may offer
opportunities to address the above dilemma (see the ‘Na-
containing silicate bioactive glasses’ section).

Na-containing silicate bioactive glasses
The basic constituents of the most bioactive glasses are
SiO2, Na2O, CaO, and P2O5. 45 S5 BioglassW contains
45% SiO2, 24.5% Na2O, 24.4% CaO, and 6% P2O5, in
weight percent (Hench 1991). In 1969, Hench and co-
workers discovered that certain glass compositions had
excellent biocompatibility as well as the ability to bond
bone (Hench et al. 1971). The bioactivity of this glass
system can vary from surface bioactive (i.e., bone bond-
ing) to bulk degradable (i.e., resorbed within 10 to
30 days in tissue) (Hench 1998). Through interfacial and
cell-mediated reactions, bioactive glass develops a
calcium-deficient, carbonated phosphate surface layer
that allows it to chemically bond to host bone (Hench
1997, 1998, 1999; Hench et al. 1971; Hench and Wilson
1993; Pereira et al. 1994; Wilson et al. 1981). It is clearly
recognized that for a bond with bone tissue to occur, a
layer of biologically active carbonated hydroxyapatite
(HCA) must form (Hench and Wilson 1984). This bioac-
tivity is not exclusive to bioactive glasses; hydroxyapatite
and related calcium phosphates also show an excellent
ability to bond to bone, as discussed further below. The
capability of a material to form a secure biological inter-
face with the surrounding tissue is critical in the elimi-
nation of scaffold loosening.
An important feature of bioactive glasses for applica-

tions in bone tissue engineering is their ability to induce
bone tissue growth processes such as enzyme activity
(Aksay and Weiner 1998; Lobel and Hench 1996, 1998;
Ohgushi et al. 1996), revascularization (Day et al. 2004;
Keshaw et al. 2005), osteoblast adhesion and differentia-
tion from mesenchymal stem cells (Gatti et al. 1994; Lu
et al. 2005; Roether et al. 2002; Schepers et al. 1991).
Another significant finding is that the dissolution products
from bioactive glasses, in particular the 45 S5 BioglassW

composition, upregulate osteogenic gene expression and
growth factor production (Xynos et al. 2000a). Silicon
alone has been found to play a key role in bone minerali-
zation and gene activation, which has led to an increased
interest in the substitution of silicon for calcium into syn-
thetic hydroxyapatites. Investigations in vivo have shown
that bone ingrowth into silicon-substituted HA granules
was remarkably greater than that into pure HA (Xynos
et al. 2000b).
It has been found that bioactive glass surfaces can

release biologically relevant levels of soluble ionic forms
of Si, Ca, P, and Na, depending on the processing route
and particle size. These released ions induce intracellular
and extracellular responses (Xynos et al. 2000a, 2001).
For example, a synchronized sequence of genes is acti-
vated in the osteoblasts that undergo cell division and
synthesize an extracellular matrix, which mineralizes to
become bone (Xynos et al. 2000a, 2001). In addition,
bioactive glass compositions doped with AgO2 have been
shown to elicit antibacterial properties while maintaining
their bioactive function (Bellantone et al. 2002). In
recent investigations, 45 S5 BioglassW has been shown to
increase secretion of vascular endothelial growth factor
in vitro and to enhance vascularization in vivo, suggest-
ing that scaffolds containing controlled concentrations
of BioglassW might stimulate neovascularization, which
is beneficial to large tissue constructs (Day et al. 2004).
One key reason that makes bioactive glasses a relevant

scaffold material is the possibility of controlling a range of
chemical properties and, thus, the rate of bioresorption.
The structure and chemistry of glasses, in particular sol–
gel derived glasses (Pereira et al. 1994); Chen et al. 2010b;
Chen and Thouas 2011), can be tailored at a molecular
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level by modifying the thermal or environmental proces-
sing history to vary the composition. It is possible to
design glasses with degradation properties specific to a
particular application of bone tissue engineering.
It was once reported that crystallization of bioactive

glasses, which is necessary to achieve mechanical strength,
decreased the level of bioactivity (Filho et al. 1996), even
turning a bioactive glass into an inert material (Li et al.
1992). This antagonism between bioactivity and mechani-
cal strength was considered to hamper the application of
bioactive glasses. This issue has now been addressed by
the discovery that Na-containing glasses (e.g., 45 S5
BioglassW) can be sintered to form a mechanically strong
crystalline phase, which can transform into amorphous
calcium phosphate at body temperature and in a biological
environment, remaining both bioactive and degradable
(Chen and Boccaccini 2006a; Chen and Boccaccini 2006b;
Chen et al. 2011c, 2012a; Chen 2011). The loss in mechan-
ical strength due to biodegradation is in the time fashion
of tissue engineering, i.e., matching the healing profile of
bone. This highly desirable property is a unique feature of
this 45 S5 BioglassW, which has not previously been found
in any other material (e.g., hydroxyapatites, Ti-alloys, or
polymers).
The above advantages are the reasons why 45 S5 Bio-

glassW is relatively successfully exploited in clinical treat-
ments of periodontal disease (PerioglasTM) and as a
bone filler material (NovaboneTM) (Hench 1998). Bio-
glassW implants have also been used to replace damaged
middle ear bones, restoring hearing to patients (Hench
1997). Bioactive glasses have gained new attention
recently as promising scaffold materials, either as fillers
or coatings of polymer structures, and as porous materi-
als themselves when melt-derived and sol–gel-derived
glasses (Boccaccini and Maquet 2003; Boccaccini et al.
2003; Chen and Boccaccini 2006b; Chen et al. 2010c;
Chen and Thouas 2011; Jones and Hench 2003a, b;
Kaufmann et al. 2000; Laurencin et al. 2002; Livingston
et al. 2002; Yuan et al. 2001).
Table 3 Elements in the human body (Seeley et al. 2006)

Element O C H N Ca P K S Na Cl Mg Trace
element

Wt.% 65.0 18.5 9.5 3.3 1.5 1.0 0.4 0.3 0.2 0.2 0.1 <0.01

At.% 25.5 9.5 63.0 1.4 0.31 0.22 0.06 0.05 0.3 0.03 0.1 <0.01
Borate bioactive glasses
While silicate 45 S5 compositions have been widely
investigated over the last 50 years, borate- and
borosilicate-based compositions have recently been
explored (Fu et al. 2012; Rahaman et al. 2011; Yang
et al. 2012). Boron is a trace element (see the ‘Bioactive
glasses doped with trace elements’ section). Dietary
boron is documented to benefit in bone health (Nielsen
2008; Uysal et al. 2009), as shown by Chapin et al.
(1997). In their study, rats developed improved vertebral
resistance to crash force after dietary intake of boron
(Chapin et al. 1997). Gorustovich et al. (2006, 2008)
furthermore found that boron deficiency in mice alters
periodontal alveolar bone remodeling by inhibiting bone
formation.
Borate bioactive glasses have been reported to support

cell proliferation and differentiation in vitro (Fu et al.
2009, 2010a; Marion et al. 2005) and tissue infiltration
in vivo (Fu et al. 2010b). Boron concentrations in the
blood around borate glass pellets implantation in rabbit
tibiae were well below the toxic level (Zhang et al. 2010).
However, there is a concern associated with the toxicity of
boron released into the solution as borate ions, (BO3)

3−. It
has been reported that some borate glasses exhibited cyto-
toxicity under static in vitro culture conditions (Fu et al.
2010b), although no considerable toxicity was detected
under more dynamic culture conditions, suggesting the
importance of borate clearance (Fu et al. 2010b).
Borate bioactive glasses have also been reported to

degrade faster than their silicate counterparts due to
their relative chemical instability (Fu et al. 2009, 2010a,
c; Huang et al. 2006a, 2007; Yao et al. 2007). By partially
or fully replacing the SiO2 in silicate glasses with B2O3,
the complete degradation rate of the glasses can be var-
ied over a wide range, from several days to longer than
2 months (Fu et al. 2009, 2010a, c; Huang et al. 2006a;
Yao et al. 2007). Moreover, borate bioactive glasses are
more readily converted to an apatite-like composition
than the silicate materials (Huang et al. 2006a). The con-
version mechanism of bioactive glass to apatite is similar
to that of silicate 45 S5 glass, with the formation of a
borate-rich layer, similar to the silicate-rich layer of the
former (Hench 1998; Huang et al. 2006a, b). The ease of
controlling the degradation rate in these borate-based
glasses offers new opportunities to regulate the degrada-
tion rate of synthetic biomaterials to match injured bone
healing rates.

Bioactive glasses doped with trace elements
Bioactive glasses have recently modified by doping with
elements such as Cu, Zn, and Sr, which are known to be
beneficial for healthy bone growth (Fu et al. 2010a;
Hoppe et al. 2011; Wang et al. 2011; Zheng et al. 2012).
To understand the biological significances of these types
of trace elements in materials, it is useful to consider
their abundance in biological tissues. The most abun-
dant compound in the human body is water (65 to
90 wt.%), which contains most of the oxygen and hydro-
gen (Table 3). Approximately 96% of the weight of the
body is comprised of oxygen, carbon, hydrogen, and
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nitrogen, which are the building blocks of all proteins.
The rest (approximately 4%) of the mass of the body
exists largely either in the bone and tooth as minerals
(Ca, Mg, and P) or in the blood and extracellular fluid as
major electrolytes (Na, K, and Cl), referred to here as
macroelements (Table 4, reference).
In addition to the macroelements, there are also a

large number of elements in lower concentrations (how
much. . .ppm?) for the proper growth, development, and
physiology of the body (see the list of known trace ele-
ments in the human body (Whitney and Rolfes 2010)
below). These elements are referred to as trace elements
or micronutrients, and while this list is increasing, it is
important to bear in mind that these trace elements are
all toxic at high levels. In 1966, for instance, the addition
of cobalt compounds to stabilize beer foam in Canada
led to cardiomyopathy, which came to be known as beer
drinker's cardiomyopathy (1967; Barceloux 1999). In
brief, the majority of metal elements are needed in the
human body as micronutrients (eg., as enzyme cofactors)
but are toxic at levels higher than required, partly result-
ing in excretion or excess storage as deposits. Hence, it
is highly important that as a glass degrades in vivo, the
trace elements in scaffolds must be released at a biologi-
cally acceptable rate. In this section, we focus on trace
elements doped in bioactive glasses for bone tissue engi-
neering, including strontium, zinc, and copper.
List of known trace elements in the human body,

which are all toxic at high levels (Whitney and Rolfes
2010).

� Barium
� Beryllium
� Boron
� Caesium
� Chromium
� Cobalt
� Copper
� Iodine
� Iron
� Lithium
� Molybdenum
� Nickel
� Selenium
� Strontium
� Tungsten
� Zinc

Strontium is chemically closely related to calcium, shar-
ing the same main group with calcium on the periodic table
of elements and having a similar atomic radius to the cal-
cium cation (rSr = 1.16 Å and rCa2+ =1.0 Å). Because of the
above chemical analogy, Sr has long been used as a dope
element in the hydroxyapatite products (Chen et al. 2004;
Marie et al. 2001; Wong et al. 2004). In vivo investigations
have demonstrated that strontium is, in general, a benign
element, having pharmacological effects on bone balance in
normal bone and in the treatment of osteoporosis (Marie
et al. 2001; Marie 2010; Meunier et al. 2002). Moreover, a
drug of strontium ranelate has been reported to enhance
fracture healing of bone in rats in terms of callus resistance.
The group treated with only strontium ranelate showed a
significant increase in callus resistance compared to the
untreated control group. An added benefit of doping trace
elements is the enhanced X-ray imaging contrast.
Zinc is necessary in the function of all cells, binding spe-

cific DNA regions to regulate genetic control of cell prolif-
eration (Whitney and Rolfes 2010). Zn is also reported to
play a role in bone healing and metabolism (Yamaguchi
1998), with anti-inflammatory roles (Lang et al. 2007). It
has been demonstrated that Zn (a) stimulates bone forma-
tion in vitro by activating protein synthesis in osteoblast
cells, (b) increases ATPase activity in bone (Yamaguchi
1998) and inhibits bone resorption of osteoclast cells in
mouse marrow cultures (Yamaguchi 1998), and (c) has
regulatory effects on bone cells and, thus, on gene expres-
sion (Cousins 1998; Kwun et al. 2010). Nonetheless, it has
been well documented that an excess of zinc may cause
anemia or reduced bone formation (Whitney and Rolfes
2010) as well as systemic cytotoxicity.
Copper is contained in enzymes of the ferroxidase

(ceruloplasmin) system which regulates iron transport
and facilitates release from storage. A copper deficiency
can result in anemia from reduced ferroxidase function.
However, excess copper levels cause liver malfunction
and are associated with the genetic disorder Wilson's
disease. There have been controversial reports on the
effects of copper on bone remodelling. On the one hand,
Zhang et al. (2003) reported that Cu2+ at a concentration
of 10−6 M inhibits osteoclast activity. Smith et al. (2002)
also found that dietary copper deprivation causes a
reduction of bone mineral density. On the other hand,
Cashman et al. (2001) found that copper supplements
over a period of 4 weeks did not affect bone formation
or bone resorption, as manifested by biochemical mar-
kers. Furthermore, Lai and Yamaguchi (2005) showed
that supplementation with copper induced a decrease
in bone tissue in rats, showing reduced or absent ana-
bolic effects on bone formation both in vivo and
in vitro.
Perhaps what is positively relevant to bone tissue engi-

neering about copper is that this element has consis-
tently been reported to trigger endothelial cells towards
angiogenesis. Finney et al. (2009) found that a significant
amount of Cu ions was distributed in human endothelial
cells when they were induced to enhance angiogenesis.
This phenomenon was believed to indicate the impor-
tance of copper ions as angiogenic agent. In another



Table 4 Macroelements and their roles in the human body (Whitney and Rolfes 2010)

Macroelements Roles

O, C, H, N In water and the molecular structures of proteins

Ca Structure of bone and teeth; muscle and nerve activity

P Structure of bone and teeth; intermediate in REDOX metabolism and production of ATP in energy

Mg Important in bone structure, muscle contraction, and metabolic processes

Na Major electrolyte of blood and extracellular fluid; required for the maintenance of pH and
osmotic balance; nerve and muscle signaling

K Major electrolyte of blood and intracellular fluid; required for the maintenance of pH and
osmotic balance; nerve and muscle signaling

Cl Major electrolyte of blood and extracellular and intracellular fluid; required for the maintenance
of pH and osmotic balance; nerve and muscle signaling

S Element of the essential amino acids methionine and cysteine; contained in the vitamins thiamine
and biotin. As part of glutathione, it is required for detoxification. Poor growth due to reduced
protein synthesis and lower glutathione levels potentially increasing oxidative or xenobiotic damage
are consequences of low sulfur and methionine and/or cysteine intake.
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work, copper and angiogenesis growth factor FGF-2
were found to have synergistic stimulatory effects on
angiogenesis in vitro (Gerard et al. 2010). In addition to
its function of stimulating proliferation of human
endothelial cells (Hu 1998), Cu was shown to promote
the differentiation of mesenchymal stem cells towards
the osteogenic lineage (Rodriguez et al. 2002).
In summary, although trace elements have beneficial

effects on bone remodeling and/or associated angiogen-
esis, the risk of toxicity at high levels must be highly
regarded in the design of composition and degradation
rate of bioactive biomaterials so that the release of these
elements must be satisfactorily lower than their biologi-
cally safe levels.

Biocomposites
The primary disadvantage of bioactive glasses is their
mechanical weakness and low fracture toughness
(Table 2) due to their amorphous structure. Hence,
bioactive glasses alone have limited application in load-
bearing situations owing to poor mechanical strength
and mismatch with the surrounding bone. However,
these materials can be sintered to improve their
mechanical properties (Chen et al. 2006a, Chen et al.
2006b), or used in combination with polymers to form
composite materials with better bone repair potential
(Roether et al. 2002).

Thermoplastic-based composites
From a biological perspective, it is a natural strategy to
combine polymers and ceramics to fabricate scaffolds for
bone tissue engineering because, structurally, native bone
is essentially the combination of a naturally occurring
polymer and biological apatite. From the materials science
point of view, a single material type does not always pro-
vide the necessary mechanical and/or chemical properties
desired for this particular application. In these instances,
composite materials designed to combine the advantages
of both materials may be most appropriate. Polymers and
ceramics that degrade in vivo should be chosen for design-
ing biocomposites for tissue engineering scaffolds, except
for permanent implants. While massive release of acidic
degradation from polymers causes inflammatory reactions
(Bergsma et al. 1993, 1995; Temenoff et al. 2000), the basic
degradation of calcium phosphate or bioactive glasses
would buffer these by-products of polymers thereby
improving the physiological conditions of tissue environ-
ment due to pH control. Mechanically, bioceramics are
much stronger than polymers and play a critical role in
providing mechanical stability to construct prior to synth-
esis of new bone matrix by cells. However, as mentioned
above, ceramics and glasses are very fragile due to their
intrinsic brittleness and flaw sensitivity. To capitalize on
their advantages and minimize their shortcomings, cera-
mic and glass materials can be combined with various
polymers to form composite biomaterials for osseous
regeneration. Tables 5 and 6 list selected dense and porous
ceramic/glass-polymer composites, which have been
designed as biomedical devices or scaffold materials for
bone tissue engineering, and their mechanical properties.
In general, all of these synthetic composites have

good biocompatibility. Kikuchi et al. (1999), for
instance, combined TCP with PLA to form a
polymer-ceramic composite, which was found to pos-
sess the osteoconductivity of β-TCP and the degrad-
ability of PLA. The research team led by Laurencin
synthesized similar porous scaffolds containing PLGA
and HA, which combine the degradability of PLGA
with the bioactivity of HA, fostering cell proliferation
and differentiation as well as mineral formation
(Attawia et al. 1995; Devin et al. 1996; Laurencin
et al. 1996a). Other composites of bioactive glass and
PLA were observed to form calcium phosphate layers
on their surfaces and support rapid and abundant



Table 5 Biocomposites used for bone tissue engineering

Biocomposite Percentage
of ceramic (%)

Compressive
(C), tensile (T),
flexural (F), and
bending (B)
strengths (MPa)

Modulus (MPa) Ultimate
strain (%)

Toughness
(kJ/m2)

Reference

Ceramic Polymer

HA fiber PDLLA 2 to 10.5 (vol.) 45 (F) 1.75× 103 to 2.47 × 103 Deng et al. (2001)

PLLA 10 to 70 (wt.) 50 to 60 (F) 6.4 × 103 to 12.8 × 103 0.7 to 2.3 Kasuga et al. (2001)

HA PLGA 40 to 85 (vol.) 22 (F) 1.1 × 103 5.29 Xu et al. (2004), Xu
and Simon (2004a, b)

Chitosan 40 to 85 (vol.) 12 (F) 2.15 × 103 0.092 Xu et al. (2004)

Chitosan+ PLGA 40 to 85 (vol.) 43 (F) 2.6 × 103 9.77 Xu et al. (2004)

PPhos 85 to 95 (wt.) Greish et al. (2005)

Collagen 50 to 72 (wt.) Rodrigues et al. (2003)

β-TCP PLLA-co-PEH 75 (wt.) 51 (F) 5.18 × 103 Kikuchi et al. (1999)

PPF 25 (wt.) 7.5 to 7.7 (C) 191 to 134 Peter et al. (1998)

A/W PE 10 to 50 (vol.) 18 to 28 (B) 0.9 × 103 to 5.7 × 103 Juhasz et al. (2003a, b),
Juhasz et al. (2004)

Ca3(CO3)2 PLLA 30 (wt.) 50 3.5 × 103 to 6 × 103 Kasuga et al. (2003)

BioglassW PGA 2 to 1 (wt.) 0.5 to 2 (T) 0.5 to 2 (T) 150 to 600 Chen et al. (2010a)
Chen et al. (2011b),
Liang et al. (2010)

Human cortical bone 70 (wt.) 50 to 150 (T) 12 × 103 to 18 × 103 Keaveny and Hayes (1993),
Moore et al. (2001),
Nalla et al. (2003),
Zioupos and Currey (1998)

130 to 180 (C)

Table 6 Properties of porous composites developed for bone tissue engineering

Biocomposite Percentage of
ceramic (wt.%)

Porosity (%) Pore size
(μm)

Strength
(MPa)

Modulus
(MPa)

Ultimate
strain (%)

Reference

Amorphous
CaP

PLGA 28 to 75 75 >100 65 Ambrosio et al. (2001),
Khan et al. (2004)

β-TCP Chitosa-gelatin 10 to 70 322 to 355 0.32 to 0.88 3.94 to 10.88 Yin et al. (2003)

HA PLLA 50 85 to 96 100 × 300 0.39 10 to 14 Zhang and Ma (1999)

PLGA 60 to 75 81 to 91 800 to 1800 0.07 to 0.22 2 to 7.5 Guan and Davies (2004)

PLGA 30 to 40 110 to 150 337 to 1459 Devin et al. (1996)

BioglassW PLGA 75 43 89 0.42 51 Laurencin et al. (2002),
Lu et al. (2003),
Stamboulis et al. (2002)

PLLA 20 to 50 77 to 80 approximately
100 (macro);
approximately
10 (micro)

1.5 to 3.9 137 to 260 1.1 to 13.7 Zhang et al. (2004)

PLGA 0.1 to 1 50 to 300 Blaker et al. (2004)

PDLLA 5 to 29 94 approximately
100 (macro);
10 to 50 (micro)

0.07 to 0.08 0.65 to 1.2 7.21 to 13.3 Blaker et al. (2003, 2005),
Verrier et al. (2004)

Phosphate
glass A/W

PLA-PDLLA 40 93 to 97 98 to 154 0.017 to 0.020 0.075 to 0.12 Navarro, et al. (2004),
Li and Chang (2004)

PDLLA 20 to 40 85.5 to 95.2

Bioglass PGS 90 >90 300 to 500 0.4 to 1.0 Chen et al. (2010d)

Human cancellous bone 70 60 to 90 300 to 400 0.4 to 4.0 100 to 500 1.65 to 2.11 Giesen et al. (2001),
Yeni and Fyhrie (2001),
Yeni, et al. (2001)
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growth of human osteoblasts and osteoblast-like cells
when cultured in vitro (Blaker et al. 2004; Blaker
et al. 2003; Blaker et al. 2005; Boccaccini et al. 2003;
Li and Chang 2004; Lu et al. 2003; Maquet et al.
2003, 2004; Navarro et al. 2004; Stamboulis et al.
2002; Verrier et al. 2004; Zhang et al. 2004).
A comparison between dense composites and

cortical bone indicates that with thermoplastics, the
most promising synthetic composite seems to be HA
fiber-reinforced PLA composites (Kasuga et al.
2001), which however exhibit mechanical property
values closer to the lower values of the cortical
bone. Up to now, the best thermoplastic-based com-
posite scaffolds reported in the literature seem to be
those made from combinations of BioglassW and
Figure 2 Compressive strength of BioglassW-PGS scaffolds. During soa
to 2 months (Chen et al. 2010d).
PLLA or PDLLA (Blaker et al. 2004; Maquet et al.
2003, 2004; Zhang et al. 2004). These composites
have a well-defined porous structure; at the same
time, their mechanical properties are close to (but
lower than) those of cancellous bone.

Elastomer-based composites
Very recently, our group developed elastomeric compo-
sites from PPS and bioceramics (Chen et al. 2010a, 2011b;
Liang et al. 2010). There are several advantages of using
PPS elastomers over other thermoplastic polymers as a
base for a reinforced composite. Firstly, its elastomeric
properties make it ideal for a range of tissue repair appli-
cations (Bettinger et al. 2005a; Chen et al. 2008a;
Fidkowski et al. 2005b; Redenti et al. 2009; Wang et al.
king in a tissue culture medium under physiological conditions for up
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2002b, c). In the case of bone, there is a requirement for
some flexibility in the initial phases of bone repair, which
involves cartilage deposition before bone formation
(Oliveira et al. 2009). Secondly, PPS is acidic and, thus,
able to react with alkaline BioglassW via metallic carboxy-
lation, resulting in a chemical bonding between the inor-
ganic and organic components of the composite (Ma and
Wu 2007). Thirdly, the degradation kinetics of PPS are
Table 7 Advantages and disadvantages of synthetic biomater

Biomaterial Advantages

Calcium phosphates (e.g. HA, TCP, and
biphase CaP)

(1) Excellent biocompatib

(2) Supporting cell activi

(3) Good osteoconductiv

Na-containing silicate bioactive glasses (1) Excellent biocompatib

(2) Supporting cell activi

(3) Good osteoconductiv

(4) Vasculature

(5) Rapid gene expressio

(6) Tailorable degradatio

(7) Tailorable mechanica
sintering, and the issue a
strength and degradatio

Borate bioactive glasses (1) Tailorable degradatio

(2) Tailorable mechanica

Bioactive glass ceramics (e.g., A-W) (1) Excellent biocompatib

(2) Supporting cell activi

(3) Good osteoconductiv

Bulk biodegradable polymers

Poly(lactic acid) (1) Good biocompatibilit

(2) Biodegradable (with a
of degradation rates)

Poly(glycolic acid) (3) Bioresorbable

Poly(lactic-co-glycolic acid) (4) Good processability

Poly(propylene fumarate) (5) Good ductility

Poly(polyol sebacate) (6) Elasticity

Surface bioerodible polymers

Poly(ortho esters) (1) Good biocompatibilit

Poly(anhydrides) (2) Retention of mechan
over the degradative life

Poly(phosphazene) (3) Significantly enhance
into the porous scaffolds
increment in pore size

Composites (containing bioactive phases) (1) Excellent biocompatib

(2) Supporting cell activi

(3) Good osteoconductiv

(4) Tailorable degradatio

(5) Improved mechanica
entirely tunable by alternating its cross-link density to
such a degree that it can maintain high physical integrity
during degradation (Wang et al. 2002b). In addition, the
elastic properties (i.e., Young's modulus, elongation at
break and resilience) of these composites can be enhanced
simultaneously by adding ceramic fillers due to the
bound-rubber mechanism (Figure 1) (Chen et al. 2010a,
2011b; Liang et al. 2010). Finally, due to its combination
ials used in bone tissue engineering

Disadvantages

ility (1) Brittle

ty

ity (2) They biodegrade too slowly in
the crystalline state and are mechanically
too weak in the amorphous state.

ility (1) Mechanically brittle and weak
at the amorphous state

ty

ity

n

n rate

l strength via
ssociated with
n could be addressed

n rate (1) Risk of toxicity due to the
release of borate ions

l strength

ility (1) Brittle

ty

ity (2) Slow degradation rate

y (1) Inflammation caused
by acid degradation products.

wide range

(2) Accelerated degradation
rates cause collapse of scaffolds.

y (1) Not completely replaced
by new bone tissue

ical integrity
time of the device

d bone ingrowth
, owing to the

ility (1) Still not as good as
natural bone matrix

ty

ity

n rate (2) Fabrication techniques
need to be improved.

l reliability



Table 8 List of advantages and disadvantages of biodegradable polymeric biomaterials

Material Advantages Disadvantages

Thermoplastic Non-elastomers Easy fabrication (by melt or solvent processing) Rigid

Lack of flexibility

Tunable mechanical properties and
degradation kinetics

Release of acidic degradation products

Possibility of foreign body response

Elastomer Thermoplastic Easy fabrication Heterogeneous degradation profile;
mechanical failure; much faster than
material degradationFlexible

High elongation Release of acidic degradation products

Tunable mechanical properties and
degradation kinetics

Possibility of foreign body response

Cross-linked Flexible Relatively difficult processability

Tightly controlled purity

Structure, mechanical properties, and
degradation kinetics

Possibility of foreign body response

Good maintenance of form stability
during degradation

Release of acidic degradation products

Chen et al. Progress in Biomaterials 2012, 1:2 Page 15 of 22
http://www.progressbiomaterials.com/content/1/1/2
of satisfactory mechanical strength at the time of implan-
tation and tunable biodegradability postimplantation, sin-
tered 45 S5 BioglassW ceramics can breakdown and
change into nanosized bone minerals under aqueous phy-
siological conditions (Chen and Boccaccini 2006b).
Our group has also has also developed a bone-like

composite scaffold from PGS and 45 S5 BioglassW (Chen
et al. 2010d). These reinforced elastomeric scaffolds have
similar mechanical properties to that of cancellous bone
and exhibit a mechanically steady state over prolonged
periods in a physiologic environment (Figure 2). This is
very relevant to engineering features in scaffolds to
match the lag phase of bone repair (Chen et al. 2010d).

Conclusion
While the ideal tissue-engineered bone substitute should
be a material, which is bioresorbable, biocompatible, and
supports cell attachment, proliferation, and maturation
and which is ultimately resorbed once new bone has
formed, allowing this bone to undergo remodelling, this
goal has yet to be achieved. To design a scaffold, it is
necessary to weigh up the ‘pros and cons’ of the potential
precursor materials, which are summarized in Table 7.
Among the bioactive ceramics and glasses listed in Table 7,
Na-containing silicon bioactive glasses offer a number of
advantages. The role of silicon in biological regulation of
osteogenesis and the potential to address the dilemma
between mechanical strength and degradation rate make
these glasses promising scaffold materials over others,
such as HA and related crystalline calcium phosphates.
Recent progresses on the development of borate bioactive
glasses and trace element-doped bioactive glasses expand
the repertoire of bioactive glasses. Although boride and
other trace elements have beneficial effects on bone remo-
delling and/or associated angiogenesis, the risk of toxicity
at high levels must be highly regarded in the design of
new composition of bioactive biomaterials so that the
release of these elements must be satisfactorily lower than
their biologically safe levels.
Between the two main classes of bulk degradable and

surface erodible polymer, the bulk degradable type is more
promising than the surface-erosive group, considering that
being replaced by new bone tissue is one of the most
important criteria of an ideal scaffold material. Between
thermoplastic and elastomeric polymers, Table 8 provides
a comparison of both materials, as discussed earlier.
Cross-linked synthetic elastomers (especially polyester
elastomers) are the most attractive for use as a substitute
of collagen matrix in tissue engineering. This is because,
firstly, they are elastic and best match with the elasticity of
biological tissue. Secondly, they are able to provide
mechanical stability and structural integrity to tissues and
organs without causing catastrophic mechanical implant
failure, which is an issue remaining with thermoplastic
rubbers. Thirdly, polyester elastomers allow closely control
of structural and mechanical properties to suit various
applications. Lastly and most importantly, polyester elas-
tomers, most of which can safely breakdown to natural
metabolic products by simple hydrolysis, have the poten-
tial to be tailored in their degradation rates to match heal-
ing kinetics of injured bone tissue, which can hardly
achieved with current thermoplastics and thermoplastic
rubbers. However, establishing the most suitable ceramic
or mineral filler material and processing conditions for an
elastomer is likely to provide many potential avenues for
future research in bone tissue engineering scaffolds.
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