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Abstract In this work, the desulfurization ability of alkyl-piperidinium-based and

phosphonium-based ionic liquids (ILs) for (thiophene or benzothiophene ? heptane)

mixtures are studied. With this aim, ternary liquid–liquid phase equilibrium data (LLE)

have been obtained for mixtures of {IL (1) ? thiophene, or benzothiophene (2) ? heptane

(3)} at T = 308.15 K and p = 101.33 kPa. For this study 1-pentyl-1-methylpiperidinium

bis{(trifluoromethyl)sulfonyl}imide, [C1C5PIP][NTf2], and tributylethylphosphonium di-

ethylphosphate, [P2,4,4,4][DEP], were used. The suitability of these ILs as solvents for

extractive desulfurization has been evaluated in terms of the solute distribution ratio and

selectivity. Immiscibility was observed in the binary liquid systems of (thiophene, or

benzothiophene ? heptane) with both ILs. One of the studied ILs, [C1C5PIP][NTf2],

shows high distribution ratios and high selectivities for extraction of sulfur compounds.

The data obtained have been correlated with the non-random two liquid NRTL model. The

experimental tie-lines and the phase compositions in mole fractions in the ternary systems

were calculated with an average root mean square deviation of 0.0052.

Keywords Ionic liquids � 1-Pentyl-1-methylpiperidinium

bis{(trifluoromethyl)sulfonyl}imide � Tributylethylphosphonium diethylphosphate �
Ternary (liquid–liquid) phase equilibrium � Selectivity � Solute distribution ratio � NRTL

correlation
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1 Introduction

In recent years, the deep desulfurization of diesel fuel has become the most studied process

with different techniques (extraction, liquid–liquid separation, oxidative desulfurization,

adsorption). The emission of sulfur from petrol and diesel oils, which is linked to acid rain,

plays a crucial role in pollution problems of large conglomerates. Thus, the USA and

European countries have issued regulations regarding sulfur content in fuels [1, 2]. Due to

this situation, the European Union approved a new directive stating that the content of total

sulfur in European gasoline and diesel fuels from 2010 onwards must be at a maximum

concentration level of 10 ppm [2]. Ionic liquids (ILs) have the ability to extract aromatic

sulfur-containing compounds at ambient conditions. Additionally, ILs are immiscible with

the fuel, are non-volatile and can be regenerated and recycled by solvent washing. Oxi-

dative desulfurization in future years probably will bring better results than simple liquid–

liquid separation, however, first the best ILs must be chosen. At present, the hydrode-

sulfurization (HDS) processes is the established method used in some industrial technol-

ogies to remove organic sulfur from fuels. However, to achieve low sulfur targets with

current HDS technology, higher temperatures, higher pressures, larger reactor volumes,

and more active catalysts are needed [3]. The HDS process does not purify fuels of

polycyclic organic sulfides such as thiophene, benzothiophene, methyldibenzothiophenes,

4,6-dibenzothiophenethiols, thioethers, and disulfides. Therefore, new technologies for

deep desulfurization have become necessary. Extraction desulfurization, which has begun

to be popular, especially with ILs, has the potential for being an alternative and future

complementary technology for deep desulfurization [4–10]. In order to solve this problem,

extractive liquid–liquid equilibrium (LLE) desulfurization with ILs has been proposed [7,

10–18].

The 1-alkylpiperidinium-based [18], or pyrrolidinium-based ILs with different anions

[15], or 1-alkylcyanopyridinium-based ILs [16], have been recently studied in our labo-

ratory in ternary LLE {IL ? thiophene, or benzothiophene ? heptane) with high selec-

tivities. Attractive extraction parameters were presented as well for 1-ethyl-3-

methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [EMIM][NTf2] ([11], and refer-

ences cited therein), 1-ethyl-3-methylimidazolium acetate, [EMIM][OAc] [12], 1-ethyl-3-

methylimidazolium thiocyanate, [EMIM][SCN] [7], and 1,3-dimethylimidazolium meth-

ylphosphonate [DMIM][MP] [7].

This work is a continuation of our systematic studies on the physicochemical properties

and the extraction abilities of piperidinium-based ILs ([18] and references cited therein).

Proposed by us are new interaction parameters for the group contribution method Modified

UNIFAC for the piperidnium-based ILs [19], predicted attractive infinite dilution selec-

tivity, and capacity of piperidinium-based ILs (alkane chain, n = 3–6) in the thiophene/

heptane separation problem at T = 328.15 K.

To our best knowledge, the phosphonium-based IL (tributyl-methylphosphonium

methylsulfate, [P1,4,4,4][CH3SO4]) was measured in ternary LLE for the separation of

thiophene from cyclohexane at T = 298.15 K with very low selectivities in a range of 1.5

to 5.4 [20]. Better results were obtained with deep eutectic solvents, DES, containing

phosphonium-based ILs with ethylene glycol. DES is composed of methyltripentylpho-

sphonium bromide, [P1,5,5,5][Br], and ethylene glycol (as a hydrogen bond donor) showed

selectivities of about S = 60–100 for ternary LLE at T = 318 K for benzene/hexane

separation [21]. Poorer results were estimated with DES composed of tetrabutylphos-

phonium bromide, [P4,4,4,4][Br], and ethylene glycol for the separation of toluene/heptane

[22]. Usually, the results of separation processes for aliphatic/aromatic hydrocarbons
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provide good information for the separation of aliphatic/aromatic sulfur compounds. We

can expect similar or even better results for the chosen IL. On the other side, there are very

good results obtained with methylphosphonate [7] and diethylphosphate [12] anions of ILs

in ternary LLE (IL ? thiophene ? heptane) mixtures.

In this work we report experimental ternary LLE data for one additional piperidinium-

based IL, {1-pentyl-1-methylpiperidinium bis{(trifluoromethyl)sylfonyl}imide [C5-

MPIP][NTf2], for comparison with measured earlier 1-propyl, or 1-butyl-, or 1-hexyl-1-

methylpiperidinium bis{(trifluoromethyl)sylfonyl}imide [18]. Moreover, tributylethyl-

phosphonium diethylphosphate, [P2,4,4,4][DEP] was chosen to check the influence of the

anion. The [DEP]- anion in [EMIM][DEP] shows interesting results for thiophene

extraction from hexane at T = 298.15 K [12]. The solvents heptane, thiophene, and

benzothiophene used in this work are model compounds for fuel and sulfur organic

hydrocarbons, respectively. The ternary systems {IL (1) ? thiophene, or benzothiophene

(2) ? heptane (3)} were investigated at T = 308.15 K and p = 101.33 kPa. The experi-

mental tie-lines for four ternary mixtures have been correlated with the NRTL equation

[23, 24]. The solute distribution ratio and the extractive selectivity were determined from

the experimental data, and are compared to the literature data.

2 Experimental

The ILs studied, [C1C5PIP][NTf2] and [P2,4,4,4][DEP], were purchased from IoLiTec. The

names, abbreviations, structures, measured densities and mass fraction of ILs are listed in

Table 1. The names, CAS numbers, sources, mass fraction purities, purification method,

water content, and measured and literature densities of all chemicals used are shown in

Table 1S in the Supplementary Material Information. Most of chemicals used were from

Merck or Sigma Aldrich. The samples of ILs were dried for 24 h at 300 K under reduced

pressure to remove volatile impurities and trace amounts of water. Thiophene and ben-

zothiophene were stored over freshly activated molecular sieves of type 4 Å (Union

Carbide). The densities for all substances were measured at T = 298.15 and 101.33 kPa.

The method and uncertainties have been described previously [18].

The water content was analyzed by the Karl-Fischer titration (method TitroLine KF). The

sample of IL, or solvent, was dissolved in methanol and titrated in steps of 0.0025 cm3. The

error in the water content is ±10 9 10-6 in mass fraction for the 3 cm3 of injected IL. The

water content in solvents used was less than 350 9 10-6 in mass fraction.

To obtain the experimental LLE tie-lines, mixtures with compositions inside the

immiscible region of the systems were introduced into a jacketed glass cell of volume of

100 cm3. The solution was mixed with a coated magnetic stirring bar. The vessel was

tightly closed to avoid losses by evaporation or pickup of moisture from the atmosphere.

The jackets were connected to a thermostatic water bath (LAUDA Alpha) to maintain a

constant temperature of T = 308.15 K (±0.05). The mixtures were stirred for 6 h to reach

thermodynamic equilibrium and after a minimum of 12 h were analyzed. After the phase

separation, samples of about (0.1–0.3) 9 10-3 cm3 were taken from both phases using

glass syringes with coupled stainless steel needles. A sample of the phase was placed in an

ampoule with a capacity of 2 9 10-3 cm3. The ampoule was closed with a septum cap.

Next, acetone (1.0 cm3) was added to the samples to avoid phase splitting and to maintain

a homogeneous mixture. Propan-1-ol was used as internal standard for the GC-analysis.

Because of the low vapor pressure, the ILs used in this work cannot be analyzed by GC.

Thus, only thiophene or benzothiophene and heptane were analyzed; the mass fraction of
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Table 2 Compositions of experimental tie lines, solute distribution ratios, b, and selectivity, S, for ternary
systems {[C1C5PIP][NTf2] or [P2,4,4,4][DEP] (1) ? thiophene or benzothiophene (2) ? heptane (3)} at
T = 308.15 K, p = 101.33 kPa

Hydrocarbon-rich phase IL-rich phase b S

xI
1 xI

2 xII
1 xII

2

[C1C5PIP][NTf2] ? thiophene ? heptane

0.000 0.000 0.911 0.000 – –

0.000 0.057 0.770 0.142 2.49 26.7

0.000 0.111 0.663 0.250 2.25 23.0

0.000 0.191 0.564 0.352 1.84 17.7

0.000 0.230 0.523 0.392 1.70 15.4

0.000 0.353 0.424 0.490 1.39 10.4

0.000 0.447 0.376 0.542 1.21 8.2

0.000 0.530 0.337 0.582 1.10 6.4

0.000 0.696 0.281 0.650 0.93 4.1

0.000 0.800 0.241 0.702 0.88 3.1

0.000 0.891 0.213 0.750 0.84 2.5

0.000 1.000 0.186 0.814 0.81 –

[C1C5PIP][NTf2] ? benzothiophene ? heptane

0.000 0.000 0.911 0.000 – –

0.000 0.025 0.803 0.109 4.36 48.3

0.000 0.052 0.705 0.210 4.04 45.0

0.000 0.092 0.589 0.326 3.54 37.9

0.000 0.161 0.444 0.472 2.93 29.3

0.000 0.243 0.383 0.531 2.19 19.2

0.000 0.346 0.299 0.611 1.77 12.8

0.000 0.460 0.236 0.674 1.47 8.8

0.000 0.553 0.208 0.696 1.26 5.9

0.000 0.766 0.144 0.758 0.99 2.4

0.000 0.853 0.096 0.819 0.96 1.7

0.000 0.915 0.060 0.873 0.95 1.2

[P2,4,4,4][DEP] ? thiophene ? heptane

0.002 0.000 0.544 0.000 – –

0.002 0.016 0.515 0.043 2.69 6.0

0.004 0.043 0.443 0.104 2.42 5.1

0.005 0.079 0.376 0.170 2.15 4.3

0.008 0.112 0.323 0.214 1.91 3.6

0.009 0.148 0.274 0.257 1.74 3.1

0.008 0.172 0.244 0.280 1.63 2.8

0.010 0.199 0.201 0.301 1.51 2.4

0.013 0.212 0.187 0.309 1.46 2.2

0.013 0.239 0.160 0.326 1.36 2.0

[P2,4,4,4][DEP] ? benzothiophene ? heptane

0.002 0.000 0.548 0.000 – –

0.006 0.015 0.495 0.062 4.13 9.1
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the third component, the IL, was determined by subtracting the mole fractions of the two

other components from unity.

The compositions were analyzed by gas chromatography (PerkinElmer Clarus 580 GC

equipped with auto sampler and FID and TCD detectors). The capillary column of the

chromatograph was protected with a pre-column to avoid the non-volatile ionic liquid

reaching the column in the case of a leak from the glass wool in the liner. The TotalChrom

Workstation software was used to obtain the chromatographic areas for the thiophene, or

benzothiophene, heptane and the internal standard propan-1-ol. Samples were injected

three times, and the average value was calculated. Details of the operational conditions of

the apparatus are reported in Table 2S in the Supplementary Material. The estimated

uncertainty in the determination of mole fraction compositions is ± 0.003 for composi-

tions of the hydrocarbon-rich phase and ±0.005 for compositions of the IL-rich phase.

3 Results and Discussion

The equilibrium compositions of the experimental tie-line ends in ternary systems of four

mixtures {IL (1) ? thiophene or benzothiophene (2) ? heptane (3)}, at T = 308.15 K and

p = 101.33 kPa are reported in Table 2. Experimental solubilities for [C1C5PIP][NTf2]

and [P2,4,4,4][DEP] in heptane at T = 308.15 K are totally different from each other. In the

binary {IL (1) ? heptane (3)} system complete liquid miscibility (solubility of heptane in

the IL) is up to mole fraction of heptane xIL
3 = 0.089 and xIL

3 = 0.456 for [C1C5PIP][NTf2]

and [P2,4,4,4][DEP], respectively. The solubility of heptane is much larger in [P2,4,4,4][DEP]

than that in [C1C5PIP][NTf2]. The piperidinium-based IL shows much lower solubility of

heptane in the IL. In comparison with piperidinium-based IL measured by us earlier,

heptane shows higher solubility in [C1C5PIP][NTf2] than in [C1C3PIP][NTf2]

(xIL
3 = 0.051, at T = 308.15 K [18]). This effect is due to an increase in the van der Waals

interactions between the hydrocarbon chain of the cation and heptane.

The solubility of thiophene at T = 308.15 K is equal to xIL
2 = 0.814 for [C1C5-

PIP][NTf2] (x2
IL = 0.797 for [C1C3PIP][NTf2] at T = 298.15 K [18], the influence of

temperature is minimal; the largest solubility of thiophene in the piperidinium-based IL

was observed for C1C6PIP][NTf2] [18]). Complete miscibility with thiophene was

observed for [P2,4,4,4][DEP].

Table 2 continued

Hydrocarbon-rich phase IL-rich phase b S

xI
1 xI

2 xII
1 xII

2

0.007 0.044 0.418 0.163 3.70 8.4

0.009 0.068 0.369 0.224 3.29 7.5

0.006 0.092 0.327 0.277 3.01 6.9

0.011 0.120 0.287 0.323 2.69 6.0

0.006 0.167 0.218 0.380 2.28 4.7

0.014 0.241 0.171 0.422 1.75 3.2

0.014 0.271 0.147 0.435 1.61 2.7

0.015 0.311 0.115 0.453 1.46 2.3

Standard uncertainties are: u(x)\ 0.003, u(T) = 0.05 K
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In the binary system with benzothiophene, the solubility of benzothiophene in [C1C5-

PIP][NTf2] at T = 308.15 K is equal to xIL
2 = 0.873 (xIL

2 = 0.945 for [C1C3PIP][NTf2] at

T = 308.15 K [18]. Complete miscibility with benzothiophene was observed for

[P2,4,4,4][DEP].

Immiscibility is observed in the {thiophene, or benzothiophene (2) ? heptane (3)}

binary mixture, as was reported previously [18].

The determined experimental tie-lines for the ternary LLE systems are plotted in

Figs. 1, 2, 3, 4 for thiophene and benzothiophene, respectively. Figures 1, 2, 3, 4 show that

the two-phase region is much larger for [C1C5PIP][NTf2] than that for [P2,4,4,4][DEP].

The results obtained in this work show that the more suitable IL for the separation of

thiophene, or benzothiophene from heptane, is [C1C5PIP][NTf2] because of its much larger

selectivity (S) and the comparable solute distribution ratio (b). These parameters are

defined as follows:

b ¼ xII
2

xI
2

ð1Þ

S ¼ xII
2 � xI

3

xI
2 � xII

3

ð2Þ

where x is the mole fraction; superscripts I and II refer to the heptane-rich phase and the

IL-rich phase, respectively. Subscripts 2 and 3 refer to the sulfur compound and heptane,

respectively. The values of b and S are listed in Table 2 for thiophene and benzothiophene.

Figures 5 and 6 present measured values of b and S for ILs for thiophene and

benzothiophene.

The values presented in Table 2 show that the distribution ratio coefficient are in the

range of 0.81–2.41, 0.95–4.36, 1.36–2.69 and 1.46–4.13 for [C1C5PIP][NTf2]/thiophene,

[C1C5PIP][NTf2]/benzothiophene, [P2,4,4,4][DEP]/thiophene and [P2,4,4,4][DEP]/benzo-

thiophene, respectively.

The selectivities of the separation in the system thiophene or benzothiophene/heptane is

quite high for [C1C5PIP][NTf2] and very low for [P2,4,4,4][DEP]. The values listed in

Fig. 1 Plot of the experimental (filled circle, gray solid lines) results versus values calculated with the
NRTL equation (square, black dotted lines) for the composition tie lines of the ternary system
{[C1C5PIP][NTf2] (1) ? thiophene (2) ? heptane (3)} at T = 308.15 K

388 J Solution Chem (2015) 44:382–394
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Table 2 for the best tie-lines are: 26.7, 48.3, 6.0 and 9.1 for [C1C5PIP][NTf2]/thiophene,

[C1C5PIP][NTf2]/benzothiophene, [P2,4,4,4][DEP]/thiophene and [P2,4,4,4][DEP]/benzo-

thiophene, respectively.

In this work the effect of the alkane chain length on the cation of the piperidinium-based

IL was examined for comparison with previously measured data for [C1C3PIP][NTf2]/

thiophene, [C1C4PIP][NTf2]/thiophene, and [C1C6PIP][NTf2]/thiophene at T = 298.15 K,

and of [C1C3PIP][NTf2]/benzothiophene at T = 308.15 K [18] (the influence of temper-

ature is not large). The effect of anion in the phosphonium-based IL was also verified. The

characteristic extraction parameters obtained in this work are compared to the few pre-

viously described in the open literature in Table 3. Unfortunately, the selectivity for

[C1C5PIP][NTf2] obtained in this work is slightly worse than that for [C1C3PIP][NTf2]

Fig. 2 Plot of the experimental (filled circle, gray solid lines) results versus values calculated with the
NRTL equation (square, black dotted lines) for the composition tie lines of the ternary system
{[C1C5PIP][NTf2] (1) ? benzothiophene (2) ? heptane (3)} at T = 308.15 K

Fig. 3 Plot of the experimental (filled circle, gray solid lines) results versus values calculated with the
NRTL equation (square, black dotted lines) for the composition tie lines of the ternary system
{[P2,4,4,4][DEP] (1) ? thiophene (2) ? heptane (3)} at T = 308.15 K

J Solution Chem (2015) 44:382–394 389
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measured by us earlier [18]. The values of selectivity presented for 1-alkylcyanopyr-

idinium-based ILs at T = 308.15 K measured in our earlier work [16] are also larger than

those for piperidinium-based ILs [18] (see Table 3).

The selectivities for [C1C3PIP][NTf2] are comparable to those for 4-(2-methoxyethyl)-

4-methylpiperidinium trifluorotris(perfluoroethyl)phosphate [COC2MPIP][FAP] ILs at

T = 298.15 K [13], or to 4-(2-methoxyethyl)-4-methylpiperidinium bis{(trifluoro-

methyl)sulfonyl}imide [COC2MPIP][NTf2] [14]. For further comparisons see our earlier

work [16].

Fig. 4 Plot of the experimental (filled circle, gray solid lines) results versus values calculated with the
NRTL equation (square, black dotted lines) for the composition tie lines of the ternary system
{[P2,4,4,4][DEP] (1) ? benzothiophene (2) ? heptane (3)} at T = 308.15 K

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

S

x2HC

Fig. 5 Plot of the selectivity
(S) as a function of the mole
fraction of solute in the
hydrocarbon-rich phase for the
ternary systems: closed circle
{[C1C5PIP][NTf2]
(1) ? thiophene (2) ? heptane
(3)}, filled square
{[C1C5PIP][NTf2]
(1) ? benzothiophene
(2) ? heptane (3)}, open circle
{[P2,4,4,4][DEP] (1) ? thiophene
(2) ? heptane (3)}, and open
square {[P2,4,4,4][DEP]
(1) ? benzothiophene
(2) ? heptane (3)}, at
T = 308.15 K
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The extraction results for [P2,4,4,4][DEP] are very low and similar to [P1,4,4,4][CH3SO4]

[20]. It can be definitely concluded that phosphonium-based cations are not suitable for

these separation processes. However, for the diethylphosphate anion [DEP]- and

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

ββ

x2HC

Fig. 6 Plot of the solute
distribution ratio (b) as a function
of the mole fraction of solute in
the hydrocarbon-rich phase for
the ternary systems: closed circle
{[C1C5PIP][NTf2]
(1) ? thiophene (2) ? heptane
(3)} filled square
{[C1C5PIP][NTf2]
(1) ? benzothiophene
(2) ? heptane (3)} open circle
{[P2,4,4,4][DEP] (1) ? thiophene
(2) ? heptane (3)}, and open
square {[P2,4,4,4][DEP]
(1) ? benzothiophene
(2) ? heptane (3)}, at
T = 308.15 K

Table 3 Comparison of solute distribution ratio (b) and selectivity (S) for sulfur compounds extraction

IL LLE system T/K bmax Smax Ref.

[C1C5PIP][NTf2] IL ? thiophene ? heptane 308 2.49 26.7 This work

[C1C5PIP][NTf2] IL ? benzothiophene ? heptane 308 4.36 48.3 This work

[C1C3PIP][NTf2] IL ? thiophene ? heptane 298 2.50 60.3 [18]

[C1C3PIP][NTf2] IL ? benzothiophene ? heptane 308 5.36 93.0 [18]

[COC2MPIP][NTf2]a IL ? thiophene ? heptane 298 2.64 62.9 [14]

[COC2MPIP][FAP]b IL ? thiophene ? heptane 298 4.00 56.8 [13]

[BCN4Py][NTf2]c IL ? thiophene ? heptane 308 1.93 62.2 [16]

[BCN4Py][NTf2]c IL ? benzothiophene ? heptane 308 3.50 117.1 [16]

[P2,4,4,4][DEP] IL ? thiophene ? heptane 308 2.69 6.0 This work

[P2,4,4,4][DEP] IL ? benzothiophene ? heptane 308 4.13 9.1 This work

[EMIM][DEP]d IL ? thiophene ? hexane 298 2.88 48.8 [12]

[P1,4,4,4][CH3SO4] IL ? thiophene ? cyclohexane 298 1.38 5.38 [20]

[DMIM][MP]e IL ? thiophene ? heptane 298 0.42 1,756 [7]

a 1-(2-Methoxyethyl)-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide
b 1-(2-Methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate
c 1-Butyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide
d 1-Ethyl-3-methylimidazolium diethylphosphate
e 1,3-Dimethylimidazolium methylphosphonate
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imidazolium-based cation [EMIM]?, the results are comparable to those obtained in this

work with [C1C5PIP][NTf2] but with a lower b value [18] (see Table 3).

It can be also seen from Figs. 5 and 6 that b and S decrease as the solute mole fraction

(thiophene, or benzothiophene) in the heptane phase increases, for all systems, when going

through the tie-line end compositions.

4 Data Correlation

The ternary LLE data measured in this study were correlated (the tie-line correlation) using

the well known non-random liquid equation, NRTL [23]. The equations and algorithms

used for the calculation of the compositions in both phases follow the method described by

Walas [24]. The objective function F(P) was used to minimize the difference between the

experimental and calculated compositions:

FðPÞ ¼
Xn

i¼1

x
I;exp
2 � x

I;calc
2 PTð Þ

h i2

þ x
I;exp
3 � x

I;calc
3 PTð Þ

h i2

þ x
II;exp
2 � x

II;calc
2 PTð Þ

h i2

þ x
II;exp
3 � x

II;calc
3 PTð Þ

h i2

ð3Þ

where P is the set of parameters vector, n is the number of experimental points, x
I;exp
2 , x

I;exp
3

and x
I;calc
2i PTð Þ, xI;calc

3 PTð Þ are the experimental and calculated mole fractions of one phase,

and x
II;exp
2 , x

II;exp
3 x

II;calc
2 PTð Þ, and x

II;calc
3 PTð Þ are the experimental and calculated mole

fractions of the second phase. The binary parameters of each constituent were regressed by

minimizing the sum of the squares of the differences between the experimental and

Table 4 Binary interaction parameters, parameter aij and root mean square deviation (rx) for the NRTL
equation for the ternary systems {[C1C5PIP][NTf2] or [P2,4,4,4][DEP] (1) ? thiophene or benzothiophene
(2) ? heptane (3)} at T = 308.15 K, p = 101.33 kPa

ij Dg12/(J�mol-1) Dg21/(J�mol-1) aij RMSD rx

[C1C5PIP][NTf2] ? thiophene ? heptane

12 –8261.11 23225.94 0.2 0.007

13 2536.43 15361.68

23 –460.97 475.45

[C1C5PIP][NTf2] ? benzothiophene ? heptane

12 –5698.73 12608.56 0.2 0.007

13 5142.95 34672.57

23 2498.84 2232.66

[P2,4,4,4][DEP] ? thiophene ? heptane

12 –5566.06 7459.65 0.2 0.003

13 –2785.55 19670.14

23 –3351.22 6008.81

[P2,4,4,4][DEP] ? benzothiophene ? heptane

12 –9265.59 11427.53 0.2 0.004

13 –2823.06 16531.68

23 –1048.01 2808.72
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calculated mole fractions of each component of both liquid phases for each ternary system.

These binary parameters were obtained for all data simultaneously (binaries and ternaries).

The value of the non-randomness parameter, aij, was optimized in order to obtain the

best model fit. The correlated parameters are given in Table 4 along with the root mean

square deviations (RMSD). The RMSD values, which are a measure of the precision of the

correlation, were calculated according the equation:

RMSD ¼
X

i

X

l

X

m

x
exp
ilm � xcalc

ilm

� �2
=6k

 !1=2

ð4Þ

where x is the mole fraction and the subscripts i, l, and m designate the component, phase,

and tie-line, respectively. The Rosenbrock simplex method was used in an effort to min-

imize the objective function. The compositions calculated from the correlations are

included in Figs. 1 to 4. The correlation results, obtained for the four systems studied, are

satisfactory. The experimental and calculated LLE data agreed relatively well.

5 Conclusions

The ternary liquid–liquid phase equilibrium data were measured in this study for the

extraction of thiophene or benzothiophene from heptane using two ILs. Four ternary

systems {IL ? thiophene or benzothiophene ? heptane} were analytically determined

using GC for the composition analysis at temperature T = 308.15 K at ambient pressure. It

has been demonstrated that the 1-pentyl-1-methylpiperidinium bis{(trifluoromethyl)sul-

fonyl}imide IL is much more effective than the phosphonium-based IL for extraction of

thiophene or benzothiophene from alkanes. Sulfur compounds can be extracted easily by

piperidinium-based ILs, leading to low sulfur content in fuels. Our earlier experimental

results revealed that the solubility of sulfur compounds in the IL increases as the alkyl

chain length increases [18]. The capacity of extraction, described in terms of the selectivity

and the solute distribution ratio coefficients, was calculated for all ternary systems and

compared to the published data used in similar extraction problems. Based on the values

obtained, [C1C5PIP][NTf2] was found to be useful for the extraction of sulfur compounds

from alkanes; however, it is not as good as [C1C3PIP][NTf2] measured previously [18].

The selectivity and the solute distribution ratio decrease as the mole fraction of thiophene

or benzothiophene in the heptane-rich phase increases. The best selectivity (S) is observed

for very low mole fractions of S-compounds in the hydrocarbon-rich phase ðxHC
2 ¼ 0:05Þ

(see Fig. 5), which may be compared with the results of the HDS method for the removal

of the S-compounds. The experimental data in this work was regressed using the NRTL

activity coefficient model and binary interaction parameters. The non-randomness

parameter was also determined through the reduction of the experimental data. The model

exhibited an excellent fit to the data with the average RMSD values between 0.003 and

0.007.
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