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    Chapter 22   
 Osteogenetic Effect of Low-Magnitude 
High- Frequency Loading and Parathyroid 
Hormone on Implant Interface in Osteoporosis                     

     Aya     Shibamoto    ,     Toru     Ogawa     ,     Masayoshi     Yokoyama    ,     Joke     Duyck    , 
    Katleen     Vandamme    ,     Ignace     Naert    , and     Keiichi     Sasaki   

    Abstract     Osteoporosis could potentially complicate oral implant treatment 
because of disease-specifi c characteristics such as the abnormal bone condition, 
poor healing ability caused by bisphosphonates (BPs), and bisphosphonate-related 
osteonecrosis of the jaw (BRONJ). These problems must be resolved to ensure that 
oral implant treatment is successful in osteoporotic patients. 

 As a novel therapeutic option for increasing the success rate of oral implantation 
in patients with osteoporosis, we focused on parathyroid hormone (PTH) and low- 
magnitude high-frequency (LMHF) loading. Compared to BPs, which inhibit osteo-
clastic bone resorption and suppress bone turnover, PTH stimulates osteoblastic 
bone formation and promotes bone turnover. Intermittent PTH administration is a 
new class of anabolic therapy for the treatment of severe osteoporosis. LMHF load-
ing, which elicits a positive effect on skeleton, has been proposed as a nonpharma-
cological and adjunctive intervention in the treatment of osteoporosis. Previous 
investigation reported that both intermittent PTH administration and LMHF loading 
have an independent osteogenic effect on peri-implant bone healing and implant 
osseointegration. In addition, our recent study reveals their combined therapy acts 
locally and synergistically on peri-implant bone healing process, strengthening 
osseointegration. 

 Therefore, this can be a new therapeutic option for oral implant treatment in 
osteoporotic patients without any problems.  
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22.1       Background 

 Oral implants are a well-accepted and predictable treatment option for the rehabilita-
tion of partially and completely edentulous patients. The osseointegrated implants’ suc-
cess depends on the mechanical support of the host bone in achieving primary stability 
and the biological process of bone adaptation and regeneration in achieving secondary 
stability [ 1 ]. Nevertheless, the extended life expectancy in today’s society has expanded 
the indications for oral implantation in elderly patients with systemic diseases. 

 Osteoporosis is a metabolic bone disorder characterized by low bone mass and 
microarchitectural deterioration of the bone, leading to enhanced bone fragility and 
a consequent increase in fracture risk [ 2 ]. Regardless of the disease characteristics, 
osteoporosis is not considered an absolute contraindication for oral implant treat-
ment [ 3 ,  4 ]. However, some studies have reported implant failure because of a lack 
of primary stability and diffi culty in achieving osseointegration in patients with 
osteoporosis [ 5 ,  6 ]. In addition, bisphosphonates (BPs), which are antiresorptive 
agents and are widely used as the fi rst-choice therapy for osteoporosis, could be a 
risk factor for implant failure. Kasai et al. [ 7 ] compared the success rate of oral 
implants placed in female patients taking oral BPs with a control group not taking 
BPs. The BP group had an 86 % success rate, while the control group had a 95 % 
success rate. BPs also are known to induce BP-related osteonecrosis of the jaw 
(BRONJ), a serious side effect in patients undergoing invasive oral surgery [ 8 ]. There 
are no universally accepted prevention or treatment protocols for BRONJ [ 9 ,  10 ]. 

 Therefore, to treat osteoporotic patients with oral implants successfully, it is nec-
essary to overcome problems associated with the characteristics of osteoporosis, 
BPs, and BRONJ. As a novel therapeutic option for increasing the success rate of 
oral implantation in patients with osteoporosis, we focused on teriparatide [hPTH(1-
 34)] and low-magnitude high-frequency (LMHF) loading. The aim of this review 
was to evaluate the single and combined effects of LMHF loading and PTH treat-
ment on peri-implant bone healing and implant osseointegration in osteoporosis.  

22.2     Teriparatide [hPTH(1-34)] 

22.2.1     PTH as a Therapy for Osteoporosis 

 Teriparatide [hPTH(1-34)] is an analog of human parathyroid hormone (PTH) con-
taining the amino acid sequence 1–34. It is a new class of anabolic agents acting on 
the skeleton and should be considered as an alternative to existing antiresorptive 
agents for the treatment of severe osteoporosis and intractable fractures [ 11 ]. Indeed, 
intermittent systemic administration of hPTH(1-34) reduces the risk of fractures 
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[ 12 ,  13 ] by improving bone microarchitecture and enhancing overall bone mass [ 14 , 
 15 ]. Black et al. [ 16 ] reported that hPTH(1-34) exceeded BPs in increasing bone 
mineral density. In contrast with BPs, which inhibit osteoclastic bone resorption and 
decrease the bone remodeling rate, PTH stimulates osteoblastic bone formation 
through an increase in the bone remodeling rate [ 17 ]. However, the clinical prob-
lems of PTH are as follows: PTH is signifi cantly more expensive than antiresorptive 
agents [ 11 ], PTH is administered by subcutaneous injection [ 11 ], and the duration 
of administration is limited to <2 years based on the induction of osteosarcoma in a 
rat model of carcinogenicity [ 18 ,  19 ].  

22.2.2     Effect of Intermittent PTH Administration 
on Peri- implant Bone  

 Recent studies have also reported that intermittent hPTH(1-34) administration pro-
motes peri-implant bone healing in animal and clinical models [ 20 – 22 ]. Our present 
study also confi rmed that intermittent hPTH(1-34) administration has a potent 
osteogenic capability in stimulating implant osseointegration in ovariectomized 
(OVX) rats as described in Sect.   30.4    . Although there are clinical problems associ-
ated with PTH, replacement of BPs with PTH is expected to improve bone density 
and quality in surgical sites, promote peri-implant bone formation, and prevent the 
development of BRONJ.   

22.3     Low-Magnitude High-Frequency (LMHF) Loading 

22.3.1     Effect of LMHF Loading on Skeletal Tissue 

 LMHF loading, which is generally defi ned as an LM of <1  g  (1  g  = 9.98 m/s 2 ) and 
HF of 20–90 Hz, elicits a positive effect on the skeleton (Fig.  22.1 ) [ 23 ,  24 ]. 
Numerous studies have evidenced that LMHF loading, applied by means of whole- 
body vibration (WBV), stimulates bone formation and fracture healing [ 25 – 28 ]. 
WBV loading has already been used clinically as a nonpharmacological interven-
tion in the treatment of osteoporosis [ 29 – 34 ].

22.3.2        Effect of LMHF Loading on Peri-implant Bone 

 Regarding titanium implant osseointegration, which has similarities with bone frac-
ture healing, the coauthors’ previous studies showed that LMHF loading has an 
osteogenetic effect on peri-implant bone [ 35 – 37 ]. In particular, Ogawa et al. [ 35 , 
 38 ] confi rmed that the specifi c parameters of a loading regimen, such as the 
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duration, session distribution, frequency, and amplitude of loading, play an impor-
tant role in the impact of LMHF loading on the bone (Fig.  22.2 ). Additionally, the 
application of LMHF loading reportedly enhances bone-implant osseointegration in 
OVX rats [ 39 – 41 ], which was observed in our present study as described in Sect. 
  30.4    .

  Fig. 22.1    Osteogenetic 
effect of LMHF loading. 
Montages of 
photomicrographs of the 
proximal sheep femur used 
for static 
histomorphometric 
evaluation after 1 year of 
exposure (20 min per day) 
to a 0.3  g , 30-Hz 
mechanical stimulus. There 
was 32 % more trabecular 
bone in the proximal femur 
of experimental animals 
( a ) compared with 
age-matched controls ( b ) 
( P  < 0.04) [ 23 ]       
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22.4         Effect of LMHF Loading and Intermittent PTH 
on Peri-implant Bone 

 Both LMHF loading and intermittent hPTH(1-34) administration have an indepen-
dent osteogenic effect on peri-implant bone healing and implant osseointegration. 
However, there are no reports on the impact of their combined therapy on peri- 
implant bone. It seems likely that combined therapy would act synergistically on the 
bone healing process and strengthen bone-implant osseointegration. Additionally, 
the potential synergistic effect may shorten the healing period, thereby relieving the 
clinical problems associated with PTH. 

 Our recent study compared the osteogenic impact of LMHF loading and inter-
mittent hPTH(1-34) administration on peri-implant bone healing and implant osseo-
integration in an osteoporosis model and evaluated their combined effect on these 
processes. Thirteen-week-old ovariectomized rats ( n  = 88) were divided into three 
groups: each group of rats received PTH (40 μg/kg, 5 days/week), alendronate 
(15 μg/kg, 2 days/week), and saline (volume-matched vehicle control), respectively. 
After 3 weeks, a titanium implant was inserted in both tibiae. Again, each group was 
subdivided into two groups: with or without LMHF loading via whole-body 
 vibration (WBV, 50 Hz at 0.5  g , 15 min/day, 5 days/week). The rats were sacrifi ced 
1 or 4 weeks after implant installation. Peri-implant bone healing and implant 
osseointegration were assessed using removal torque tests (RT value) and micro-CT 
analyses (relative gray (RG) value, water = 0 and implant = 100). The data were 
analyzed by three-factor ANOVA (loading, drug, healing period) followed with a 
Tukey-HSD test ( α  = 0.05). RT value was signifi cantly infl uenced by all three factors 

  Fig. 22.2    Effect of LMHF 
loading on peri-implant 
bone healing and implant 
osseointegration. 
Representative images of 
the test (loaded) and 
control (unloaded) group 
from the 1-week healing 
period ( a ) and the 4-week 
healing period ( b ).  Scale 
bars : 1 mm. After 4 weeks 
of healing, the bone 
neoformation and cortical 
bone width were much 
greater in the test group 
than in the control [ 35 ]       
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( P  < 0.01). In particular for PTH-WBV group, these values were highest in all 
groups after 4 weeks of healing. In the cortical bone, RG value was signifi cantly 
infl uenced by the loading ( P  < 0.01). In the trabecular bone, on the other hand, RG 
value was signifi cantly infl uenced by the drug ( P  < 0.01). The RG values of the 
PTH-treated groups were signifi cantly higher than those of other drug-treated 
groups ( P  < 0.01). The results reveal that LMHF loading and PTH act locally and 
synergistically on bone healing process, thereby strengthening implant osseointe-
gration. Interestingly, a previous study reported that the combination of ALN and 
LMHF loading did not lead to a synergistic reaction infl uencing the bone healing 
response [ 41 ]. Similar to the present study, no obvious positive effect was found in 
the ALN and ALN+WBV groups. This might be because ALN inhibits osteoclastic 
bone activity, which is required in the process of bone adaptation and therefore of 
implant osseointegration. The results also indicate that PTH combined with LMHF 
loading has a bone- stimulating effect superior to that of ALN and LMHF loading.  

22.5     Conclusion 

 There were four main fi ndings in this review. In osteoporosis model:

•    LMHF loading has an osteogenetic effect on the peri-implant bone.  
•   Intermittent hPTH(1-34) administration has a potent osteogenic capability in 

stimulating implant osseointegration.  
•   Two treatment modalities act locally on the bone healing process. The cortical 

bone was infl uenced by LMHF loading. The trabecular bone was infl uenced by 
PTH.  

•   The combined application of LMHF loading and PTH synergistically stimulates 
implant osseointegration. Additionally, PTH combined with LMHF loading has 
a bone-stimulating effect superior to that of ALN and LMHF loading.    

 Therefore, this can be a new therapeutic option for oral implant treatment in 
osteoporotic patients without problems such as failure of osseointegration, delayed 
healing, or BRONJ.     

  Confl icts of Interest   The authors report no confl icts of interest.  
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