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1 Introduction

Measurements of the ground state properties of the most basic element of the constituents

of stable matter, namely, the proton, have intrigued physicists since the sixties until now.

The structure of the proton in fact plays an important role in atomic physics where ex-

periments have reached very high precision. Finite size effects (FSE) due to the proton

structure can be theoretically included using different methods, with one of them being the

Breit equation [1–9] which is a typical example of how one derives coordinate potentials

from Quantum Field Theory [10–15]. Using such a method where one evaluates the elastic

electron-proton amplitude expanded in powers of 1/c2, corrections to the energy levels of

the hydrogen atom due to the finite size of the proton have been evaluated [16, 17]. The FSE

are included through the elastic electromagnetic form factors obtained from electron proton

scattering cross sections [18, 19]. The electromagnetic form factors as such are an essential

part of the description of the properties of the nucleon as they incorporate the probability

for a nucleon to absorb a virtual photon of four momentum squared q2
(

= (q0)2−(q)2
)

and

probe its interior. In the non-relativistic limit, the Fourier transforms of the form factors

in the Breit frame (defined by q0 = 0) describe the charge distribution ρC(r) and magne-

tization current distribution ρM (r) in the nucleon respectively [20–23]. An experimental

determination of the form factors (and hence the proton charge density distribution) from

electron proton scattering can thus enable one to determine the charge radius of the pro-

ton. On the other hand, the unprecedented precision of the experimental results in the

hydrogen atom also allows one to probe the static properties of one of the components of

the hydrogen atom, namely, the proton. The size of the proton for example, can be ex-

tracted from precise measurements of the difference in the energy levels or Lamb shifts in

the hydrogen atom. Such an extraction performed on the muonic hydrogen atom led to the
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surprising finding that the extracted value of rp = 0.84184(67) fm was much smaller than

the world average CODATA value of 0.8768(69) fm [24, 25]. This so-called “proton puzzle”

was later reinforced [26, 27] with the precise value of rp = 0.84087(39) fm obtained from

muonic hydrogen spectroscopy. Apart from some determinations from standard hydrogen

atom spectroscopy, the CODATA value largely depends on the extraction of the radius

from electron proton scattering experiments. The shrunk proton gave rise to explanations

ranging from the charge density being poorly constrained by data [28] to those involving

large extra dimensions and non-identical protons [29].

In an attempt to resolve the discrepancy between the proton radius from muonic hy-

drogen spectroscopy and electron proton scattering data, we re-examine the connection

of the electromagnetic form factors to the nucleon properties. We present a new ap-

proach to relate the form factors in momentum space to their coordinate space counter

parts (the charge and magnetization densities) through a Fourier transform of the type

ρC(r) = e
∫
eiq·r ρC(q2) d3q/(2π)3. The standard non-relativistic expression is obtained

when ρC(q2) = GE(q2), where GE(q2) is the well known Sachs form factor [30]. The rel-

ativistic corrections for ρC(r) are incorporated by evaluating ρC(q2) in the form ρC(q2) =

GE(q2)
[
1+terms 1

c2
+terms 1

c4
+. . .

]
using the higher order Breit equation which we derive in

this work. Since such a relation is still valid only in the Breit frame (i.e. q0 = 0), a Lorentz

boost must be applied to ρC(q2) before extracting the mean radius from r2p =
∫
ρC(r)r2dr.

We find that the inclusion of the two effects (Lorentz boost and use of the higher order

Breit equation) brings the radius extracted from electron proton scattering quite close to

that determined from the muonic hydrogen Lamb shift [26, 27], thus partly resolving the

proton radius puzzle.

2 Theoretical approach

The relativistic corrections to the non-relativistic ρC(r) are obtained by extending the

standard Breit equation [16, 17] (which involves an expansion of the amplitude to order

1/c2) [5–7, 31, 32] to higher orders. The proton electric potential Vp(r) in this equation is

used to find the density ρC(r) via the Poisson equation, ∇2Vp = −4πρC . The hyperfine

interaction terms in the Breit equation are shown to be related to the magnetization density

ρM (r). In what follows, we shall see that an interesting outcome of the calculation is that

the charge form factor ρC(q2) appearing in the Fourier transform, depends on the magnetic

form factor GM (q2) and ρM (q2) appearing in the Fourier transform of the magnetization

density, ρM (r), depends on GE(q2).

2.1 Potentials and densities

In order to make the approach clear let us begin with the standard Breit equation for the

Hamiltonian HB [16] which results from the 1/c2 expansion of the elastic electron proton

transition matrix element Mfi. This amplitude can be written as, Mfi=w†S′
e
w†S′

p
ĤB(pe,pp;

σe,σp; q)wSe wSp , where wSe,Sp are two component spinors. In the diagonal case, S′e = Se,

S′p = Sp and we write Mfi = Mfi(pe,pp; ξe, ξp; q), where we used w†SσwS = Tr[ρσ] = ξ

– 2 –
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with ρ being the spin density matrix. Let us now rearrange terms from the Breit Hamil-

tonian HB such that, HB = eVp(q) + µe · B(q) + . . ., where, µe = −(e/2me)σe. Vp(q) is

the potential part remaining after separating all the σi operator dependent and differential

operator pi dependent terms. Here i is either e or p. In addition, we choose Vp(q) not to

contain the electron mass as the electric proton potential should not depend on the probe.

These restrictions allow Vp(q) to be interpreted as a proton electric potential in momen-

tum space. For the standard Breit equation at lowest order in 1/c2, with form factors, this

indeed leads to [17],

Vp(q) = 4πe

[
F1

(
1

q2

)
− F2

(
1

4m2
pc

2

)]
= 4πe

[
GE(q2)

q2

]
, (2.1)

where e is the positive charge of the proton. The Fourier transform of Vp(q) is then the elec-

tric potential Vp(r) = 4πe
∫
eiq·r

(
GE(q2)/q2

)
d3q/(2π)3. The Laplacian of Vp(r), namely,

∇2Vp(r) = −4πe
∫
eiq·rGE(q2) d3q/(2π)3 taken together with ∇2Vp(r) = −4πρC(r) then

brings us to the standard definition of the proton charge density ρC(r) = e
∫
eiq·rGE(q2)

d3q/(2π)3. Applying similar restrictions to the magnetic field in the second term in HB,

i.e., the magnetic field of the proton B(q) should not contain any electron mass or op-

erator pi dependence, the terms which remain (apart from the Coulomb term) are those

corresponding to the hyperfine interaction. The hyperfine interaction potential with form

factors [33] is given as,

V (q)hfs = α

[
(σe · σp)
4mempc2

− (σe · q) · (σp · q)

4mempc2q2

]
GM (q2)

= µe ·B(q) , (2.2)

with µe = −(e/2me)σe as defined earlier. The magnetic field of the proton is thus,

B(q) = e

[
q(σp · q)− σpq2

2mpc2q2

]
GM (q2) . (2.3)

Taking the Fourier transform of B(q) and using the static Maxwell equation ∇×B(r) =

4πj(r), we can identify

j(r) =
e

4π

∫
d3q

(2π)3
eiq·r

GM (q2) (iq × σ)

2mpc2
, (2.4)

thus implying j(r) ∝ ∇ ×M with M = ρM (r)σp which defines the proton magnetization

distribution ρM (r) =
∫
eiq·rGM (q2) d3q/(2π)3. In the diagonal case, by the replacement of

σ by the polarization vector ξ, we can conclude that polarized protons will have a magnetic

field of the form, B(r) ∝ (ξ ·∇)∇ρ̃M − ξρM , where, ρ̃M =
∫
eiq·r

(
GM (q2)/q2

)
d3q/(2π)3.

All the conclusions drawn above and derived at the lowest order in the relativistic expansion

are, of course, valid if we include relativistic corrections.

2.2 Higher order Breit equation

The procedure to obtain the Breit potential at higher orders using the electron proton

scattering amplitude is exactly the same as that described in [16, 17] except that the
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proton and electron wave functions which were written in [16, 17] using the non-relativistic

approximation with corrections up to order 1/c2 are now replaced by those containing

relativistic corrections up to order 1/c6. This is done by using the Foldy Wouthuysen

transformation [34, 35], ΨFW = UΨD, where

U =

√
(E +mc2)

2E

(
1 +

βα · pc
E +mc2

)
, (2.5)

HDΨD = EΨD, E =
√

p2c2 +m2c4, HFWΨFW = βEΨFW and α, β the usual Dirac

matrices. It then follows that [36, 37] ΨFW = [E(1 + β)/
√

2E(E +mc2)]ΨD, where, ΨFW

contains both the positive and negative energy solutions. The upper and lower components

Ψ+
FW and Ψ−FW of ΨFW can be shown to be related to the Dirac upper and lower components

φD and χD respectively as [36, 37]

Ψ+
FW =

√
2E

E +mc2

(
φD
0

)
, Ψ−FW =

√
2E

E +mc2

(
0

χD

)
. (2.6)

The relativistic energy E of the particle includes also its rest energy mc2 which must be

excluded in arriving at a non-relativistic approximation. We must therefore replace Ψ (FW

or D) by Ψ′ defined as Ψ = Ψ′ e−imc
2t/~. This leads to a relation between the upper and

lower components φ and χ of Ψ′ [31, 32] which is given by,

χ =
1

2mc

[
1 +

ES
2mc2

]−1
σ · pφ , (2.7)

where ES is the energy eigenvalue in the Schrödinger equation. Identifying the up-

per component Ψ′+FW of ΨFW with the non-relativistic Schrödinger spinor w, we get,

w
√

(E +mc2)/2E = φ. Finally, expanding E = (p2c2 + m2c4)1/2 and replacing for φ

in terms of w in χ, we obtain the spinor to be used in the calculation of the amplitude

Mfi = e2(ū′eΓ
µ
eue)Dµν(q2) (ū′pΓ

ν
pup) as

ui =
√

2mi


(

1− p2i
8m2

i c
2 +

λ1p4i
m4

i c
4 +

λ3p6i
m6

i c
6

)
wi(

1− λ2p2i
m2

i c
2 +

λ4p4i
m4

i c
4

)
σi·pi

2mic
wi

 , (2.8)

with i = e, p and λ1 = 11/128, λ2 = 3/8, λ3 = −69/1024 and λ4 = 31/128. The above

spinor should be contrasted with

ui =
√

2mi

((
1− p2i

8m2
i c

2

)
wi

σi·pi

2mic
wi

)
, (2.9)

used to obtain the standard Breit equation [31, 32]. Using eq. (2.8) and the vertices

Γνp = F p1 γ
µ + σµν(qν/2mpc)F

p
2 and Γµe = γµ, the amplitude Mfi and hence the Breit

equation with form factors is evaluated just as in [16, 17]. Note that the energy transfer at

the vertices is chosen to be zero, i.e., q2 = ω2/c2−q2 is replaced by q2 = −q2. Formally, this

is achieved by going to the Breit frame. This is in keeping with the quasistatic approach

– 4 –
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wherein we are going to relate the proton potential obtained from the Breit equation to the

charge density via the Poisson equation. The higher order Breit equation with form factors

thus obtained is very lengthy and will be given elsewhere. The present work deals with

the parts relevant for obtaining the relativistic corrections to the charge and magnetization

densities.

The proton electric potential Ṽp(q) with relativistic corrections is obtained from the

higher order Breit equation in the same manner as explained before for the standard Breit

equation. Dropping all terms involving the spin and momentum operators as well as those

containing the electron mass, what remains in the higher order Breit equation is

Ṽp(q) = 4πe
GE(q2)

q2

{
1− q2

8m2
pc

2
+

3

128

q4

m4
pc

4
− 13

1024

q6

m6
pc

6
(2.10)

+
GM (q2)

GE(q2)

q4

16m4
pc

4

[
1− 7

8

q2

m2
pc

2
+

87

128

q4

m4
pc

4

]}
.

The above equation can be rewritten as Ṽp(q) = 4πeρC(q2)/q2, such that the

proton electric potential, Ṽp(r) = 4πe
∫
eiq·r

(
ρC(q2)/q2

)
d3q/(2π)3 and ∇2Ṽp(r) =

−4πe
∫
eiq·r ρC(q2) d3q/(2π)3 = −4πρC(r). The magnetic form factor ρM (q2) including

corrections is obtained by examining the hyperfine interaction terms as mentioned before,

however, in the higher order Breit equation. Noting that the terms of order 1/c6 and higher

are of decreasing importance and due to the alternating sign in (2.10), the first four terms

in the curly bracket in (2.10) can be approximated as [1+(q2/4m2
pc

2)]−1/2. The expressions

for ρC,M (q2) can thus be summarized in an expansion effectively as,

ρC(q2) ' GE(q2)

(
1 +

q2

4m2
pc

2

)−1/2
+
GM (q2)q4

16m4
pc

4

(
1 +

aq2

4m2
pc

2

)−b
(2.11)

ρM (q2) ' GM (q2)

(
1 +

q2

4m2
pc

2

)−1/2
− GE(q2)q2

4m2
pc

2

(
1 +

aq2

4m2
pc

2

)−b
,

with a = 19/7 and b = 49/38. It is interesting that ρC(q2) and ρM (q2) depend on both the

GE and GM Sachs form factors and have relativistic corrections of a similar form with the

same exponents a and b. Note also that the exponent −1/2 in the first terms is approximate

(in contrast to the exact [1+(q2/4m2
pc

2)]−1/2 in [38–41]). At order 1/c2, the expression for

ρC(q2) ' GE(q2)(1−q 2/8m2
pc

2) is independent of GM as in [38–42], however, the magnetic

form factor at order 1/c2 reduces to ρM (q2) ' GM (q2)(1− q2/8m2
pc

2)−GE(q 2)q2/4m2
pc

2

and contains apart from the Darwin term q2/8m2
p, a term dependent on GE .

2.3 Lorentz boost

Since we chose the energy transfer in the evaluation of the electron - proton scattering

amplitude, ω = 0, the above form factors are similar to those usually given in the so-called

Breit frame. An additional important relativistic correction arises due to the Lorentz

contraction of the spatial distributions in the Breit frame [43–45]. The latter has been

discussed at length in the first reference of [43–45] where the author proposes the use of

the Fourier transform of GLE,M (q2) = GE,M (q2)[1+(q2/4m2
p)]

λE,M , rather than the Fourier

– 5 –
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transform of GE,M (q2) in order to determine the density distributions of the nucleon.

With λE,M being model dependent constants, they eventually appear as parameters in the

determination of the proton radius and other moments. The author in the first reference

in [43–45] fitted the form factor data to obtain λE = λM = 2 in agreement with some [46]

while in contrast with other predictions [47–49] of λE = 0 and λE = λM = 1 based on

soliton and cluster models.

3 Corrected radii and fourth moments

The standard way of defining the nth moment of the charge and magnetization distribution

in literature [50] follows from a consideration of the Fourier transforms of the Sachs form

factors in the Breit frame. It makes sense to dwell a little bit on the basics of the definition

of the second moment, i.e.,

〈r2〉 =

∫
r2 ρ(r) d3r . (3.1)

Starting with the Fourier transform of G(q2), namely, G(q2) =
∫
e−i~q·~rρ(r)d3r/(2π)3 we

can readily show that

G(q2) =
1

2π2

∫ ∞
0

r2ρ(r)
sin(|q|r)
|q|r

dr

=
1

2π2
1

|q|

∫ ∞
0

rρ(r)

[
|q|r − |q|

3r3

6
+ . . .

]
=

1

2π2

[ ∫ ∞
0

r2ρ(r)dr − q
2

6

∫ ∞
0

r4 ρ(r)dr + . . .

]
(3.2)

leads to the standard result

− 6

G(0)

dG(q2)

dq2

∣∣∣∣
q2=0

=

∫
r4 ρ(r)dr = 〈r2〉 . (3.3)

Eq. (3.2) is equivalent to writing

G(q2)/G(0) = 1− 1

6
〈r2〉q2 +

1

120
〈r4〉 q4 − . . . , (3.4)

where 〈rn〉 is the nth moment of the electric or magnetic distribution. Neither (3.1) nor (3.2)

are relativistic invariants. The form factor G which depends on the four momentum transfer

is an invariant and sometimes one finds in the literature the expansion

G(q2) = 1 + aq2 + . . . , (3.5)

with q2 = qµq
µ being the four-momentum transfer. This is then followed by an expression of

the first moment proportional to dG(q2)/dq2 taken at q2 = 0. This in turn might lead to the

confusing conclusion that the proton radius is a Lorentz invariant. To resolve the confusion

let us first note that we would get the same result by writing G(ω = 0, q2) = 1− aq2 + . . .

and taking the derivative with respect to q2 evaluated at q2 = 0 which agrees with (3.3)

and, of course, (3.1). Therefore, we would face a paradox here: by using (3.5) and its

– 6 –
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derivative with respect to the four momentum squared q2, it seems like we have found a

Lorentz invariant quantity and this is equivalent to a Lorentz non-invariant result (up to

the minus sign which is absorbed into the definition). The resolution of the paradox lies in

the meaning of the condition, q2 = 0. With q2 = ω2−q2, it either means that ω2 = q2 6= 0

(in which case we have a real photon) or ω = |q| = 0. It is impossible to exchange a

real photon in the t-channel exchange diagram in elastic electron-proton scattering and

hence we have to drop the first possibility. The second choice is, however, equivalent to

first choosing the frame (ω = 0 implies that we have chosen the Breit frame again) and

then q2 = 0 is necessary to extract the Taylor coefficient (the radius). In short, even if

dG(q2)/dq2 is invariant, the condition q2 = 0 makes the radius defined using dG(q2)/dq2

at q2 = 0, a Lorentz non-invariant quantity (as the condition forces one to choose ω = 0).

If ρC(r) and ρM (r) (defined by ρC(r) = e
∫
eiq·r ρC(q2) d3q/(2π)3 and ρM (r) =∫

eiq·r ρM (q2) d3q/(2π)3), receive relativistic corrections as given in (2.11), so will the cor-

responding radii. Hence, the proton moments including the relativistic corrections and the

Lorentz boost are defined here as:

〈r̃2E〉L = − 6

ρLC(0)

dρLC
dq2

∣∣∣∣
q2=0

(3.6)

and

〈r̃4E〉L =
60

ρLC(0)

d2ρLC
d(q2)2

∣∣∣∣
q2=0

(3.7)

(with ρLC(q2) = ρC(q2) [1 + (q2/4m2
pc

2)]λE ). Replacing from (2.11) for ρC(q2) leads to

〈r̃2E〉L = 〈r2E〉+
3

4m2
pc

2
(1− 2λE) , (3.8)

〈r̃4E〉L = 〈r4E〉 −
5

m2
pc

2
〈r2E〉

(
λE −

1

2

)
+

15

4m4
pc

4
(λ2E − 2λE + 2µp) +

45

16m4
pc

4
.

The magnetic radius with relativistic and Lorentz boost corrections is given by,

〈r̃2M 〉L = 〈r2M 〉+
3

4m2
pc

2

[
1 +

2

µp
− 2λM

]
. (3.9)

The relativistic corrections alone (giving r̃p and r̃4 in table 1) arising from (2.11) can be

found by setting λE,M = 0.

The effect of the Lorentz boost in general is to reduce the radius and the fourth

moment of the proton charge as compared to that obtained from GE(q 2) in the Breit

frame. The relativistic corrections introduced with the use of ρC(q2) obtained from the

higher order Breit potential, in general, increase the radius of the proton. However, a

fortuitous combination of the two effects, brings the proton radius closer to the value

obtained from precise Lamb shift measurements [26, 27]. Indeed, if we apply the Lorentz

boost with λ = 1 to the central value of the radius rp = 0.879 fm deduced recently by

– 7 –
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rp r̃p r̃Lp r̃Lp
(r4) (r̃4) (r̃4)L (r̃4)L

λE = 1 λE = 2

Dipole [18, 19] 0.811 0.831 0.790 0.747

up to 1/c4 (1.083) (1.202) (1.049) (0.911)

up to 1/c2 (1.083) (1.156) (1.010) (0.864)

[52] Fit I 0.884 0.903 0.865 0.826

up to 1/c4 (1.788) (1.920) (1.740) (1.574)

up to 1/c2 (1.788) (1.875) (1.702) (1.529)

[52] Fit II 0.866 0.885 0.847 0.807

up to 1/c4 (1.623) (1.752) (1.579) (1.420)

up to 1/c2 (1.623) (1.706) (1.540) (1.374)

[53] 0.858 0.877 0.839 0.798

up to 1/c4 (1.488) (1.616) (1.446) (1.290)

up to 1/c2 (1.488) (1.570) (1.407) (1.244)

Table 1. Corrections to the proton charge radius rp = 〈r2E〉1/2 in fm. The fourth moments

r4 = 〈r4E〉 of the proton charge distribution with corrections (up to order 1/c2 and 1/c4) are given

in the brackets (in fm4). The first column gives the usual uncorrected values obtained from ep

scattering, the second column shows the increase in values due to relativistic corrections and finally

the last two columns display the effects of relativistic corrections and the Lorentz boost taken

together.

Bernauer et al. [50], we obtain rLp = 0.8404 fm which is once again close to the muonic

hydrogen spectroscopy result [26, 27]. This is demonstrated in figure 1. The reason for

applying only the Lorentz boost and not the entire relativistic corrections is the following:

Bernauer et al. include in their analysis, the “Feshbach correction” which as stated above

eq. (20) in [50] is in agreement with the Coulomb correction of Rosenfelder [38] at q2 = 0.

This correction of Rosenfelder is similar to the relativistic corrections of the present paper

upto order 1/c2 (compare eq. (7) of [38] with the first term in eq. (2.11) of the present work).

It would lead to a double counting if we would apply the relativistic correction of our work

to the radius of Bernauer et al. and hence we apply only the Lorentz boost. Though we do

not show explicitly, similar corrections would also shift the other radii in figure 1, extracted

from ep scattering, to lower values. The proton magnetic radius, rM = 0.87 fm [54], with

relativistic and Lorentz boost corrections changes to rM = 0.865 fm. We must emphasize

however that the proton is characterized fully by all its moments and not just the radius.

The corrections in eqs. (2.11) introduce a significant change in 〈r4〉 too.

Having mentioned the numerical values obtained after applying relativistic corrections

and the Lorentz boost, a word of caution is however in order here. Electron proton scat-

tering measures transition matrix elements between states of a composite system that

have different momenta and the transition densities between such states are different from

the static densities in the rest frame. As a result, there arise uncertainties in the way the

Lorentz boost is calculated (see the third reference in [43–45] for a detailed discussion). For

example, in the first calculation done by Licht and Pagnamenta [47–49], the authors had to

– 8 –
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Figure 1. Comparison of the proton radius values extracted from the muonic hydrogen Lamb

shift [26, 27], CODATA values [24, 25] and some recent analyses [28, 50] of ep scattering data. The

hydrogen spectroscopy average is from [51].

apply a sort of impulse approximation assuming that the transition from the initial to the

final cluster happens instantaneously. Further problems were noted in the second reference

in [47–49] where the authors calculated the form factors within a chiral soliton model. We

also refer the reader to a more recent calculation [55] where some of the important boost

effects associated with the use of the Breit frame were studied within a toy model using

a harmonic oscillator basis. Taking all this into account, we come to the conclusion that

even if the Lorentz boost is essential, the exact method of applying it is not well known.

Hence, instead of emphasizing the exact values, we conlcude this section by mentioning

that the relativistic corrections and the Lorentz boost taken together cause a reduction of

about 4% in the radius of the proton calculated from electron proton scattering.

In passing we mention that the proton structure corrections as such are also dependent

on the theoretical formalism used to calculate them. We refer the reader to ref. [16] for a

detailed discussion of the proton structure corrections using different formalisms.

4 Summary

The relations between charge/magnetization densities and the electromagnetic form factors

are necessarily of a non-relativistic nature. In other words, relativistic corrections can be

computed and the standard relation between the Sachs form factors (GE(q2) and GM (q2))

and the densities is valid only at the lowest order of the non-relativistic expansion. To

compute the relativistic corrections in a consistent way we employed the higher order Breit

– 9 –
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equation in which, for instance, terms independent of the probe, spin and momentum

operators should correspond to the proton electric potential in momentum space. Using

the Poisson equation, this potential gives us the relativistically modified charge density.

A similar procedure can be found for the magnetization density. Both results are valid

in the Breit frame. Hence using a Lorentz transformation suggested in the literature, we

can bring them to the rest frame of the proton and calculate the modified moments of the

proton charge and magnetization densities. An interesting outcome of the manipulations,

i.e., including relativistic corrections and the Lorentz transformation is that the proton

radius from ep scattering experiments comes closer to the result obtained from muonic

hydrogen spectroscopy.

A Coefficients in the wave function expansion

A free spin 1/2 particle is described by a four component wave function satisfying the

Dirac equation. It is however, often desirable to convert this equation to a two component

equation of the Pauli type. Methods attempting to do this however encounter difficulties if

one wishes to go beyond the lowest order in the v/c expansion. A method proposed by Foldy

and Wouthuysen [34, 35] however overcomes these difficulties. Their treatment involves

a unitary transformation which block diagonalizes the Dirac Hamiltonian and eventually

splits the Dirac equation into two uncoupled equations of the Pauli type, describing particles

in positive- and negative-energy states, respectively. Since the procedure to carry out the

Foldy-Wouthuysen transformation is given below eq. (2.5) in the main text, here we only

write the intermediate steps for obtaining the coefficients in eq. (2.8).

We start with w
√

(E +mc2)/2E = φ as given below eq. (2.7) and expanding E =

(p2c2 +m2c4)1/2, we obtain,

φ =

[
1− p2

8m2c2
+

11

128

p4

m4c4
− 69

1024

p6

m6c6
. . .

]
w . (A.1)

This is the upper component given in eq. (2.8). Replacing the above φ in eq. (2.7) namely,

χ =
1

2mc

[
1 +

ES
2mc2

]−1
σ · pφ ,

=
σ · p
2mc

(
1− ES

2mc2
+

E2
S

4m2c4
−

E3
S

8m3c6
+ . . .

)
φ ,

using the fact that ES w = Ĥ w where,

Ĥ =
p2

2m
− p4

8m3c2

and replacing accordingly for every ESw by
[ p2
2m −

p4

8m3c2

]
w, we get

χ =
σ · p
2mc

[
1− p2

4m2c2
+

p4

8m4c4
− . . .

][
1− p2

8m2c2
+

11

128

p4

m4c4
. . .

]
w

=

[
1− 3

8

p2

m2c2
+

31

128

p4

m4c4
. . .

]
σ · p
2mc

w . (A.2)

This is the lower component in eq. (2.8).
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We investigated another method [31, 32, 56] to obtain such an expansion and it was

gratifying to find the same coefficients as above. If we begin again with eq. (2.7) as the

starting point and perform an expansion for χ after noting that ES is the total energy with

rest energy subtracted, χ can be rewritten as,

χ = cσ · p
[

1

2mc2
− p2

8m3c4
+

p4

16m5c6
− . . .

]
φ . (A.3)

Now noting that the density ρ = Ψ∗Ψ = |χ|2 + |φ|2, we obtain for the density,

ρ = |φ|2 + c2
[
(p∗Aφ†) · σ

][
σ · (pAφ)

]
, (A.4)

where A is basically the operator in square brackets in (A.3). This ρ obviously differs

from the Schrödinger expression. In order to find the wave equation corresponding to the

Schrödinger equation, we must replace φ by another function φSch, for which the time

independent integral would be of the form
∫
|φSch|2d3x as it should be for the Schrödinger

equation. Hence, to obtain the required transformation, we write the condition∫
|φSch|2d3x =

∫ {
|φ|2 + c2

[
(p∗Aφ†) · σ

][
σ · (pAφ)

]}
d3x . (A.5)

Integrating the second term by parts and after some lengthy but straightforward algebra,

we find that the following expression for φ, satisfies the relation in (A.5).

φ =

[
1− p2

8m2c2
+

11

128

p4

m4c4
− 69

1024

p6

m6c6
. . .

]
φSch . (A.6)

This is however the same as eq. (A.1) for the upper component. Replacing this φ in (A.3),

obviously leads to the same lower component as in (A.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. Breit, The effect of retardation on the interaction of two electrons,

Phys. Rev. 34 (1929) 553 [INSPIRE].

[2] G. Breit, The fine structure of HE as a test of the spin interactions of two electrons,

Phys. Rev. 36 (1930) 383 [INSPIRE].

[3] G. Breit, Dirac’s equation and the spin-spin interactions of two electrons,

Phys. Rev. 39 (1932) 616.

[4] J.R. Oppenheimer, Note on the theory of the interaction of field and matter,

Phys. Rev. 35 (1930) 461 [INSPIRE].

[5] M. De Sanctis and P. Quintero, Charmonium spectrum with a generalized Fermi-Breit

equation, Eur. Phys. J. A 46 (2010) 213 [INSPIRE].

– 11 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRev.34.553
http://inspirehep.net/search?p=find+J+Phys.Rev.,34,553
http://dx.doi.org/10.1103/PhysRev.36.383
http://inspirehep.net/search?p=find+J+Phys.Rev.,36,383
http://dx.doi.org/10.1103/PhysRev.39.616
http://dx.doi.org/10.1103/PhysRev.35.461
http://inspirehep.net/search?p=find+J+Phys.Rev.,35,461
http://dx.doi.org/10.1140/epja/i2010-11032-y
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,A46,213


J
H
E
P
0
9
(
2
0
1
5
)
2
1
5

[6] M. De Sanctis, A generalization of the Fermi-Breit equation to non-Coulombic spatial

interactions, Eur. Phys. J. A 41 (2009) 169 [INSPIRE].

[7] M. De Sanctis, A relativistic wave equation with a local kinetic operator and an

energy-dependent effective interaction for the study of hadronic systems,

Centr. Eur. J. Phys. 12 (2014) 221.

[8] D.A. Kulikov and R.S. Tutik, A new two-body relativistic potential model for pionic

hydrogen, Mod. Phys. Lett. A 25 (2010) 447 [arXiv:0906.5066] [INSPIRE].

[9] D.A. Kulikov and R.S. Tutik, A new approach to the relativistic treatment of the

fermion-boson system, based on the extension of the SL(2, C) group,

Mod. Phys. Lett. A 23 (2008) 1829 [arXiv:0711.4511] [INSPIRE].

[10] V.M. Mostepanenko and I.Y. Sokolov, The restrictions on long-range forces following from

Casimir effect, Sov. J. Nucl. Phys. 46 (1987) 685.

[11] J.A. Grifols and S. Tortosa, Residual long range pseudoscalar forces between unpolarized

macroscopic bodies, Phys. Lett. B 328 (1994) 98 [hep-ph/9404249] [INSPIRE].

[12] F. Ferrer and J.A. Grifols, Long range forces from pseudoscalar exchange,

Phys. Rev. D 58 (1998) 096006 [hep-ph/9805477] [INSPIRE].

[13] F. Ferrer and M. Nowakowski, Higgs and Goldstone bosons mediated long range forces,

Phys. Rev. D 59 (1999) 075009 [hep-ph/9810550] [INSPIRE].

[14] J.A. Grifols, Higgsonium, Phys. Lett. B 264 (1991) 149 [INSPIRE].

[15] F. Ferrer, J.A. Grifols and M. Nowakowski, Long range neutrino forces in the cosmic relic

neutrino background, Phys. Rev. D 61 (2000) 057304 [hep-ph/9906463] [INSPIRE].

[16] F. Garcia Daza, N.G. Kelkar and M. Nowakowski, Breit equation with form factors in the

hydrogen atom, J. Phys. G 39 (2012) 035103 [arXiv:1008.4384] [INSPIRE].

[17] N.G. Kelkar, F.G. Daza and M. Nowakowski, Determining the size of the proton,

Nucl. Phys. B 864 (2012) 382 [arXiv:1203.0581] [INSPIRE].

[18] P.E. Bosted et al., Measurements of the electric and magnetic form-factors of the proton

from Q2 = 1.75 to 8.83 GeV/c2, Phys. Rev. Lett. 68 (1992) 3841 [INSPIRE].

[19] P.E. Bosted, An empirical fit to the nucleon electromagnetic form-factors,

Phys. Rev. C 51 (1995) 409 [INSPIRE].

[20] C.F. Perdrisat, V. Punjabi and M. Vanderhaeghen, Nucleon electromagnetic form factors,

Prog. Part. Nucl. Phys. 59 (2007) 694 [hep-ph/0612014] [INSPIRE].

[21] H. Gao, Hadron physics at low energies, Eur. Phys. J. Spec. Top. 198 (2011) 3 [INSPIRE].

[22] H. Gao, Nucleon electromagnetic form factors, Int. J. Mod. Phys. A 20 (2005) 1595

[INSPIRE].

[23] J. Arrington, Implications of the discrepancy between proton form-factor measurements,

Phys. Rev. C 69 (2004) 022201 [nucl-ex/0309011] [INSPIRE].

[24] P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental

physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633 [arXiv:0801.0028] [INSPIRE].

[25] P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental

physical constants: 2010, Rev. Mod. Phys. 84 (2012) 1527 [arXiv:1203.5425] [INSPIRE].

– 12 –

http://dx.doi.org/10.1140/epja/i2009-10823-5
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,A41,169
http://dx.doi.org/10.2478/s11534-014-0444-0
http://dx.doi.org/10.1142/S0217732310032524
http://arxiv.org/abs/0906.5066
http://inspirehep.net/search?p=find+J+Mod.Phys.Lett.,A25,447
http://dx.doi.org/10.1142/S0217732308027205
http://arxiv.org/abs/0711.4511
http://inspirehep.net/search?p=find+EPRINT+ARXIV:0711.4511
http://dx.doi.org/10.1016/0370-2693(94)90434-0
http://arxiv.org/abs/hep-ph/9404249
http://inspirehep.net/search?p=find+EPRINT+HEP-PH/9404249
http://dx.doi.org/10.1103/PhysRevD.58.096006
http://arxiv.org/abs/hep-ph/9805477
http://inspirehep.net/search?p=find+J+Phys.Rev.,D58,096006
http://dx.doi.org/10.1103/PhysRevD.59.075009
http://arxiv.org/abs/hep-ph/9810550
http://inspirehep.net/search?p=find+J+Phys.Rev.,D59,075009
http://dx.doi.org/10.1016/0370-2693(91)90719-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B264,149
http://dx.doi.org/10.1103/PhysRevD.61.057304
http://arxiv.org/abs/hep-ph/9906463
http://inspirehep.net/search?p=find+J+Phys.Rev.,D61,057304
http://dx.doi.org/10.1088/0954-3899/39/3/035103
http://arxiv.org/abs/1008.4384
http://inspirehep.net/search?p=find+J+J.Phys.,G39,035103
http://dx.doi.org/10.1016/j.nuclphysb.2012.06.015
http://arxiv.org/abs/1203.0581
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B864,382
http://dx.doi.org/10.1103/PhysRevLett.68.3841
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,68,3841
http://dx.doi.org/10.1103/PhysRevC.51.409
http://inspirehep.net/search?p=find+J+Phys.Rev.,C51,409
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://arxiv.org/abs/hep-ph/0612014
http://inspirehep.net/search?p=find+J+Prog.Part.Nucl.Phys.,59,694
http://dx.doi.org/10.1140/epjst/e2011-01480-5
http://inspirehep.net/search?p=find+J+00619,198,3
http://dx.doi.org/10.1142/S0217751X05023049
http://inspirehep.net/search?p=find+J+J.Mod.Phys.,A20,1595
http://dx.doi.org/10.1103/PhysRevC.69.022201
http://arxiv.org/abs/nucl-ex/0309011
http://inspirehep.net/search?p=find+J+Phys.Rev.,C69,022201
http://dx.doi.org/10.1103/RevModPhys.80.633
http://arxiv.org/abs/0801.0028
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,80,633
http://dx.doi.org/10.1103/RevModPhys.84.1527
http://arxiv.org/abs/1203.5425
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,84,1527


J
H
E
P
0
9
(
2
0
1
5
)
2
1
5

[26] A. Antognini et al., Proton structure from the measurement of 2S-2P transition frequencies

of muonic hydrogen, Science 339 (2013) 417 [INSPIRE].

[27] R. Pohl et al., The size of the proton, Nature 466 (2010) 213 [INSPIRE].

[28] I. Sick, Problems with proton radii, Prog. Part. Nucl. Phys. 67 (2012) 473 [INSPIRE].

[29] T. Mart and A. Sulaksono, Nonidentical protons, Phys. Rev. C 87 (2013) 025807

[arXiv:1302.6012] [INSPIRE].

[30] F.J. Ernst, R.G. Sachs and K.C. Wali, Electromagnetic form factors of the nucleon,

Phys. Rev. 119 (1960) 1105 [INSPIRE].

[31] V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum electrodynamics,

Landau-Lifshitz Course on Theoretical Physics, Volume 4, 2nd edition,

Butterworth-Heinemann, Oxford U.K. (2007).

[32] H.A. Bethe and E.E. Salpeter, Quantum mechanics of one- and two-electron atoms, Dover,

New York U.S.A. (2008).

[33] N.G. Kelkar, M. Nowakowski and D. Bedoya Fierro, Opportunities and problems in

determining proton and light nuclear radii, Pramana 83 (2014) 761 [INSPIRE].

[34] L.L. Foldy and S.A. Wouthuysen, On the Dirac theory of spin 1/2 particle and its

nonrelativistic limit, Phys. Rev. 78 (1950) 29 [INSPIRE].

[35] E. Eriksen, Foldy-Wouthuysen transformation. Exact solution with generalization to the

two-particle problem, Phys. Rev. 111 (1958) 1011 [INSPIRE].

[36] A.J. Silenko, Connection between wave functions in the Dirac and Foldy-Wouthuysen

representations, Phys. Part. Nucl. Lett. 5 (2008) 501 [math-ph/0612045] [INSPIRE].

[37] V.P. Neznamov and A.J. Silenko, Foldy-Wouthyusen wave functions and conditions of

transformation between Dirac and Foldy-Wouthuysen representations,

J. Math. Phys. 50 (2009) 122302 [arXiv:0906.2069] [INSPIRE].

[38] R. Rosenfelder, Coulomb corrections to elastic electron proton scattering and the proton

charge radius, Phys. Lett. B 479 (2000) 381 [nucl-th/9912031] [INSPIRE].

[39] L.L. Foldy, K.W. Ford and D.R. Yennie, Effect of recoil on the elastic scattering of

high-energy electrons by zero-spin nuclei, Phys. Rev. 113 (1959) 1147 [INSPIRE].

[40] J.L. Friar and J.W. Negele, Theoretical and experimental determination of nuclear charge

distributions, Adv. Nucl. Phys. 8 (1975) 219 [INSPIRE].

[41] J.L. Friar, J. Martorell and D.W.L. Sprung, Nuclear sizes and the isotope shift,

Phys. Rev. A 56 (1997) 4579 [nucl-th/9707016] [INSPIRE].
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