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Abstract

Background: Most tumors are the result of accumulated genomic alterations in somatic cells. The emerging
spectrum of alterations in tumors is complex and the identification of relevant genes and pathways remains a
challenge. Furthermore, key cancer genes are usually found amplified or deleted in chromosomal regions
containing many other genes. Point mutations, on the other hand, provide exquisite information about amino acid
changes that could be implicated in the oncogenic process. Current large-scale genomic projects provide high
throughput genomic data in a large number of well-characterized tumor samples.

Methods: We define a Bayesian approach designed to identify candidate cancer genes by integrating copy
number and point mutation information. Our method exploits the concept that small and recurrent alterations in
tumors are more informative in the search for cancer genes. Thus, the algorithm (Mutations with Common Focal
Alterations, or MutComFocal) seeks focal copy number alterations and recurrent point mutations within high
throughput data from large panels of tumor samples.

Results: We apply MutComFocal to Diffuse Large B-cell Lymphoma (DLBCL) data from four different high
throughput studies, totaling 78 samples assessed for copy number alterations by single nucleotide polymorphism
(SNP) array analysis and 65 samples assayed for protein changing point mutations by whole exome/whole
transcriptome sequencing. In addition to recapitulating known alterations, MutComFocal identifies ARID1B, ROBO2
and MRS1 as candidate tumor suppressors and KLHL6, IL31 and LRP1 as putative oncogenes in DLBCL.

Conclusions: We present a Bayesian approach for the identification of candidate cancer genes by integrating data
collected in large number of cancer patients, across different studies. When trained on a well-studied dataset,
MutComFocal is able to identify most of the reported characterized alterations. The application of MutComFocal to
large-scale cancer data provides the opportunity to pinpoint the key functional genomic alterations in tumors.

Keywords: Tumorigenic mutations, Driver genes, Data integration
Background
Most cancers occur as a result of changes in the genome
of somatic cells. While such changes often have no ef-
fect, some alterations in combination with the environ-
ment of the cells that harbor them, conspire to initiate
and maintain a tumorigenic process resulting in abnor-
mal cell proliferation. Discovering the genomic lesions
contributing to tumor initiation and progression will
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reproduction in any medium, provided the or
provide a more profound understanding of the biology of
cancer, new prognostic markers, and hopefully novel
therapeutic targets. Our improved understanding of can-
cer genetics is the result of the revolution in experimental
tools available to make observations at different dimen-
sions and scales. Large scale projects, such as The Cancer
Genome Atlas (TCGA) or the International Cancer
Genome Consortium (ICGC) [1] aim to provide a compre-
hensive characterization of nearly 50 tumor types. These
projects collect large numbers of tumor samples, providing
information on clinical and high throughput biological
data, including mRNA and small RNA expression, point
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mutations, methylation, and copy number copy number
(CN) alterations. Recently, many studies have reported
recurrent genetic alterations in a variety of tumors by
analyzing high throughput data in large panels of tumor
samples (e.g. [2–6]).
Although we can observe a cancer genome at nucleotide

resolution with high throughput sequencing, the impact of
particular alterations is not clear. The ultimate answer can
only be obtained from a detailed functional analysis of the
biological consequences of the mutations. Unfortunately,
this is a laborious process and the complexity of the muta-
tional landscape makes impossible to assess the impact of
all reported alterations. Thus it is desirable to prioritize
the mutations identified with sequencing analysis in order
to guide the subsequent functional validation. One can
heuristically predict the impact of gene mutations, such as
nonsense mutations and frameshift indels, on the struc-
ture of the protein product using indicators of selection
pressure such as dn/ds test. Alternatively, one can rely on
the statistical likelihood of mutational recurrence across
many different samples. It is expected that driver genes
with a significant contribution to the etiology of a particu-
lar cancer type will be altered repeatedly across many dif-
ferent samples in proportion significantly higher than
passenger mutations.
Several approaches have been proposed to identify the

most relevant recurrent alterations across a large num-
ber of tumor samples. GISTIC [7] (Genomic Identifica-
tion of Significant Targets in Cancer) aims to identify
significant chromosomal aberrations in tumors by study-
ing alterations in large collections of copy number data.
The method identifies genomic regions that present
more aberrations in tumors than random. Other groups
[8,9] have proposed to combine copy number data with
expression data to pinpoint driver genes within regions
of frequent chromosome aberrations. In [5] we proposed
a heuristic measure of focality as a way of identifying
Figure 1 Focality and recurrence scores measure the presence of a gi
assigns equal weight to all genes participating in a genomic alteration inve
(right) assigns equal weight to all genes altered in a sample inversely prop
figures, the alterations occurring in a particular sample are represented by
example, the top sample has three alterations with one, two, and one gen
focal alterations in copy number data. A problem with
copy number analysis is that often the genomic alter-
ations are not sufficiently focal to identify the genes that
are the target of a particular genomic lesion, as opposed
to those alterations that are there by chance only. A dir-
ect solution to the lack of specificity in copy number
analysis is provided by high throughput sequencing tech-
nologies, which have been the object of many exciting
developments in the last decade, providing a read-out of
the cancer genome at nucleotide level.
In this work we propose a framework, MutComFocal,

for assessing the importance of genes using sequencing
and copy number data from multiple samples of the
same cancer type. The method formalizes in a Bayesian
framework a previous heuristic idea [5] used to identify
focal copy number aberrations. The measure proposed
here takes into account the recurrence of altered genes
as well as the size of the lesions. Genes are scored separ-
ately for deletions and gains, with the assumption that
genes with high CN gain score will tend to be onco-
genes, while those with high deletion score will tend to
be tumor suppressors. In this way, focality of the lesions
altering a particular region is not inferred entirely from
the recurrence of alterations to genes in that region, but
includes also the size of the lesions covering it. As a test
of the applicability of the method we use several datasets
from studies with non-overlapping samples of DLBCL.
In each case, the method confirms the genes that were
previously reported as contributing to the pathogenesis
of the disease and identifies some new targets.

Results
Focality and recurrence from copy number data and
mutations
The method is based on two measures of the signifi-
cance of each gene (see Figure 1): a focality score and a
recurrence score. Both scores are computed separately
ven gene in alterations in tumor samples. The focality score (left)
rsely proportional to the size of that alteration, while recurrence score
ortional to the total number of gene altered in the sample. In the
segmented horizontal lines and each segment is a particular gene. For
es, respectively.
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for CN gains and deletions. First, for a fixed sample each
of the measures assigns a score to every gene. The
focality score of a gene in a fixed sample is D/L, where
D is the amplitude (deviation from normal of the copy
number, 2 for a diploid chromosome), and L is the
length of that lesion, in terms of the number of genes
contained. For example, in an autosomal chromosome a
loss of two copies has deviation D = 2, a loss of one copy
has D = 1, a gain of one copy has D = 1, etc. The recur-
rence score of a gene in a sample is D/T, where D is the
amplitude of the lesion covering the gene and T is the
sum of the deviations of the genes altered in the sample.
Next, the scores for each gene are summed across the
samples and normalized across the genes to sum to 1.
The focality and recurrence scores are combined into a
single score by multiplication and then normalization
to 1. The combined score forms a distribution over the
genes and, as explained in the methods, genes are di-
vided into tiers using the entropy function. The scores
are formally introduced within the Bayesian framework
in the Methods section. The main quantity to be com-
puted is the probability that a gene is a driver given a set
of alterations.
While CNVs provide information on genomic lesions

spanning several genes, point mutations provide more
specific information on single genes. To integrate muta-
tions, we devise a method that considers both mutations
and copy number alterations within the same framework
(MutComFocal). We first compute a mutation score in a
manner analogous to computing the recurrence score by
considering mutated genes to participate in single gene
lesions. More precisely, in a fixed sample which has N
mutated genes, each mutated gene receives a sample
mutation score of 1/N. The mutation scores are obtained
by adding sample mutation scores over all samples
followed by normalization to 1. The mutation scores are
combined separately with recurrence and focality scores
for CN gains and deletions to obtain the gain/mutation
and deletion/mutation scores for each gene. More pre-
cisely, for every gene, the gain/mutation score is equal to
the product of the mutation score and the sum of the re-
currence and focality gain scores for that gene. Similarly,
using recurrence and focality deletion scores, we obtain
deletion/mutation scores. The gain/mutation and dele-
tion/mutation scores are normalized to sum to 1.

Results in DLBCL data
We performed the MutComFocal analysis for identifying
driver genes in diffuse large B-cell lymphoma using
copy-number data from 78 DLBCL samples (dbGaP
Study Accession: phs000328.v1.p1 [5]) and somatic mu-
tations data from 65 cases, including 49 samples from
Lohr et al. [3] corresponding to 3351 mutated genes, 6
samples from Pasqualucci et al. (89 mutated genes) [5],
and 10 samples from the Morin et al. study [10]; from
the latter study, only mutations obtained by DNA se-
quencing and confirmed to be somatic were selected (in
total, 183 mutated genes). Keeping only genes recur-
rently mutated resulted in 712 genes. Genes were scored
according to their copy number status from SNP array
analysis as explained in the methods section.
Figure 2 represents the scores for the 22,636 genes of

the human genome on the autosomal chromosomes an-
notated with the names of the leaders of the top 25 re-
gions. For each region, the gene with the highest score is
declared a leader of the region (for a full description of the
genes included in each of the regions refer to Additional
file 1: Table S1 and Additional file 2: Table S2). Adding the
mutation data to the copy number analysis data resulted
in the scores shown in Figure 3, where we have listed the
top 25 genes (for a full description of the genes included
in each of the regions refer to Additional file 3: Table S3
and Additional file 4: Table S4).
The leader genes in the top deleted regions contained

genes with a known contribution to the pathogenesis of
DLBCL, such as CDKN2A , B2M [11], PRDM1 [12],
TNFAIP3 [13], and NRXN3, a gene previously noted to
be altered in DLBCL [5]. The top genes also included
some known fragile sites, as FHIT in 3p14.2 (FRA3B,
[14]) and IMMP2L in 7q31.1-7q31.2 (FRA7G, [15]). In
addition, the method identified the PDCD1LG2/CD274
region [16,17], 17p13.3, a region that has been impli-
cated as a tumor-suppressor region in medulloblastoma,
where it is deleted in 40% of cases [18] and ARID1B, a
member of the SWI/SNF chromatin remodeler complex
implicated in differentiation and development [19].
ARID1B is deleted in 24% of cases and mutated in 6% of
cases.
Adding the information on somatic mutations to the

copy number analysis confirmed several genes obtained
from copy number data only, such as B2M, NRXN3,
FHIT, TNFAIP3, and ARID1B. In addition, this analysis
brought forth genes that have been recorded previously
to contribute to DLBCL such as CIITA [20], CREBBP
[4], CD58 [11] and TP53 [5], as well as genes that have
been associated to DLBCL such as TMEM30A, ACTB,
ITPKB and TBL1XR1 [3,5]. The analysis also singled out
ROBO2 (deleted in 9% of cases and mutated in 3%) a
candidate tumor suppressor in head and neck cancer
[21], and MSR1 (deleted in 22% of cases and mutated in
3%), a gene with tumor suppressor function in leukemia
stem cells of chronic myeloid leukemia [22]. Surpris-
ingly, CARD11 also scored high by this analysis. This
observation can be attributed to the fact that the analysis
does not distinguish deleterious mutations from those
that confer an activating effect.
A similar analysis of CN gains produced regions

encompassing known contributors to DLBCL such as
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Figure 2 Representation of the MutComFocal focality score for gains (left) and deletions (right). Leader genes, i.e. the genes with
highest score in each region, and their chromosomal location are indicated in the figure.
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PDCDLG2/CD274, BCL2, and MYC, all of which are
targeted by amplifications. The appearance of PDCDL
G2/CD274 as a relevant target of both CN gains and
losses is an indication of a more complex behavior of
the region, potentially induced by a genomic transloca-
tion [20]. The method also identified a region containing
REL [23] and a region containing NFKBIZ, which have
been singled out previously as occurring frequently in
DLBCL and studied in that context [24]. In addition, a
region containing MDM4, a gene frequently observed to
be overexpressed in human tumors and contributing to
tumor formation in mice by inhibiting TP53 [25], was
identified. Among the top 25 genes obtained by integrating
CN gains with somatic mutations were known DLBCL-
associated oncogenes such as PIM1 [26], CARD11 [27],
MYC, EZH2 [28], and BCL2 [29]. In addition, the analysis
identified KLHL6 (a target of CN gains in 23% of cases and
mutations in 8%), a gene involved in BCR signaling and
germinal center formation in mice [30], IL31 (CN gains in
18% of cases and mutations in 3%), a gene involved in the
activation of JAK/STAT, PI3K/AKT and MAPK signaling
[31], and LRP1 (gained in 24% of cases and mutated in
3%), a gene promoting cancer cell invasion [32].
We compared the performance of MutComFocal with

the result produced by GISTIC, a widely used tool for ana-
lyzing copy number data. The results of GISTIC in the
DLBCL data are shown in the Supplementary Information
(Additional file 5: Figure S1, Additional file 6: Figure S2, in
Additional file 7: Table S5, Additional file 8: Table S6,
and Additional file 9: Table S7). GISTIC produces two
levels of q-values – one at the level of probes (given in
Additional file 7: Table S5) and a second one at the level
of peaks, which are contiguous genomic regions span-
ning one or more genes (given in Additional file 8: Table
S6 and Additional file 9: Table S7). We compared the
analysis of MutComFocal to both levels of q-values pro-
duced by GISTIC. To this end, for a particular level of q-
value we sorted the genes by that q-value and selected the
top 25 regions in the manner described above (results in
Additional file 10: Table S8, Additional file 11: Table S9,
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Figure 3 Representation of the MutComFocal score for mutations (left) integrated with gains (center) and deletions (right).
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Additional file 12: Table S10, and Additional file 13:
Table S11). For probe level q-values, the top 25 regions of
gain included 1336 genes and the top 25 deletion regions
contained 1225 genes; 7 of the top 25 regions of gain pro-
duced by GISTIC appeared also in the top 25 regions pro-
duced by MutComFocal (namely, those containing REL,
DSEL/BCL2, PTPRC/MDM4, PDCD1LG2/CD274, AK3,
IL10RA, and SPDYE7P) (Additional file 14: Table S12); 8
of the top 25 deletions regions produced by GISTIC,
containing CDKN2A, B2M, TNFAIP3, PRDM1, ARID1B,
FHIT, RPH3AL, LOXL2, MTAP, and, C4orf42, overlapped
with the results of MutComFocal (Additional file 15: Table
S13). For peak level q-values, the 15 regions of gain
contained 950 genes (Additional file 8: Table S6) and the
14 deletion regions contained 223 genes (Additional file 9:
Table S7); 7 of the 15 amplification peak regions produced
by GISTIC, containing REL, BCL2, PDCD1LG2, IL10RA,
NFKBIZ, MYC, and NUP155, overlapped with MutCom-
Focal (result in Additional file 16: Table S14); 4 of the 14
deletion peak regions produced by GISTIC, containing
CDKN2A, PRDM1, TNFAIP3, and FHIT, overlapped with
MutComFocal (result in Additional file 17: Table S15). In
summary, the comparison of the two methods shows that
at a high level they capture similar recurrent alterations.
In addition, by incorporating somatic mutations Mut-
ComFocal is able to narrow down those regions to specific
genes, thus reducing significantly the number of candidate
genes implicated in cancer.

Discussion and conclusions
Novel driving alterations in cancer provide the oppor-
tunity for the discovery of potential molecular targets in
cancer, and the identification of prognostic and diagnos-
tic alterations. With the advent of novel high throughput
technologies in biomedical research, several comprehensive
molecular characterization initiatives have been put
forward. At least three large consortiums, The Cancer
Genome Atlas (TCGA), The International Cancer Genome
Consortium (ICGC) and the NCI's Therapeutically Applic-
able Research to Generate Effective Treatments (TARGET)
are collecting samples in hundreds of patients. As diverse
high throughput data from large scale projects become
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available, there is a growing need of methods to (1) inte-
grate and (2) extract the biologically relevant information.
In this paper, we present a Bayesian framework aiming to
identify candidate genes implicated in oncogenesis combin-
ing copy number and point mutation data. MutComFocal
is a method based on the concept that small focal alter-
ations are more informative than large chromosomal ab-
errations. Compared to methods based only on recurrent
copy number alterations, MutComFocal is able to pin-
point candidate driver genes in regions encompassing
large genomic alterations.
We have applied MutComFocal to CNV and point mu-

tation data in DLBCL. Apart from previously reported
genes, MutComFocal has identified several potential novel
genes that may be involved in DLBCL development:
ARID1B, ROBO2 and MRS1 as candidate tumor suppres-
sors and KLHL6, IL31 and LRP1 as candidate oncogenes.
Among them, ARID1B is a member of the SWI/SNF chro-
matin remodeler complex and has been implicated both
in transcriptional activation and repression by chromatin
remodeling [15]. It is found deleted in 24.4% of the samples
and mutated in 6.2%. Other members of the SWI/SNF
complex are also found mutated (ARID1A with inactivat-
ing mutations in 4.1% cases) and deleted (SMARCA4
deleted in 10.3% of cases) suggesting the possible involve-
ment of the SWI/SNF complex in DLBCL.
The application of MutComFocal to other tumor types

is straightforward. MutComFocal provides not only a
method for integrating somatic point mutations and
copy number alterations, but a general Bayesian frame-
work that can be easily extended to other types of data.
Methods
Given a genome, successive lesions altering the function
of the genome’s component genes may eventually result
in expression of a novel phenotype, e.g. cancer. In this
work, lesions can be copy number gains/amplifications,
deletions, or mutations. Eventually the genome accumu-
lates several lesions and expresses the novel phenotype if
one of them includes a driver gene. We equate the geno-
type resulting from a sequence of lesions with the genes
altered by those lesions. We observe the genotypes of
genomes that are known to express the novel phenotype
and our goal is to recover the genes driving the geno-
type’s selection. We define two scores to measure the
importance of a given gene: a focality and a recurrence
score. The focality score is local in nature and depends on
the sizes of the lesions which contain the gene, while the
recurrence score is global in nature and depends on the
total number of genes altered in a sample. The formal de-
scription is formulated within the Bayesian framework,
and the two scores are in fact the two posterior distribu-
tions for the likelihood that a particular gene drives the
phenotype, derived correspondingly from local and global
priors for that event. The details are given below.

Mutation
In the MutComFocal framework, a genomic lesion is
represented by the set of genes altered by that lesion. A
lesion M is a result of a random process with a given
distribution Pm (M), which specifies the probability of
occurrence of the lesion M due to mutation. Let S =
{M1,⋯,Mt} be a set of disjoint lesions representing all
the lesions occurring in a particular sample. The geno-
type U S resulting from the set S consists of all genes
appearing in the lesions in the set S, i.e. U S ¼ Ui Mi .
The set S is distributed according to a given distribution
Pm (S), which specifies the probability of occurrence of
the lesions in the set S due to mutation. The exact
shapes of the mutation distributions for lesions and sets
of lesions are not relevant for this work and will not be
discussed further.

Selection
Consider lesions of a fixed type: gain/amplification, dele-
tions, or mutations. To model selection we assume that
the genotype resulting from a disjoint set of such lesions
S = {M1,⋯,Mt} expresses the phenotype when a lesion
in the sequence contains a driver gene. We consider two
possibilities for the posterior probability that a given
gene D is a driver of the phenotype, given that the geno-
type of the set S expresses the phenotype: a global pos-
terior and a local posterior. To obtain the two posteriors
we define first the likelihood that a lesion M is a driver
lesion given that D is a driver gene as

L MjDð Þ deff Pm Mð Þ:δ D ∈Mð Þ;

where δ(D ∈ M) is 1 if the lesion M includes the gene D
and 0 otherwise, with corresponding posterior

P DjMð Þ ¼ δ D ∈Mð Þ:Pd Dð ÞX
G∈M

Pd Gð Þ ;

where Pd (D) is the prior probability that D is a driver
of the phenotype. We similarly have the likelihood that S
expresses the phenotype, assuming that lesion M is a
driver, and the corresponding posterior as

L SjMð Þ deff Pm Sð Þ:δ M ∈ Sð Þ and

P MjSð Þ ¼ δ M ∈ Sð Þ:Pd Mð ÞX
i
Pd Mið Þ ;

where Pd (M) is the prior that M is a driver lesion and δ(M
∈ S) is 1 if the set S includes the lesion M and 0 otherwise.
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The posterior that the gene D is a driver gene, assuming
that the genotype of the set S expresses the phenotype, is

defined as P DjSð Þ deff
X

i
P D Mij Þ:P Mi Sj Þðð . To obtain

the global posterior Pg(D|S) we assume that Pd(M)∝
P

G ∈

MP
d(G) in which case

Pg DjSð Þ ¼ δ D ∈ U Sð Þ:Pd Dð ÞX
G∈US

Pd Gð Þ deff R D Sj Þ;ð

For the local posterior Pl(D|S) we assume that Pd

(M)∝ 1 and obtain

Pl DjSð Þ ¼
X

i

δ D ∈Mið Þ:Pd Dð Þ
t:
X

G∈Mi
Pd Gð Þ deff F D Sj Þð

We refer to the global posterior R(D|S) as a recurrence
score and to the local posterior F(D|S) as a focality score.
Assume a uniform distribution for the prior probability

Pd (D) that gene D is a driver. If the gene D does not ap-
pear in the genotype of the set S, then R(D|S) = F(D|S) = 0.
Otherwise, if K is the number of genes in the genotype of
the set S and the gene D appears in a lesion of size L, then
R(D|S) = 1/K and F(D|S) = 1/(t · L). Thus, under the global
posterior, the genes from a set of lesions are assigned the
same probability of being a driver, independent of the
size of the lesions they belong to. Under the local poster-
ior, on the other hand, all lesions have an equal chance of
containing a driver, but once a lesion is fixed its genes
are equally likely to drive the phenotype. Hence, recur-
rence scores all genes in a genotype equally while focality
scores the genes depending on the size of the lesions they
belong to, so that genes from smaller lesions score higher.
Recurrence and focality scores are computed separ-

ately for each of the three types of lesions. Note that for
mutations, the recurrence and focality scores are equal,
because every mutation affects a single gene. Thus for
every gene in the sample we have 5 scores: Ramp, Famp,
Rdel, Fdel, and Rmut.
We extend the above ideas to incorporate various copy

numbers for deletions/amplification or many mutations
per gene for mutations by modeling lesions as a pair
M =(C,N) where C is a positive real number and N is a
set of genes. In the case of deletions/amplifications, C is
the number of copies lost/gained by the lesion. We mod-

ify the recurrence score so that Pd Mð Þ∝C:
X

G∈N

Pd Gð Þ
and the focality score so that Pd(M)∝ C. This way we
obtain

R DjSð Þ deff

X
i
Ci:δ D ∈Nið Þ:Pd Dð Þ

X
i
Ci:

X
G∈Ni

Pd Gð Þ and

F DjSð Þ deff
X

i

CiX
j
Cj

: δ D ∈Nið Þ:Pd Dð ÞX
G∈Ni

Pd Gð Þ :

Genotype data from several samples
So far our discussion has focused on the lesions observed
in a single sample, and we have defined the recurrence
and focality scores as two posterior distributions over the
genes. To combine genotype data from several samples,
we obtain an empirical prior P∞ (D), defined below, suit-
able to the observed samples.
Consider the observation that a prior distribution P0 (D)

and the likelihood probability P(S|D) imply a posterior
Pp
0 D Sj Þð , from which we can obtain a distribution P1 (D)

by summing over S in the following way:

P1 Dð Þ deff
X

S

Pp
0 D Sj Þ:P Sð Þ;ð

where P(S) is a distribution from which the samples were
generated. Iterating this process we obtain distributions Pi
(D), i = 1, 2, which converge to a fixed point P∞(D). Since

P Sð Þ ¼
X

D

P S Dj Þ:P1 Dð Þ;ð

the prior P∞ (D) has the property that together with the
likelihood function it predicts the data perfectly.
In practice, obtaining P∞ (D) by the above iterative

procedure is prevented by two obstacles: first, the distri-
bution P (S) is not available and, second, iterating to in-
finity is not viable. To overcome the first obstacle, we
substitute the iteration with its empirical analogue

Pjþ1 Dð Þ deff
1
T

X

i

Pp
j D Sij Þ;ð

where S1,⋯, ST are the observed samples. The second obs-
tacle is resolved by repeating the above process a suffi-
ciently high number of times rather than to infinity. Thus,
as a stopping criterion we use the Kullback–Leibler diver-
gence as a measure of distance between two consecutive
members of the sequence of distributions and stop as soon
as the divergence is less than a fixed amount.

Defining gene tiers
A posterior distribution P (D) over the genes obtained
by the methods described above implies an ordering of
the genes such that the genes with highest posterior
probability receive our highest confidence to be drivers
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of the phenotype. For the purpose of incorporating this
ordering into further analyses it is beneficial to discretize
it into a small number of tiers. To achieve this we use
the entropy H (P) of the distribution

H Pð Þ ¼ �
X

D

P Dð Þ: log2 P Dð Þ

Let P1 = P and declare all genes which have P1 Dð Þ >
2�H P1ð Þ to be in the 1st tier. Next we define the distribu-
tion P2 (D) to be zero for the genes which were declared
to be in the 1st tier and equal to P1 (D) for rest, and
normalize it to sum to 1. We use P2 (D) and its entropy
to define the 2nd tier genes. This process is repeated
until there are no more genes to consider.
This procedure is motivated by the property of entropy

to be 0 iff P1 (D) is focused on a single gene and log2N iff
P1 (D) is uniform over the genes (N is the total number of
genes). Thus, intuitively, we can think of a distribution
with entropy h as being uniform on 2h genes. This intui-
tive statement is made more precise by noting that for any
distribution P (D) and ε > 0, by Markov’s inequality in
probability theory, we have that

X

P Dð Þ≤2� 1þεð Þ∙H Pð Þ
P Dð Þ≤ 1

1þ ε
:

Hence genes with P(D) > 2− (1 + ε) ·H(P), of which there
can be at most 2(1 + ε) ·H(P), contain at least 1–1/ (1+ε) of
the weight of the distribution P (D).
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