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DNA methyltransferases and their roles
in tumorigenesis
Wu Zhang and Jie Xu*

Abstract

DNA methylation plays an important role in gene expression, chromatin stability, and genetic imprinting. In mammals,
DNA methylation patterns are written and regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT3A
and DNMT3B. Recent emerging evidence shows that defects in DNMTs are involved in tumor transformation
and progression, thus indicating that epigenetic disruptions caused by DNMT abnormalities are associated with
tumorigenesis. Herein, we review the latest findings related to DNMT alterations in cancer cells and discuss the
contributions of these effects to oncogenic phenotypes.
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Background
DNA methylation is one of the most important epigenetic
modifications [1], playing key roles in the regulation of
gene expression, genomic imprinting, X chromosome
inactivation, and tumorigenesis [2, 3]. In mammals,
DNMT1, DNMT3A and DNMT3B, the generally recog-
nized three types of DNA methyltransferases (DNMTs),
execute the genomic methylation process [4]. These
proteins are highly conserved and have similar amino acid
sequences. The N-terminus contains a regulatory domain,
which allows DNMTs to anchor in the nucleus and
recognize nucleic acids or nucleoproteins, and the C-
terminus possesses a catalytic domain, which is respon-
sible for the enzymatic activity [5]. DNMT1, DNMT3A
and DNMT3B have different functions in the methylation
process. DNMT1 is required for the maintenance of all
methylation in the genome. During replication, DNMT1
restores the specific methylation pattern on the daughter
strand in accordance with that of the parental DNA.
DNMT3A and DNMT3B are referred to as de novo meth-
yltransferases, which are responsible for establishing DNA
methylation patterns during embryogenesis and setting up
genomic imprints during germ cell development [6].
Although they are highly expressed in early mammalian
embryos, DNMT3A and DNMT3B decrease in expression

over the course of cell differentiation. These two proteins
have distinct functions throughout embryonic develop-
ment, showing both spatial and temporal differences.
DNMT3A primarily methylates a set of genes and se-
quences at the late stage of embryonic development
and especially after birth, whereas DNMT3B modifies a
broader region of genomic sequences in early embryos
[2, 6]. Very recently, one study identified a new de novo
DNA methyltransferase DNMT3C in murine germ
cells. DNMT3C exhibits high identity with DNMT3B,
and is specialized at methylating the young retrotran-
sposons [7]. Beside the above-mentioned enzymes,
which are essential for the methylation of mammalian
DNA, the DNMT family also includes two additional
members, DNMT2 and DNMT3L. Although DNMT2
is not currently considered to be a DNA methylase, this
enzyme methylates small transfer RNAs (tRNAs) [8].
DNMT3L, an important regulator without catalytic
activity, operates in the form of DNMT3L-DNMT3A
heterotetramers and facilitates the methylation of cytosine
residues [2, 5, 6]. In animal models, Dnmt3a knockout mice
have been found to exhibit postnatal growth retardation
and dysplasia and to die by 4 weeks of age [9]. Mice
deficient in either Dnmt1 or Dnmt3b exhibit embryonic
lethality [9, 10]. Male mice without Dnmt3c are sterile [7].
Thus, these phenotypes demonstrate that the establishment
and maintenance of global genomic methylation processes
is the basis for cell proliferation and differentiation.

* Correspondence: nbxujie1011@163.com
State Key Laboratory for Medical Genomics, Shanghai Institute of
Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University
School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang and Xu Biomarker Research  (2017) 5:1 
DOI 10.1186/s40364-017-0081-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81050986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-017-0081-z&domain=pdf
mailto:nbxujie1011@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


In recent years, interest in the relationship between
DNA methylation and human diseases has increased.
Alterations in DNA methylation patterns have been
implicated in tumorigenesis in several studies [11–13].
Owing to the revolutionary progress of next-generation
sequencing technology, a variety of genomic landscapes of
human tumor tissues have been described, and a number
of defective genes associated with illnesses have been
discovered [4, 13]. Sequencing studies on hematologic
disorders achieve big success in identifying previously
unrecognized mutated genes [14]. Among these mutated
genes, many, such as DNMT3A, TET2, and IDH1, are
involved in epigenetic processes [15–18] and are directly or
indirectly related to DNA methylation. These discoveries
bring new prospects for cancer diagnosis and treatment,
enabling researchers to fully realize the enormous potential
of genomic methylation abnormalities in tumorigenesis.
The following content will describe the relationship
between defective DNMTs and tumorigenesis, and finally
will focus on the DNMT3A alteration that has been espe-
cially well studied.

Emerging evidence of DNMTs in malignant
transformation
Tumor cells typically exhibit aberrant DNA methylation
patterns during malignant transformation [3, 19]. Although
this phenomenon is generally attributed to different mecha-
nisms, alteration in the DNMT family of genes and the
resulting dysregulation of genomic methylation is a primary
causative factor [20, 21]. Numerous samples with lesions in
the DNMT genes have been studied to identify methylation
changes and to evaluate cancer development. These lesions
can be classified into three categories: overexpression,
mutation and deletion (Table 1).

Overexpression
Overexpression of DNMTs (DNMT1, DNMT3A, and
DNMT3B) in a variety of tumors results in hypermethyla-
tion and oncogenic activation [11]. DNMT1 overexpression
correlates well with aberrant DNA methylation in solid
tumors, thus resulting in lymph node metastasis and poor
prognosis in patients [22–24]. Similarly, highly expressed
DNMT3A or DNMT3B has been found in a large number
of patient specimens, and increased DNMT3A expression
is involved in hepatocellular carcinogenesis [25]. Moreover,
high expression levels of DNMT3B and CTCF are critical
in the epigenetic inactivation of BRCA1 in sporadic
breast tumors [26]. Additional studies have suggested
that DNMT3B is required for the outgrowth of colonic
micro-adenomas [27, 28]. Several studies have provided
explanations for the relationship between overexpressed
DNMTs and tumorigenesis. Zhao et al. have shown that
DNMT1 knockdown has an inhibitory effect on the cell
cycle in esophageal squamous cell carcinoma, indicating

that increased methylation levels promote cell mitosis [22].
Two groups have demonstrated that DNMT3B over-
expression is closely related to CIMP-high in colon
cancers [29, 30]. Additional studies performed on cultured
primary prostate cells have shown that the overexpression
of DNMT3B1 and DNMT3B2, the two subtypes of
DNMT3B, leads to an increase in methylation [31].

Mutation
Somatic mutations in DNMTs are the prominent
features of many tumors and substantially contribute to
malignant transformation [32]. As shown in Table 1,
DNMT1 mutations in colon tumors and DNMT3A muta-
tions in hematological malignancies have been observed in
the cancer genome. Kanai et al. have shown that DNMT1
inactivation due to mutational changes in colon cancers re-
sults in genome-wide alterations of the DNA methylation
status [33]. Critical findings on DNMT3A variation have
suggested that DNMT3A is frequently mutated in acute
myeloid leukemia (AML), myelodysplastic syndrome
(MDS) and adult early T-cell precursor acute lymphoblastic
leukemia (ETP-ALL) and is associated with disease aggres-
siveness and treatment resistance [15, 16, 34–36]. Mice ex-
pressing the Dnmt3a Arg882 mutant protein developed
chronic myelomonocytic leukemia with thrombocytosis
[37]. Moreover, DNMT3A mutations, particularly those in
the catalytic domain, substantially decrease enzymatic
activity [16, 34]. In DNMT3A-mutated AML samples and
relevant mouse models, such loss of function results in the
hypomethylation of HOX family genes [16, 37]. Together,
these studies suggest that mutated DNMTs disrupt
genomic methylation and play significant roles in
tumor formation.

Deletion
An in vivo mouse model with embryonically inactive
DNMT3A and DNMT3B has shown that the deletion of
de novo methyltransferases leads to lethal phenotypes
[9]. Recently, the effects of de novo methyltransferase on
hematopoiesis have been evaluated through conditional
knockout technology. The deletion of Dnmt3a in adult
mice induces the proliferation of hematopoietic progeni-
tors [38]. On the basis of this abnormality, researchers
then demonstrated that mutated NRAS- or FLT3-ITD-
driven malignancy is accelerated by a lack of Dnmt3a
[39–42]. Furthermore, the ectopic introduction of c-Kit
variants into a Dnmt3a-deficient background produces
acute leukemia [43]. Moreover, DNMT3A inactivation
leads to the progression of peripheral T cell lymphoma
(PTCL) and lung tumors, thus indicating that DNMT3A
may act as a tumor-suppressor gene [44, 45]. Studies
have also shown that DNMT3B acts as a tumor suppres-
sor in Myc-induced lymphomas and MLL-AF9-driven
AML [46]. A lack of maintenance methyltransferase
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activity is also related to carcinogenesis. Studies have
shown that DNMT1 deletion leads to DNA demethyla-
tion and that DNMT1 is critical for T-cell lymphoma
prevention and maintenance, contributing to aberrant
methylation by de novo and maintenance methylation
[47]. Therefore, deletion of genes encoding DNMTs also
participates in tumor development.

Epigenetic disruptions involving DNMTs in
tumorigenesis
Epigenetic disorders, which are commonly found in can-
cer, are attributed in part to DNMT dysfunction [3, 4].
Because of its catalytic role and inhibition of target gene
transcription, DNMTs play a significant role in the
maintenance of chromosomal homeostasis [6]. Defective
DNMTs induce imbalances in DNA and/or histone
modification, thus resulting in chromatin remodeling,
genomic instability and gene inactivation. Unlike the
genomes in normal tissue, the genomes of tumor cells
generally display global hypomethylation throughout,
with localized hypermethylation in particular regions
[20]. Moreover, crosstalk between DNMTs and other
chromatin regulators, such as histone methyltransferases
and transcriptional co-suppressors, is highly important
in epigenetic disruption [48–50]. These characteristics

may contribute to diagnosis and targeted therapy in
clinical applications (Fig. 1).

Global hypomethylation
DNA hypomethylation of tumor cells is the first
process characterized as an epigenetic abnormality
[19]. The genome-wide hypomethylation of tumor
cells results in a reduction of 5-mC, mainly in gene-
coding regions and satellite repeats (Fig. 1). These
changes cause mitotic recombination, copy number
deletion and chromosomal rearrangement, and even
genomic imprinting annihilation. Gaudet et al. have
demonstrated that deletion or reduction of DNMT1
leads to substantial genome-wide hypomethylation
and chromosomal instability [51]. Through methylated
DNA immunoprecipitation (MeDIP)-chip analysis,
hypomethylated CpG islands (CGIs) of the HOXB
cluster have been found in AML samples with
DNMT3A mutations [16]. Although the underlying
mechanism governing the effects of genome-wide
hypomethylation on the process of tumorigenesis is
not fully understood, these limited data have provided
alternative insight into a relationship between aberrant
DNMTs and global hypomethylation, along with sub-
sequent tumor occurrence [1].

Table 1 Emerging evidence of DNMTs in malignant transformation

Tumor type DNMT subtype Model studied Alteration Reference

AML DNMT3A
DNMT3A
DNMT3A
DNMT3B
DNMTs

Patients
Mouse tumor model
Mouse tumor model
Mouse tumor model
Patients

Mutation
Mutation
Deletion
Deletion
Overexpression

[15, 16, 34]
[72]
[39–43]
[46]
[74]

MDS DNMT3A Patients Mutation [35]

CMML DNMT3A Mouse model Mutation [37]

CML DNMTs Patients Overexpression [74]

ALL DNMT3A Patients Mutation [36]

Lymphoma DNMT1
DNMT3A
DNMT3B

Mouse tumor model
Mouse model
Mouse tumor model

Deletion
Deletion
Deletion

[47]
[44]
[75]

Breast DNMT1
DNMT1
DNMT3B

Mouse tumor model
Patients
Patients

Deletion
Overexpression
Overexpression

[76]
[77]
[26]

Lung DNMT3A Mouse tumor model Deletion [45]

Colon DNMT1
DNMT3B
DNMT3B

Patients
Patients
Mouse tumor model

Mutation
Overexpression
Overexpression

[33]
[29, 30]
[27, 28]

Liver DNMT1
DNMT3A

Patients
Patients

Overexpression
Overexpression

[24]
[25]

Melanoma DNMT3A Mouse tumor model Overexpression [78]

Pancreas DNMT1 Patients Overexpression [23]

Prostate DNMT3B Patients Overexpression [31]

Esophagus DNMT1 Patients Overexpression [22]
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Localized hypermethylation
In normal somatic cells, DNA methylation occurs primar-
ily in dinucleotides containing less CpG, whereas the
CpG-enriched region is unmethylated [6, 50]. Throughout
malignant transformation, the global methylation level of
DNA changes, thus leading to non-CpG island hypome-
thylation and CGI hypermethylation. As a result, the
number of genes that are hypermethylated on their
promoters increases. In particular, hypermethylation in-
duces the silencing of several key tumor-suppressor genes
(TSGs), which play important roles in tumor progression
(Fig. 1). Generally, abnormal CGI hypermethylation is an
epigenetic characteristic of tumors, of which hypermethy-
lated TSGs are the most common feature [1, 13].
A great deal of research has been performed to explore

the mechanism of aberrant TSG methylation in tumor
tissue. As expected, DNMTs have been included in the
aforementioned studies. In leukemia, deletions or muta-
tions in DNMTs often disrupt the distribution of 5-mC
in the genome [52]. Butcher et al. have shown that in
some sporadic breast tumors, hypermethylation of the
BRCA1 promoter is partially due to DNMT3B overexpres-
sion [26]. Using a conditional Dnmt3a knockout mouse
model, researchers have observed a general decrease in
hypomethylation in the transcription factor-binding
sites of cross-regions (Canyons) [53]. Additionally, canyon-
associated genes, including HOX genes, are markedly
enriched in DNMT3A mutant AMLs [53].
Tumor-associated DNA methylation generally occurs

in the promoter regions of TSGs [13]. However, owing
to rapid advancements in methylation sequencing, data
increasingly indicate that a large number of non-TSGs
are methylated at the early stage of tumor initiation,
and methylation changes within the gene body have a

substantial effect on the process of transcription. The
TCGA network has reported the integrated methylation
profiles of AML samples with mutations in DNMT3A, as
determined with Human Methylation 450 Bead Chip
arrays [54]. This complete epigenomic landscape reveals a
large amount of hypermethylated cytosine bases in the
gene body and intergenic regions. Similarly, in a Dnmt3a
mutant-transduced mouse model, hypermethylation is
greater in the intergenic regions, and a cluster of sup-
pressed genes related to lymphocyte development, such as
Notch1 and Gata3, are hypermethylated in the gene body
regions [37]. Furthermore, Yang et al. have suggested that
DNMT3B-dependent gene body methylation enhances
transcription and may be a potential therapeutic target in
cancer [55].

Interaction with histone modifications
The entire epigenetic profile of the genome shows that
active chromatin regions are generally characterized by
acetylated histones and unmethylated DNA, whereas
methylated histones associated with repressed chromatin
and methylated DNA are enriched in suppressed regions
[50]. Thus, the two chromatin markers interact in a
highly orchestrated manner and are closely linked: DNA
methylation helps guide histone modification, and
histone modification directs DNA methylation (Fig. 1).
For example, DNMT1 is required for the maintenance
of H3K9 methylation in human cancer cells [56], and
DNMT3A PWWP interacts with H3K36me3 and conse-
quently enhances DNMT3A activity [57]. These effects
can be regarded as the outcome of cooperation between
histone methyltransferase (HMT) and DNMTs. Indeed,
DNMTs form complexes with HMTs and consequently
regulate transcription. Both the H3K36 methyltransferase

Fig. 1 Epigenetic alterations involving DNMTs in tumorigenesis. Numerous clinical and experimental data suggest that tumor cells generally
exhibit genome-wide hypomethylation and localized hypermethylation, in contrast with normal cells. Interactions between DNMTs and histone
methyltransferases, such as EZH2 and SETD2, play critical roles in epigenetic disruption during malignancy. Thus, the identification of epigenetic
alterations involving DNMTs in tumorigenesis may contribute to improved cancer diagnosis and effective treatments
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SETD2 and the PWWP domain of DNMT3B are required
for the de novo methylation of transcribed genes [58].
Likewise, the ADD domain of DNMT3A recognizes un-
modified H3, which is repressed by H3K4 methylation
[59]. In undifferentiated human embryonic carcinoma
cells, promoter-related DNMTs overlap with different his-
tone modifications [60]. Two groups have demonstrated
that DNMT1 improves genomic methylation through en-
hanced histone modification by EZH2. EZH2 polycomb
group protein mediates H3K27 methylation and recruits
and directly controls DNA methylation [61, 62]. Thus, the
above-mentioned investigations confirm that abnormal
DNA methylation in tumor cells is closely related to
histone modification. The relationship between DNA
methylation and histone modification should provide
more comprehensive insights into epigenetic regulation
in tumorigenesis.

DNMT3A alterations lead to epigenetic
reprogramming in leukemia
In recent years, mutated genes encoding a group of
epigenetic modification regulators have attracted
attention because of their high frequency of variation in
hematological diseases [63]. Epigenetic disruption due to
genetic alterations is the root cause of malignant trans-
formation, particularly in hematologic malignancies [64].
Most notably, through a variety of high-throughput
techniques, somatic mutations involving the DNMT3A
gene have been identified in AML at a mutation rate
of ~20%, and the prognosis for mutant patients is
relatively poor [65]. Currently, DNMT3A abnormalities
are the most common subject in the field of epigenetic
medical research, because of its significance in tumor
pathogenesis and the potential for target medication.
Herein, the organization characteristic of DNMT3A
and critical implications of DNMT3A alterations in
hematological cancers are highlighted.

DNMT3A structure and function
As a member of the DNMT family, DNMT3A possesses
the characteristic peptide structure: its catalytic domain
directly binds to S-adenosyl-L-methionine (SAM) and
DNA strands, and the N-terminus regulation domain is
primarily involved in nuclear localization and protein inter-
actions, in which the PWWP domain interacts with methyl
lysine histones, and the PHD domain recognizes unmethy-
lated histones. These functions serve as a signal of the
histone transfer effect, thus ensuring diverse epigenetic
modification [5]. Specifically, DNMT3A forms a
butterfly-shaped tetramer (DNMT3L-DNMT3A-DNM
T3A-DNMT3L) in the C-terminus with DNMT3L,
thus changing the conformation of DNMT3A and
facilitating its catalytic activity. The N-terminus of
DNMT3A also operates as a transcriptional repressor.

The regulatory domain recruits nucleoproteins into
the complex and performs histone modifications,
chromatin remodeling and gene transcription. A range
of partners is known to interact with DNMT3A,
including histone methyltransferases, histone deacety-
lases, and various transcription factors, even enzymes
in the DNMT family [50]. DNMTs are bound to each
other, and de novo methyltransferase said in coordin-
ation during methylation maintenance [66]. Studies
have shown that H3K9 methyltransferases, such as
SUV39H1 and SETDB1, can directly bind to the PHD
domain of DNMT3A and improve each other’s cata-
lytic activity, thus indicating that different epigenetic
modifications can enhance chromatin inhibition by
cooperating together [67].

DNMT3A mutation in leukemia
Clinically, in patients with DNMT3A mutations, the
number of leukocytes present at diagnosis is relatively
higher, and survival is comparatively shorter [15, 16].
To date, numerous functional experiments have provided
a better understanding of the effects of DNMT3A muta-
tion on leukemia pathogenesis (Fig. 2). For instance,
DNMT3A mutation is an early event in the initiation of
hematopoietic disorders and is one of several causative
factors for the establishment of founder clones and the
transformation of hematopoietic stem cells (HSCs) to
pre-leukemic stem cells (Pre-LSCs) [68]. In addition,
DNMT3A mutants harbor dominant-negative effects,
such as those exhibited by DNMT3A R882H (R878H
in mouse) mutated protein against wild-type
DNMT3A [69, 70]. DNMT3A mutations also disrupt
hematopoiesis. Researchers have used a bone marrow
transplantation mouse model to determine that the
function of Dnmt3a mutants in blood cell production
is aberrant [37]. Additional studies have shown that
mutated DNMT3A disrupts normal hematopoiesis
and promotes the transformation to malignant cells,
in combination with other epigenetic regulators [71].
In Dnmt3a-mutated models, a double-hit is essential
for clonal expansion. In vivo experiments suggest that
the mutation or deletion of Dnmt3a induces the de-
velopment of leukemia by cooperating with oncogenic
factors, such as RAS mutation, c-Kit variation, or
FLT3-ITD abnormalities [39–43, 72]. DNMT3A muta-
tions may also play an important role in tumor me-
tastasis. For example, DNMT3A mutant leukemia
cells may undergo leukemic extramedullary infiltration in
NOD/SCID mice, a result partially linked to high ex-
pression levels of TWIST1, an epithelial-mesenchymal
transition (EMT) inducer [73]. In summary, DNMT3A
mutation exerts a great influence in hematological
malignancy. A variety of small molecule compounds
targeting relevant epigenetic disruptions have been
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developed and applied in the treatment of leukemia,
which also provide a comprehensive innovation for
the study of pathogenesis and targeted therapy of
solid tumors.

Conclusions
Owing to advances in sequencing technologies, numerous
gene alterations associated with epigenetics have been
identified in cancer genomes. Furthermore, whole-
epigenome approaches, including array-based methylation
profiling and bisulfite sequencing, afford a comprehensive
view of the tumor methylome, and potential mecha-
nisms of epigenetic disruption caused by DNMT
changes have been explored. However, the effects of
DNMT aberrations in the promotion of tumorigenesis
are not entirely clear, and novel strategies for relevant
targeted therapies must be developed. Future work
should focus on the elucidation of tumorigenic mech-
anisms induced by defective DNMTs and the produc-
tion of effective therapeutic approaches.
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Fig. 2 DNMT3A alterations lead to epigenetic reprogramming in leukemia. Leukemia is a heterogeneous disease caused by cumulative multi-step
disruption. In the initial stage of leukemogenesis, accumulated DNA lesions, emergent stimuli, and metabolic stress are observed in hematopoietic
stem cells (HSCs). These conditions lead to gene alterations and link epigenetic reprogramming to leukemia development. Currently, DNMT3A
gene lesions are considered to be critical epigenetic alterations in the occurrence of leukemia. In patient specimens and mouse models, the
mutation or deletion of DNMT3A causes the apparent reversal of normal HSCs into pre-leukemia stem cells (Pre-LSCs). Frequently, Pre-LSCs are
quiescent and stable in the early phases of leukemia. The accumulation of other transformative changes, such as a series of mutations (RASmut,
NPM1mut, c-Kitmut) or oncogenic alterations (FLT3ITD) causes Pre-LSCs to undergo malignant transformation into leukemia stem cells (LSCs), which
finally enter the clonal expansion stage. Furthermore, during the aggressive progression of leukemia in a xenograft mouse model of OCI-AML3
with mutated DNMT3A, DNMT3A mutation promotes leukemic extramedullary infiltration by up-regulating the expression of the EMT inducer
TWIST1. HSCs: hematopoietic stem cells; Pre-LSCs: pre-leukemia stem cells; LSCs: leukemia stem cells; mut: mutation; del: deletion; ITD: internal
tandem duplication; OE: overexpression; EMT: epithelial-mesenchymal transition
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