
Real-Time Syst (2007) 36: 159–198
DOI 10.1007/s11241-007-9013-6

Predictable real-time software synthesis

Jinfeng Huang · Jeroen Voeten · Henk Corporaal

Published online: 28 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Formal theories for real-time systems (such as timed process algebra,
timed automata and timed petri nets) have gained great success in the modeling of
concurrent timing behavior and in the analysis of real-time properties. However, due
to the ineliminable timing differences between a model and its realization, synthesiz-
ing a software realization from a model in a predictable way is still a challenging re-
search topic. In this article, we tackle this problem by solving a set of sub-problems.
The solution is based on the theoretical results for property prediction proposed in
Huang et al. (2003, Real-time property preservation in approximations of timed sys-
tems. In: Proceedings of 1st ACM and IEEE international conference on formal meth-
ods and models for codesign. IEEE Computer Society, Los Alamitos, pp 163–171)
and Huang (2005, Predictability in real-time system design. PhD thesis, Eindhoven
University of Technology, The Netherlands), where quantitative property relations are
established between two absolute/relative “close” real-time systems. This theory ba-
sically implies that if two systems are “close”, they enjoy “similar” properties. These
results cannot be directly applied in practice though, because a model and its realiza-
tion typically have infinitely large absolute and relative timing differences. We show
that this infinite time gap can be bridged through a sequence of carefully constructed
intermediate time domains. Then the property-prediction results can be applied to any
pair of adjacent time domains in the sequence. Consequently, real-time properties of
the implementation can be predicted from the model. We propose two parameter-
ized hypotheses to characterize the timing differences in the sequence and to guide
a correctness-preserving design process. It is shown that these hypotheses can be in-
corporated in a concrete tool set. We demonstrate the feasibility of the predictable
synthesis approach through the design of a railroad crossing system.

J. Huang (�) · J. Voeten · H. Corporaal
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: j.huang@tue.nl; jinfeng.huang@gmail.com

J. Voeten
Embedded Systems Institute, Eindhoven, The Netherlands

160 Real-Time Syst (2007) 36: 159–198

Keywords Real-time systems · Formal methods · Program synthesis

1 Introduction

In the past decade, many formal theories to construct models for real-time systems
have been proposed in academic fields. Examples include timed automata (Alur and
Dill 1994), timed process algebra ATP (Nicollin and Sifakis 1994) and timed petri
nets (Stotts and Pratt 1985), just to mention a few. These formalisms have gained
great success in the analysis of real-time systems at a high level of abstraction. To
apply these formal theories in industrial environments, modeling languages based on
formal theories have been proposed. These languages possess the merits provided by
formal theories. Furthermore, they provide more facilities (such as data expressions)
to describe real-time systems in detail and bring models closer to realizations. Exam-
ples of these modeling languages are timed automata extended with data types and
tasks (Larsen et al. 1997; Amnell et al. 2003), SDL-2000 based on distributed real-
time ASM (Glasser et al. 2003), Ptolemy (in the CSP domain) based on timed CSP
(Smyth 1998), and POOSL (van der Putten and Voeten 1997) based on timed CCS.

In the timing semantics of these formal theories and modeling languages, actions
are often assumed to be instantaneous. This assumption brings many benefits to the
modeling and the analysis of real-time systems:

• Concurrent processes do not compete for time resources with each other, since the
execution of actions does not consume time. Therefore the timing behavior of each
process is left unchanged when different processes are integrated.

• Monitoring (or analysis) code does not consume execution time. Hence, the timing
behavior of the monitoring code does not interfere with the timing behavior of the
monitored system.

• Adding design details to or removing design details from a part of a system has no
influence on the computation time of the other parts of the system. This reduces
system design complexity, since abstractions or refinements can be performed lo-
cally.

• The timing behavior of the system is not affected by techniques such as caches and
pipelines adopted by the underlying platform.

1.1 Problem illustration

Although the assumption that actions are instantaneous offers many benefits for mod-
eling and analyzing real-time systems, a smooth path is still lacking to generate the
realization from its model while preserving the desired properties. This is demon-
strated by the following example.

Example 1 Consider a controller for a flash board showing 4 consecutive letters
‘IEEE’. A possible design solution to the controller is to use three parallel processes I,
E and S. I emits letter I every 0.3 seconds, E emits letter E every 0.1 seconds and S
issues four blank spaces every 0.3 seconds to erase the letters. The three processes
start from 0.01, 0.02 and 0.25 seconds respectively.

Real-Time Syst (2007) 36: 159–198 161

Fig. 1 The IEEE flashboard controller example

Fig. 2 The difference between timing semantics

We made a model of the system using the SDL-2000 language in the TAU G2 tool
from Telelogic, where actions are performed instantaneous (Glasser 1998). A timed
state-transition diagram of the model is given in Fig. 1(a), where x is a clock used
to express timing constraints on actions (or events) and x := 0 denotes that x is reset
to 0. Based on the timing semantics of the model (exemplified in Fig. 2(a)), it is easy
to see that the model performs correctly. Figure 1(b) gives the output of a realiza-
tion automatically generated by TAU G2. The figure shows that after some execution
time, a wrong output sequence is observed. The inconsistency between the model and
the realization can be attributed to the difference between the timing semantics of the
modeling language and that of the implementation language. In the model timing is
based on a “virtual” notion of time, where the execution of actions take no “virtual

162 Real-Time Syst (2007) 36: 159–198

time”. This “virtual time” concept coincides with the notion of global time in many
formal frameworks (such as Alur and Dill 1994 and Henzinger et al. 1992) which
assign time to states or actions in a trace. In the realization, each action takes some
amount of “physical time” to execute and timing expression “delay t” should be inter-
preted as “at least t seconds” due to the scheduling overhead and the execution time
consumed by other tasks. A comparison of the two different timing semantics (i.e. in
the model and in the realization) is illustrated in Fig. 2. We can see that durational
actions can result in accumulated timing errors for each single process, changing the
relative timing relations between concurrent real-time processes in Fig. 2(b).

The example illustrates that unexpected behaviors can be observed in the real-
ization. The primary reason for this is that the semantics of the realization does not
respect the semantics of the model. Consequently one cannot reliably draw conclu-
sions about the realization, based on the analysis of the model.

1.2 Solution sketch

To solve the problem illustrated in the previous subsection, we need a systematic way
to deal with timing differences between the model and the realization. In particular
we would like to generate the realization on the basis of the timing semantics of the
model. More specifically, both the model and the realization are considered to be sets
of traces, each of which represents an execution. In our approach any trace of the re-
alization is generated from a trace in the model implying that they have the same state
(or action) sequence. Furthermore, the times of occurrences of corresponding states
(or actions) in both traces are synchronized. Consequently, the qualitative properties
(such as safety properties) of the realization are the same as those of the model and
the quantitative properties (such as deadline properties) of the realization are “close”
to those of the model.

Since timeliness is an essential feature of real-time systems, it is important to
quantify the “closeness” between the quantitative properties of a model and its real-
ization, so that we can predict whether the realization is correct. In (Huang 2005), we
define absolute and relative timing proximity between traces, on which property re-
lations between traces are quantitatively established.1 However, these results cannot
be applied directly in a synthesis approach, due to the following facts.

• The absolute and relative timing proximities are defined on the basis of the ob-
servation times of states (or actions). It is often problematic to measure them in
practice.

• The model (in the virtual time domain) and the realization (in the physical time
domain) often have infinitely large absolute and relative timing proximities. Note
that the concept of physical time is more complex than we have explained thus
far. The physical time concept used here denotes the time of the system environ-
ment, whereas physical time synchronized with the virtual and physical time, as
explained before, refers to the time of a hardware clock. A detailed discussion is
found in Sect. 4.

1In (Huang et al. 2003) we proved a special case based on absolute timing differences. The general results
based on both absolute timing differences and relative timing differences can be found in (Huang 2005).

Real-Time Syst (2007) 36: 159–198 163

To address these issues, we introduce the concept of clocks to characterize time
domains. An untimed trace observed in different time domains can result in different
timed traces. Then the absolute and relative timing proximities between these traces
can be estimated by the clock deviation or drift, which can be known in practice.
Based on the clock concept, we bridge the timing gap between the model and the
realization by introducing a number of intermediate time domains. Between each pair
of adjacent time domains, we use the results of (Huang 2005) for property prediction.

In short, the synthesis approach proposed in this article has the following features.

• A unified formal model is used to analyze both quantitative and qualitative proper-
ties.

• By construction, the synthesis approach ensures that the realization has the same
qualitative properties as the model.

• The synthesis approach supports prediction of quantitative properties of the real-
ization based on those of the model.

• The synthesis approach has been incorporated in a tool set (POOSL + Rotalumis)
demonstrating the feasibility of the approach.

1.3 Organization

The remaining part of the article is structured as follows.
In Sect. 2, we summarize the theoretical results proven in (Huang 2005) for pre-

dicting real-time system properties. More specifically, we consider a real-time system
to be a set of timed state sequences each of which represents an execution. For any
two timed state sequences with the same sequence of observable states but with dif-
ferent time durations of corresponding states, properties of one sequence can be pre-
dicted from those of the other based on their absolute or relative timing proximities.

In our synthesis approach, the same state (or action) sequence is observed in dif-
ferent time domains resulting in different timed state sequences. For instance, a se-
quence of states (or actions) is observed in the virtual time domain in the model and
is observed in the physical time domain in the realization. To know the distance be-
tween these timed state sequences, we need to know the time duration of each state in
the sequence, which is not always possible in practice. In Sect. 3, we define the con-
cept of clocks to specify time domains. We show that the proximity of corresponding
timed state sequences observed in different time domains can be estimated on the
basis of clock deviation or drift. Furthermore, we prove in Sect. 3 that the infinitely
large absolute and relative distances between two time domains can be split into sev-
eral bounded absolute and relative distances by introducing proper intermediate time
domains.

In Sect. 4, we investigate the concrete time domains involved in real-time software
synthesis. As illustrated in Fig. 3, we assume that the model operates in the virtual
time domain, the realization is observed in a digital hardware time domain driven by
the clock of the target platform, and that the realization is also observed in a reference
time domain, in which it interacts with the environment. By using the concepts of the
previous section, an auxiliary time domain is introduced between the digital and ref-
erence time domains to bridge their (infinite) timing gap. Since the distances between
these time domains have a direct impact on the property prediction of the realization,

164 Real-Time Syst (2007) 36: 159–198

Fig. 3 Time domains in real-time system design

we also discuss how to construct an “optimal” auxiliary time domain such that the
prediction results are tight.

In Sect. 5, we summarize the timing relations discussed in the previous section
into two parameterized hypotheses. The absolute hypothesis assumes that the ab-
solute timing differences between the model and the realization in the auxiliary time
domain are bounded. The parameters of the absolute hypothesis capture the bounds
of the absolute timing differences. The absolute timing differences consist of two
components as shown in Fig. 3. The relative hypothesis assumes that the realization
in the reference time domain has bounded relative timing differences to that in the
auxiliary time domain (see Fig. 3). The parameters of the relative hypothesis capture
the bounds of relative timing differences.

In Sect. 6, we demonstrate that the two hypotheses can indeed be incorporated
into a software synthesis tool set. The POOSL language which semantics is based
on an extension of timed CCS is used to model concurrent real-time systems. The
Rotalumis tool transforms a POOSL model to its realization such that both the model
and the realization have the same observable behavior. Therefore, the realization has
the same qualitative real-time properties as the model by construction. Furthermore,
by estimating the parameters of both hypotheses, we can predict the quantitative real-
time properties of the realization and ensure its correctness.

Section 7 applies the proposed synthesis approach to design a railroad crossing
system. Sections 8, 9 and 10 discuss related work, open issues and conclusions re-
spectively.

2 Property relations between real-time systems

In this section, we briefly summarize the theoretical results proven in (Huang 2005),
the intuition of which is sketched in Fig. 4. In this figure, real-time system S2 is
“close” to S1. If it can be verified that S1 satisfies a (quantitative or qualitative) real-
time property, then a “corresponding” property satisfied by S2 can be predicted. In
(Huang 2005), the figure is completed based on two different proximity measures
between real-time systems.

Real-Time Syst (2007) 36: 159–198 165

Fig. 4 Real-time property
relations between two
neighboring real-time systems

2.1 Measuring proximity between real-time systems

A real-time system can be considered to be a set of traces, each of which represents
an execution of the system. Each trace (called timed state sequence) consists of a
sequence of duration states (δi, Ii), where δi is the state observed during non-empty
time interval Ii . For example, a timed state sequence of the ‘IEEE’ flashboard con-
troller in Example 1 is:

(∅, [0,2.01)), (‘I’, [2.01,2.02)), (‘IE’, [2.02,2.12)),

The length of Ii (denoted as |Ii |) is called the time-duration of state δi . The left-
end of Ii (denoted as l(Ii)) is called the time-stamp of the state transition from δi−1
to δi . Alternatively, a timed state sequence can be viewed as a pair of sequences: a
state sequence δ̄ formed by states δi , and a time interval sequence Ī formed by time
intervals Ii . It is easy to see that the length (number of states) of δ̄ is identical to the
length of Ī , which is denoted as n(Ī).2

Proximity function Ds
a is defined to measure the absolute difference between two

timed state sequences based on their corresponding time stamps.

Definition 1 For any pair of timed state sequences τ̄ and τ̄ ′ with the same state
sequence, Ds

a(τ̄ , τ̄ ′) = [x, y], where x = inf{l(I ′
i) − l(Ii) | i < n(Ī)} and y =

sup{l(I ′
i) − l(Ii) | i < n(Ī)}.

Ds
a(τ̄ , τ̄ ′) reflects that the state transitions in τ̄ ′ are at least x seconds and at most

y seconds later than their corresponding transitions in τ̄ . If y < 0, the transitions in
τ̄ ′ are always earlier than their corresponding transitions in τ̄ . It is worth noticing
that proximity function Ds

a is directional. That is, Ds
a(τ̄ , τ̄ ′) is typically not equal to

Ds
a(τ̄

′, τ̄). However, it is easy to prove that Ds
a(τ̄ , τ̄ ′) = [x, y] implies Ds

a(τ̄
′, τ̄) =

[−y,−x].

Example 2 The two timed state sequences τ̄ and τ̄ ′ shown in Fig. 5 have the same
state sequence with five state transitions. It is easy to calculate that sup{l(I ′

i) −
l(Ii) | i < 5} = 0.1 and inf{l(I ′

i) − l(Ii) | i < 5} = −0.2. Therefore, Ds
a(τ̄ , τ̄ ′) =

[−0.2,0.1].

Since a real-time system is seen as a set of timed state sequences, the proximity be-
tween real-time systems is defined on the basis of the proximity between their timed
state sequences. Definition 2 gives a proximity measure based on absolute timing
differences.

2n(Ī) can be finite or countable infinite.

166 Real-Time Syst (2007) 36: 159–198

Fig. 5 Two finite timed state
sequences of Example 2

Definition 2 Let S1 and S2 be two real-time systems. S2 is called absolute [x, y]-
close to S1 iff for any timed state sequence τ̄ ′ in S2, there exists a sequence τ̄ in S1,
such that Ds

a(τ̄ , τ̄ ′) ⊆ [x, y].

Similar to the absolute case, proximity function Ds
r is defined to measure the

relative timing difference between two timed state sequences.

Definition 3 For any pair of timed state sequences τ̄ and τ̄ ′ with the same state

sequence, Ds
r (τ̄ , τ̄ ′) = [x, y], where x = inf{ |I ′

i ||Ii | | i < n(Ī)} and y = sup{ |I ′
i ||Ii | | i <

n(Ī)}. In case that both |I ′
i | and |Ii | are zero (or ∞), the value of

|I ′
i ||Ii | is left undefined.

In the above definition,
|I ′

i ||Ii | gives the ratio between the durations of the i-th state
in τ̄ ′ and τ̄ . Assume we use two different clocks to measure the duration of each state
δi and correspondingly obtain two timed state sequences τ̄ and τ̄ ′. Then

|I ′
i ||Ii | is also

the ratio between the average change rates of the clocks during the observation of
state δi .

Example 3 Consider the two timed state sequences shown in Fig. 5. We can easily

calculate that sup{ |I ′
i ||Ii | | i < 5} = 6

5 , and that inf{ |I ′
i ||Ii | | i < 5} = 8

11 . Hence, Ds
r (τ̄ , τ̄ ′) =

[8
11 , 6

5].

Similar to the absolute case, we can now define a proximity measure between real-
time systems for the relative case.

Definition 4 Let S1 and S2 be two real-time systems. S2 is called relative [x, y]-close
to S1 iff for any timed state sequence τ̄ ′ in S2, there exists a sequence τ̄ in S1, such
that Ds

r (τ̄ , τ̄ ′) ⊆ [x, y].

2.2 Specifying real-time properties

We choose linear temporal logic MTL (Koymans 1990) to express real-time proper-
ties. MTL formulas are formed by the following syntactic phrases.

ϕ ::= p | ¬p “not” | ϕ1 ∨ϕ2 “or” | ϕ1 ∧ϕ2 “and” | ϕ1UI ϕ2 “until” | ϕ1VI ϕ2 “unless”.

Here p is an “atomic proposition” and time-bound I is an interval of nonnegative
reals. If I is [0,∞), we omit time-bound I of temporal operators.

The MTL logic presented here is actually a kind of “negation-free” logic, where
the negation is only allowed in front of atomic propositions. However, any conven-
tional MTL formula, which has operators like negation and implication, can always

Real-Time Syst (2007) 36: 159–198 167

Fig. 6 Property relations between real-time systems

be converted to a “negation-free” formula. More information can be found in (Huang
2005). Two commonly used operators �ϕ (“always”) and ♦ϕ (“eventually”) can also
be represented as falseVϕ and trueUϕ respectively.

The MTL logic can express a wide range of real-time properties. For example,
consider a time bounded response property ϕ, expressing that every stimulus req is
always followed by a response ack within 2 to 6 seconds. ϕ can be formalized as
�(r → ♦[2,6]a), where r and a represent atomic propositions “a req is observed” and
“an ack is observed” respectively.

To establish the property relations between real-time systems, functions R
ε�
a and

R
[x,y]
r are defined over MTL formulas (Huang 2005). Loosely speaking, R

ε�
a (ϕ) is

the formula that extends the time bounds of until operators and shrinks the time
bounds of unless operators in ϕ by an absolute deviation of ε. As an example, con-
sider response property ϕ defined previously. Then R

0.2�
a (ϕ) is the real-time property

�(r → ♦[2−0.2,6+0.2]a), which states that every stimulus req is always followed by

an ack response within 1.8 to 6.2 seconds. Function R
[x,y]
r changes the time bounds

in a formula with scale factors x and y. For example, R
[0.8,1.25]
r (ϕ) is the real-time

property �(r → ♦[2×0.8,6×1.25]a) stating that every stimulus req is always followed
by a response ack within 1.6 to 7.5 seconds.

2.3 Property relations between real-time systems

In this section, we present two theorems, which are proven in (Huang 2005). The
theorems are visualized in Fig. 6. Both theorems show that real-time properties of
one real-time system can be predicted from another based on their (absolute/relative)
timing differences. They serve as the theoretical basis to predict real-time properties
of the realization from those of the model.

Theorem 1 Let ϕ be an MTL formula. Let S1, S2 be two real-time systems, such that
S2 is absolute [x, y]-close to S1. If S1 |= ϕ, then S2 |= R

(y−x)�
a (ϕ).

Theorem 2 Let ϕ be an MTL formula. Let S1, S2 be two real-time systems such that
S2 is relative [x, y]-close to S1. If S1 |= ϕ, then S2 |= R

[x,y]
r (ϕ).

3 Proximity measures vs. time domains

In the previous section, we defined two proximity functions to measure the absolute
and relative proximity between two real-time systems. However, because the time du-

168 Real-Time Syst (2007) 36: 159–198

ration of each state during execution is not always possible to obtain, we cannot apply
these functions to measure proximities directly. Furthermore, the model and the real-
ization often have unbounded absolute and relative timing differences. For example,
two interleaved simultaneous actions (transitions) are observed at the same virtual
time point, while they are observed at different physical time points. Consequently,
the relative timing differences between the model and the realization are unbounded
in this case. Moreover, in practice, absolute timing differences between the model
and the realization can be unbounded too (see also Sect. 4).

To overcome these problems and apply the results given in Sect. 2 to real-time
software synthesis, we formally define the concept of clocks and demonstrate that
the absolute/relative distance between timing behaviors can be estimated by the clock
deviation and drift. Furthermore, we show that the infinite deviation and drift between
two clocks may be captured by several consecutive bounded deviations and drifts.

In the physical reality, time is often counted by a clock. Assume there exists a true
physical time, “which flows equably without relation to anything external” (Newton
1999/1687). Each clock C is used to measure the progress of the true physical time,
and can be considered to be a function which maps each time point t in the true
physical time domain T to another time domain Tc counted by C. In the following,
we define several concepts related to clocks.

Definition 5 Analog clock: An analog clock C is a function defined as:

C(t) =
∫ t

0
f (t ′) dt ′,

where f (t ′) is the change rate of C at true physical time t ′ (t ′ ∈ R≥0).

Definition 6 Digital clock: A Digital clock C is a function defined as:

C(t) = i · Δ, if t ∈
[

i∑
j=1

p(j),

i+1∑
j=1

p(j)

)
.

Here Δ is the step-width of the clock, which refers to the time elapsed between suc-
cessive ticks in the digital time domain, and step function p(i) represents the true
physical time progress during the i-th step of the clock. For brevity, s(i) abbreviates∑i

j=1 p(j) and denotes the time span of the first i steps in the true physical time
domain.

Several clock examples, visualized in Fig. 7, are as follows.

• Cp(t) = t . Cp is a perfect physical clock, and its change rate is f (t) = 1.

• Ca(t) = 2
3 t

3
2 . Ca is an analog clock, and its change rate is f (t) = t

1
2 .

• Cd(t) = i when t ∈ [1.5i,1.5(i + 1)). Cd is a digital clock. In this example, Δ = 1
and p(i) = 1.5 for all i, indicating that the true physical time advances 1.5 seconds
when clock Cd advances 1 second.

Real-Time Syst (2007) 36: 159–198 169

Fig. 7 Several clock examples

Definition 7 Clock deviation: For two clocks C1 and C2, the deviation of C2 w.r.t.
C1 at true physical time t is defined by the following function:

Ea
(C1,C2)

(t) = C2(t) − C1(t).

For example, in the previous clock examples, the clock deviation of Ca (and Cd) w.r.t.

Cp is calculated by Ea
(Cp,Ca)(t) = Ca(t) − Cp(t) = 2

3 t
3
2 − t and Ea

(Cp,Cd)(t) = i − t ,

when t ∈ [1.5i,1.5(i + 1)).

Definition 8 Clock drift: For two clocks C1 and C2, the drift of C2 w.r.t. C1 at true
physical time t is defined by the following function:

Er
(C1,C2)

(t) = lim
δ→0−

C2(t + δ) − C2(t)

C1(t + δ) − C1(t)
.

Given two analog clocks C1 and C2 with change rate functions f1(x) and f2(x)

respectively, their clock drift can be expressed equivalently by Er
(C1,C2)

(t) = f2(t)
f1(t)

.

For example, Er
(Cp,Ca)(t) = t

1
2

1 = t
1
2 . It is easy to see that due to the discrete nature

of digital clocks, the clock drift between two digital clocks or one digital clock and
one analog clock is often unbounded.

In literature, the clock drift is also defined on the basis of the total elapsed times
of two clocks (Gupta et al. 1997). In this way, the clock drift between two clocks can
always be bounded by clock synchronization in practice. However, this clock drift
cannot result in a meaningful property-preservation relation. This is mainly due to
the fact that the property-relation between two timed state sequences is determined
by local time drifts, which cannot always be bounded by the clock synchronization.
A detailed discussion about the choice of the definitions for clock drift can also be
found in (Huang 2005).

Next, we introduce the concept of time domain based on the clock concept. Basi-
cally, a time domain can be considered as a function assigning time values to untimed
behavior. In practice, the action is assigned a time value which is determined by a
clock. The clock measures quantitatively the evolution of the time domain. Conse-
quently, the absolute/relative timing differences between behaviors observed in two
different time domains can be measured by the deviation and drift between clocks

170 Real-Time Syst (2007) 36: 159–198

of the two time domains. The following proposition shows this for the relative case.
A similar proposition can be proven for the absolute case.

Proposition 1 Let δ̄ be a state sequence. Further let τ̄ and τ̄ ′ be two timed state
sequences of δ̄ measured by two analog clocks C and C′ respectively. If clock drift
Er

(C,C′) is always in interval [a, b], then Ds
r (τ̄ , τ̄ ′) ⊆ [a, b].

Proof Assume δi is the i-th state in δ̄, and tl (t ′l) and tr (t ′r) are the left-end and
the right-end of the time duration of state δi counted by clock C (clock C′). Since
for all t , Er

(C,C′)(t) ∈ [a, b] (that is, a · fC(t) ≤ fC′(t) ≤ b · fC(t)), we know that
a · (tr − tl) ≤ (t ′r − t ′l) ≤ b · (tr − tl). By the definition of function Ds

r , we can see that
Ds

r (τ̄ , τ̄ ′) ⊆ [a, b]. �

The following propositions show that it is possible to establish property relations
between timing behaviors observed in two time domains with infinitely large clock
deviations and drifts. Proposition 2 reveals that an analog clock and a digital clock can
always be bridged by a bounded clock drift and deviation if the ratio between corre-
sponding changes of the digital and analog clocks during each clock step is bounded.

Proposition 2 Let C be a digital clock with step-width Δ and step function p(i), and
let C′ be an analog clock with change rate f (t). Assume for any i,

∫ s(i+1)

s(i)
f (x) dx

Δ
∈ [a, b], where s(i) =

i∑
j=1

p(j).

Then there exists an analog clock Ca such that Ea
(C,Ca)(t) ∈ [0,Δ] and Er

(Ca,C′)(t) ∈
[a, b].

Proof Let ri =
∫ s(i+1)
s(i)

f (x) dx

Δ
. We can construct an analog clock Ca(t) with change

rate

fa(t) =
{

f (t)
ri

ri �= 0 and t ∈ [s(i), s(i + 1)),
Δ

s(i+1)−s(i)
ri = 0 and t ∈ [s(i), s(i + 1)).

It is easy to check that
∫ s(i+1)

s(i)
fa(t) dt = Δ. Therefore, when t ∈ [s(i), s(i + 1)), we

have

Ea
(C,Ca)(t) =

i−1∑
j=0

∫ s(j+1)

s(j)

fa(x) dx +
∫ t

s(i)

fa(x) dx − i · Δ

=
i−1∑
j=0

Δ +
∫ t

s(i)

fa(x) dx − i · Δ ≤
∫ s(i+1)

s(i)

fa(x) dx = Δ.

At the same time, we have that Er
(Ca,C′)(t) = ri (In the case that ri = 0, we know that

f (t) = 0 and fa(t) = Δ
s(i+1)−s(i)

. Therefore, Er
(Ca,C′)(t) = 0.). Now it is easy to see

that Ea
(C,Ca)(t) ∈ [0,Δ] and Er

(Ca,C′)(t) ∈ [a, b]. �

Real-Time Syst (2007) 36: 159–198 171

Proposition 2 can be used to bridge a digital and an analog clock (which always
have an infinitely large drift). In particular the proposition covers the case when the
clocks have an infinitely large deviation as well. This is demonstrated by the follow-
ing example.

Example 4 Let C(t) = i when t ∈ [1.5i,1.5(i + 1)], and let C′(t) = t . It is easy to
see that both Ea

(C,C′) and Er
(C,C′) are unbounded. We can construct an analog clock

Ca(t) = 1.5t . It is easy to see that Ea
(C,Ca) ∈ [0,1.5] and Er

(Ca,C′) ∈ [1.5,1.5].

The following proposition covers the case of two analog clocks. Proposition 3
states that two analog clocks can always be bridged by a bounded clock drift and
deviation if the ratio between corresponding changes of the two clocks during some
fixed period is bounded.

Proposition 3 Let C be an analog clock with change rate f (t), and let C′ be an
analog clock with change rate g(t). Further let δ be a positive real. If for any i ≥ 0
such that ∫ (i+1)·δ

i·δ g(x) dx∫ (i+1)·δ
i·δ f (x) dx

∈ [a, b],

then there exists an analog clock Ca such that Ea
(C,Ca)

∈ [0, δ] and Er
(Ca,C′) ∈ [a, b].

In the following section, we establish the concrete time domains involved in real-
time system synthesis. We apply the results of this section to bridge these time do-
mains, such that in the end real-time properties of the realization can be quantitatively
predicted from those of the model.

4 Concrete time domains in real-time software synthesis

As we have mentioned previously, the real-time properties of a system are often ana-
lyzed in the virtual time domain. In reality, different parts of a real-time system may
be timed by different clocks. For example, a real-time controller is usually timed
by a digital hardware clock, while the physical environment is usually timed by an
analog physical clock. In general, a specific reference clock is chosen, such that real-
time properties of different parts can be checked in a uniform time domain of interest
(denoted as the reference time domain in this article). Note that the reference time do-
main can be the true physical time domain mentioned in Sect. 3 or any other physical
time domain of interest.

To reason about the real-time properties of a realization based on those of the
model, we must establish a proper relation between the timing behavior observed
in the virtual time domain and the timing behavior observed in the reference time
domain. In this section, we achieve this by constructing several intermediate time
domains. To simplify the following discussion, we assume that the realization of the
controller is timed by a digital hardware clock and that the reference time is analog.
The result based on these assumptions can be easily adapted (based on Propositions 2
and 3) to other situations, e.g. when the reference clock is digital.

172 Real-Time Syst (2007) 36: 159–198

Fig. 8 The timing relation between different time domains

We explore the timing differences between the virtual time domain and the refer-
ence time domain by taking several steps (see Fig. 8). We first consider the absolute
timing differences between the virtual time domain and the digital hardware time
domain. Then, we address the timing differences between the digital hardware time
domain and the reference time domain. This step is further decomposed into the ab-
solute timing differences between the digital hardware time domain and an auxiliary
time domain, and the relative timing differences between the auxiliary time domain
and the reference time domain.

4.1 Timing differences between the virtual time domain and the digital hardware
time domain

A model is executed in the virtual time domain, where actions are instantaneous. On
the other hand, the realization is executed on a computation platform in the digital
hardware time domain, where any action takes up a non-zero number of clock cy-
cles. Due to the uncontrollable physical time, the activation times of actions cannot
always be perfectly accurate w.r.t. those specified in the model. Furthermore, due
to the techniques that are used to boost the average computing performance of the
platform, such as caching, pipelining and memory management techniques, the exact
execution times of actions in this digital hardware time domain is difficult to predict.
For any action, an absolute timing difference (also called timing deviation) exists be-
tween its virtual time and its digital hardware time. For example, in Fig. 8, if action α

is observed at virtual time t2, we can only guarantee that α is observed within some
interval [t2 + d1, t2 + d2] (d1 ≤ d2) in the digital hardware time domain.

Real-Time Syst (2007) 36: 159–198 173

Fig. 9 The auxiliary analog clock

4.2 Timing differences between the digital hardware time domain and the reference
time domain

The accuracy of a digital hardware clock is affected by discretization and a number of
physical factors such as temperature, supply voltage, shock and vibration. As a result,
the timing of actions in a realization based on a digital hardware clock is typically
not identical to the timing based on a reference clock (e.g. the environmental time
or the true physical time). Since the absolute timing differences between them can
grow without bounds during execution, it is not effective to measure these timing dif-
ferences based on the absolute case. On the other hand, the ratio between the change
rate of a digital clock and that of an analog clock is unbounded too (see the clock drift
discussion in Sect. 3). Therefore it is not effective to measure these timing differences
based on the relative case either. To solve this problem, we can construct an auxiliary
clock Ca , which has a bounded deviation w.r.t. the digital hardware clock Cdh and a
bounded drift w.r.t. the reference clock Cr . A straightforward solution is to construct
the auxiliary clock in the same way as the clock (Ca) in the proof of Proposition 2.
In this case, Ea

(Cdh,Ca)
(t) ∈ [0,Δ], where Δ is the step-width of the digital clock, and

Er
(Ca,Cr)

is determined by drift factor ri =
∫ s(i+1)
s(i)

f (x) dx

Δ
, where f (x) is the change

rate function of Cr . Figure 9(a) shows an example of the auxiliary clock Ca for a
digital hardware clock Cdh and a reference clock Cr . In Fig. 9(a), the reference clock
is assumed to be the true physical time. In this case, the relative timing differences
between Cr and Ca are the slopes of the dotted segments in the figure.

Example 5 Reconsider Example 1 and suppose that the third action of the controller
(sending out the second letter ‘E’) in the digital hardware time domain is observed
in time interval [0.12,0.12 + 0.001]. Assume further that the speed of the digital
hardware clock Cdh is 100 MHz (the step-width of Cdh is 10−8 seconds). Then we
can predict that the action is observed in time interval [0.12, (0.12 + 0.001) + 10−8]

174 Real-Time Syst (2007) 36: 159–198

in the auxiliary time domain. Suppose that the drift factor ri of Cdh can be up to 50%
(faster or slower) w.r.t. reference clock Cr . In other words, during each step of clock
Cdh, the average change rate of clock Cr is at most 1.5 and at least 0.5 times faster
than that of clock Cdh. Now, we can predict that the action is observed in time interval
[0.12 × 0.5, (0.12 + 0.001 + 10−8) × 1.5] in the reference time domain.

However due to physical uncertainties, the clock drift factors ri =
∫ s(i+1)
s(i)

f (x) dx

Δ

can be very large. As a result, the properties predicted for the realization can be
unacceptably far from those of the model. In the following we propose a solution to
obtain better prediction results.

The auxiliary clock mentioned previously is based directly on the step-width of
the digital hardware clock. But the auxiliary clock can also be constructed by choos-
ing a larger step-width (as shown in Fig. 9(b) where the derived step-width used to
construct the auxiliary clock consists of 5 digital hardware clock steps). This results
in a smaller relative time difference. To see this, assume we have digital hardware

clock C with step-width Δ and function s(i). Let ri =
∫ s(j+1)

s(j)
f (x) dx

Δ
and assume that

the step-width used to construct the auxiliary clock consists of k steps of C. Then we

have that r ′
i =

∫ s(k∗(i+1)
s(k∗i)

f (x) dx

k∗Δ
= 1

k
· (rk·i + rk·i+1 +· · ·+ r(k+1)·i−1). It is easy to prove

that min{rj | k · i ≤ j ≤ (k + 1) · i − 1} ≤ r ′
i ≤ max{rj | k · i ≤ j ≤ (k + 1) · i − 1}.

Consequently, the range of r ′
i is always within the range of ri .

As an example reconsider the IEEE flash controller. Assume that the step-width
used to construct the auxiliary clock consists of 108 digital hardware steps (1 second
in the digital hardware time domain). For most digital hardware clocks used in PC
platforms, the relative clock drift is around 10−5 seconds per second. So we can
safely assume the timing drift to be bounded by 10−3. At the same time, we assume
that the absolute timing deviations between the digital hardware and the auxiliary
clock should be no more than 10−3 seconds. Therefore, we can predict that the action
of sending out the second letter ‘E’ is observed in time interval [(0.12 − 10−3) ×
(1 − 10−3), (0.12 + 0.001 + 10−3) × (1 + 10−3)] in the reference time domain. This
yields a much tighter prediction result than in the previous case.

5 Hypotheses for real-time software synthesis

In the previous section, we have established the relation between the observation
times of an action in the virtual time domain and in the reference time domain. This
is accomplished by building a series of (absolute and relative) intermediate timing
domains (see Fig. 8). In this section, we summarize these timing differences into
two parameterized hypotheses. More specifically, the absolute [x, y]-hypothesis cap-
tures two absolute timing differences: one between the virtual and digital hardware
time domains and the other between the digital hardware and auxiliary time domains.
The relative [x, y]-hypothesis captures the timing differences between the auxiliary
and reference time domains. Consequently, if both hypotheses are satisfied, real-time
properties of the realization can be predicted from those of the model in two steps.

Real-Time Syst (2007) 36: 159–198 175

5.1 The absolute [x, y]-hypothesis

We showed that an action, which is observed at a certain time point in the virtual
time domain is typically observed at another time point in the auxiliary time domain.
Without careful treatment, the deviation between the observation times of an action
in the virtual time domain and in the auxiliary time domain can accumulate without
bounds during system execution. Even worse, these timing deviations may lead to
a different execution order of actions between the model and the realization, which
may result in faulty behaviors (see Fig. 1(b)). To avoid these problems, we propose
the absolute [x, y]-hypothesis to bound the absolute timing difference between the
model in the virtual time domain and the realization in the auxiliary time domain. By
doing so, we can predict the real-time properties of the realization (in the auxiliary
time domain) from those of the model. This is elaborated in the following.

We can use a timed action sequence to represent an execution of a real-time system
(either a model or a realization). Each timed action sequence can be considered as
a sequence of timed actions (αi, ti), where ti is the observation time of action αi .
A timed action sequence can alternatively be represented as a pair of sequences, an
action sequence (α0α1α2 . . .) and a time sequence (t0t1t2 . . .).

The absolute [x, y]-hypothesis requires that for any timed action sequence τ̄α of
the realization in the auxiliary time domain, the following conditions are satisfied:

(1) There exists a timed action sequence τ̄ ′
α of the model in the virtual time domain,

such that τ̄α and τ̄ ′
α share the same action sequence ᾱ.

(2) For each action in ᾱ, the deviation between its observation times in τ̄α and in τ̄ ′
α

must be within interval [x, y].
Parameters x and y in the hypothesis represent a lower respectively upper bound of
the absolute timing difference between two time domains.

In Sect. 2.3, we showed that a real-time property relation between two timed state
sequences can be established based on their absolute timing differences (see Theo-
rem 1). This relation reveals that real-time properties can be preserved (up to a de-
viation y − x) between two absolute [x, y]-close timed state sequences (or real-time
systems). The absolute [x, y]-hypothesis assumes that timed action sequences in the
auxiliary time domain are close to those in the virtual time domain based on their ab-
solute timing differences. Therefore, we need to examine property relations between
timed action sequences. This is achieved by the following line of reasoning.

• Convert timed action sequences to timed state sequences: A timed execution trace
of a system can be represented by either a timed state sequence or a timed action
sequence. It is easy to encode one form of representation into the other. One pos-
sibility to encode a timed action sequence into a timed state sequence is by letting
the observation of each action be an instantaneous state, and inserting a new dura-
tion state Φ between any two instantaneous states (Nicola and Vaandrager 1990).
For example, suppose a timed action sequence τ̄α is

(α1, t1)(α2, t2)(α3, t3) . . . (αi, ti)

A corresponding timed state sequence τ̄δ is

(Sα1 , [t1, t1])(Φ, I1)(Sα2 , [t2, t2],) . . . (Sαi
, [ti , ti])(Φ, Ii) . . . ,

176 Real-Time Syst (2007) 36: 159–198

where Ii is [ti , ti] if ti = ti+1 or [ti , ti+1) if ti < ti+1. Here Sαi
is a state containing

the single atomic proposition “αi is observed” and Φ is a state at which no atomic
proposition is observed.

• Relate the proximity between timed action sequences and the proximity between
their corresponding timed state sequences: Let τ̄α and τ̄ ′

α be two timed action
sequences, which share the same action sequence ᾱ. Assume τ̄δ and τ̄ ′

δ to be their
corresponding timed state sequences. If τ̄ ′

α is absolute [x, y]-close to τ̄α , then we
can easily derive that τ̄ ′

δ is absolute [x, y]-close to τ̄δ (see proximity function Ds
a

in Sect. 2.1). Consequently, by Definition 2, we know that if the absolute [x, y]-
hypothesis is satisfied, then the realization in the auxiliary time domain is absolute
[x, y]-close to its model in the virtual time domain.

• Preserve correctness between timing behaviors: By Theorem 1, if the realization
is absolute [x, y]-close to its model, and the model satisfies MTL property P , then
the realization satisfies property R

(y−x)�
a (P). Property R

(y−x)�
a (P) has the same

form as P , but its quantitative timing bounds have an absolute deviation of y − x

from those of P (see Sect. 2.3). Hence, real-time properties that hold in the virtual
time domain can be preserved in the auxiliary time domain by up to a deviation of
y − x, if the absolute [x, y]-hypothesis is satisfied.

In Sect. 6.3, we show how the absolute [x, y]-hypothesis can be incorporated in a
concrete synthesis tool.

Example 6 Reconsider Example 1. Suppose that the absolute [x, y]-hypothesis is
satisfied when synthesizing the IEEE flash board controller software and that [x, y] =
[0,0.001]. This indicates that the observations of actions in the auxiliary time domain
are always later than their corresponding observations in the virtual time domain, but
that the delay never exceeds 0.001 seconds. At the same time, the output letters on
the flash board are always displayed in the correct order in the realization. The error
observed in Fig. 1(b) will not occur in this case. Furthermore, it is easy to check that
the model satisfies quantitative real-time property ϕv stating that the ‘IEEE’ word
always appears 2.7 seconds after it has been erased. ϕv can be formalized by MTL
expression �(q → ♦[2.7,2.7]p), where p represents that the ‘IEEE’ word appears and
q represents that the ‘IEEE’ word is erased.

Now we can predict that the realization satisfies the following property ϕa in the
auxiliary time domain, which deviates 0.001 from property ϕv (see Sect. 2.3).

ϕa = R
0.001�
a (ϕv) = �(p → ♦[2.699,2.701]q).

Formula ϕa states that the realization of the controller in the auxiliary time domain
always displays the ‘IEEE’ word between 2.699 and 2.701 seconds after the word is
erased.

5.2 Relative [x, y]-hypothesis

In practice, clock drift often exists between the auxiliary clock and the reference
clock. To predict the real-time properties of the realization in the reference time do-
main based on those in the auxiliary time domain, we propose the relative [x, y]-
hypothesis, which requires that:

Real-Time Syst (2007) 36: 159–198 177

The ratio R between the change rates of auxiliary clock Ca and reference clock
Cr must be within interval [x, y], where x (y) is a lower (upper) bound of R.

If the relative [x, y]-hypothesis is satisfied by the target platform, it is easily seen
that the ratio between the change rates of reference clock Cr and auxiliary clock Ca

should be within interval [1
y
, 1

x
].

The clock drift of Cr w.r.t. Ca can be used to estimate the relative timing difference
between timing behaviors interpreted in the reference time domain and in the auxil-
iary time domain, which is illustrated in Example 7. If the relative [x, y]-hypothesis
is satisfied, the realization in the reference time domain is relative [1

y
, 1

x
]-close to

the realization in the auxiliary time domain. Consequently, we can predict real-time
properties of the realization in the reference time domain from those in the auxiliary
time domain based on Theorem 2.

Example 7 Reconsider the IEEE flash board controller in Example 1. Assume the
change rate of the auxiliary clock can deviate w.r.t. that of the reference clock by up to
0.5% (faster or slower). In this case, we can calculate that the ratio of the change rates
between the reference clock and the auxiliary clock is within interval [1

1.005 , 1
0.995].

Consequently, we can predict that the realization of the IEEE flash board controller
satisfies real-time property ϕre in the reference time domain, where

ϕre = R
[1/1.005,1/0.995]
r (ϕa) = �(q → ♦[2.699/1.005,2.701/0.995]p).

Since [2.699/1.005,2.701/0.995] ⊂ [2.685,2.715], ϕre is stronger than property
�(q → ♦[2.685,2.715]p). This indicates that the realization of the controller in the ref-
erence time domain always sends out the ‘IEEE’ word t seconds (t ∈ [2.685,2.715])
after the word is erased.

From the example above, we can see that the values of x and y in the absolute
[x, y]-hypothesis and in the relative [x, y]-hypothesis have a direct impact on the
preservation of quantitative real-time properties. This is further illustrated by the fol-
lowing example, in which both hypotheses are involved.

Example 8 Assume some model M to satisfy a deadline property PM : �(p →
♦[2,3]q) indicating that stimulus p is always followed by response q within 2 to 3
seconds. Realization R is synthesized from M respecting both the absolute [xa, ya]-
and the relative [xr , yr]-hypothesis. Then we know that R satisfies property PR :

PR = R
[1/yr ,1/xr]
r (R

(ya−xa)�
a (PM)) = �(p → ♦[(2−ya+xa)/yr ,(3+ya−xa)/xr]q).3

The example above indicates that the quantitative difference between real-time
properties of a model and its realization can be reduced by changing the values of
either ya − xa , xr or yr . The value of ya − xa is affected by the model itself, the
scheduling algorithm and the computational capabilities of the target platform (see

3If 2 − (ya − xa) < 0, then 2 − (ya − xa) is replaced by 0. More information can be found in (Huang
2005).

178 Real-Time Syst (2007) 36: 159–198

Sect. 6.3), while the values of xr and yr can be estimated by the drift factor of the
auxiliary clock w.r.t. the reference clock.

The above reasoning can also be applied in a reverse way. For example, the
drift of the auxiliary clock w.r.t. the reference clock is independent from the de-
sign process and can be pre-measured. Assume xr and yr are 0.99 and 1.02 re-
spectively, and assume we require property PR (�(p → ♦[3,6]q)) to be satisfied
by the realization. In this case, the model should satisfy property PM = �(p →
♦[1.02×3+ya−xa,0.99×6−(ya−xa)]q). The smaller the value of ya − xa is, the weaker
property PM will be. By estimating the value of ya − xa (see also Sect. 7.3), one can
know beforehand that the model should satisfy property PM , in order to correctly
deploy the system on the target platform.

6 Correctness-preserving software synthesis

In previous sections, we explained ineliminable timing differences between a model
and its corresponding realization. Furthermore, we proposed two hypotheses to cap-
ture timing inconsistencies and to eliminate functional inconsistencies between a
model and its realization. In this section, we show that both hypotheses (but espe-
cially the absolute [x, y]-hypothesis) can be incorporated into a concrete synthesis
tool.

In the following, we first give a brief overview of the modeling language POOSL
(Parallel Object-Oriented Specification Language) (Geilen et al. 2001). Our discus-
sion about POOSL focuses on its execution mechanism, which generates timed ac-
tion sequences for POOSL models. Following that, we show that the absolute [x, y]-
hypothesis is supported by the synthesis tool Rotalumis, which converts POOSL
models into realizations.

6.1 POOSL

The POOSL language integrates a process part based on a timed and probabilistic
extension of CCS and a data part based on the concepts of traditional object-oriented
languages (Geilen et al. 2001). A POOSL model consists of a set of parallel processes,
which perform their activities asynchronously and communicate with each other syn-
chronously by message passing. Each process can call and execute its methods which
are formed by the statements in Table 1. Different from procedure or functions used
in imperative programming languages, the process methods in POOSL allow tail-
recursion to specify infinite behaviors in a succinct way.

The formal semantics of POOSL can be found in (van der Putten and Voeten 1997;
Geilen 2002; van Bokhoven 2002). The formal semantics of POOSL given in (van
der Putten and Voeten 1997) addresses untimed behaviors covering parallelism,
communication, non-determinism and data. The semantics of the timed language
(where data is abstracted from) is given in (Geilen 2002). This work also intro-
duces an execution mechanism for the language and proves it to be correct with
respect to the semantics of the language. The most complete formal semantics (in-
cluding time, probabilities and data) of the POOSL language can be found in (van
Bokhoven 2002). The formal semantics of the POOSL language is beyond the scope

Real-Time Syst (2007) 36: 159–198 179

Table 1 POOSL statements

S ::= E expression [Ec]S guarded execution

m(E1, . . . ,Ei)(v1, . . . , vj) methods call interrupt S1 with S2 interrupt

par S1 and . . . and Sn rap parallel composition abort S1 with S2 abort

S1; S2 sequential composition delay E time synchronization

ch!m(E1, . . . ,Ei){E} message send if Ec then S1 else S2 fi choice

ch?m(v1, . . . , vi |Ec){E} (conditional) message
receive

while Ec do S od loop

sel S1 or . . . or Sn les non-deterministic
selection

skip empty behavior

of this article, and readers are referred to the above references for more details.
The POOSL language has been successfully applied to the modeling and the analy-
sis of many industrial systems, such as network processors (Theelen et al. 2003;
Noonan and Flanagan 2004), a multimedia application (van Wijk et al. 2003) and
an Internet router (Theelen et al. 2001).

In the following subsection, we focus on the execution mechanism for POOSL
models. This execution mechanism is also incorporated in Rotalumis to ensure that
the semantics of the realization respects the semantics of the model.

6.2 The PET scheduler

In the execution mechanism of POOSL models, each process is represented by a
process execution tree (PET), and the model is executed by a PET scheduler which
chooses available actions from these trees to be executed. For example, Fig. 10(a)
shows the POOSL model of an IEEE flashboard controller consisting of three par-
allel processes I , E and S. The PET of each process is given in Fig. 10(b). Each
leaf of a PET is a statement (such as delay 0.01) or a (recursively defined) process
method (such as IRun()()). During the evolution of the system, each PET provides its
statements available for execution (such as delay 0.25 of Process S in Fig. 10(b)) to
the PET scheduler and dynamically modifies its tree according to the choice made
by the PET scheduler. For example, after having performed the delay 0.01 statement,
the PETs modify their trees from Fig. 10(b) to Fig. 10(c), in which data method
Scr.Display(“I”) can output a letter ‘I’ to the screen.

The PET scheduler plays a central role during execution. Next we zoom into the
PET scheduler to explain how the concurrent real-time behavior is executed.

As we have mentioned before, concurrent processes in a POOSL model are rep-
resented by a set of PETs, in which each leaf node represents a statement. These
PETs offer their statements to be executed to the PET scheduler, by inserting the
corresponding nodes into a list of the PET scheduler.4 The PET scheduler maintains
two different lists, a delay list (for all delay statements) and an action list (for all
other statements). The scheduler grants the execution of statements by giving action
statement higher priority than delay statements. Since actions are instantaneous in the

4Message send and receive statements are an exception; they are not inserted until their counterparts are
ready too.

180 Real-Time Syst (2007) 36: 159–198

F
ig

.1
0

T
he

PE
T

s
of

th
e

IE
E

E
fla

sh
bo

ar
d

co
nt

ro
lle

r

Real-Time Syst (2007) 36: 159–198 181

1: StatementList actions, delays; Real Tv ; // global variables
2: PET_scheduler() {
3: Statement *action, *delay;
4: Tv = 0; // Initialise the virtual time
5: PETs_startup(); // PETs insert their initial statements to the action and delay lists
6: while (true) do {
7: while (Get_from_action_list(action)) do // Choose a statement from the list
8: if (actions→Grant()) then{ // The grant is accepted, the statement is executed and new

statements are inserted into the lists
9: Remove_from_action_list(action); // Remove the current statement and reset all

statements in the list available
10: }
11: else // statement refuses the grant permission
12: Set_action_unavailable(action); // The current statement is not available for the

following action selections
13: }
14: if (Get_from_delay_list(delay)) then {
15: delay→Grant(); // Reduce the duration of each delay statement in the list by the duration

of the granted delay, add new statements to the lists
16: Tv := Tv+delay→duration; // The virtual time progresses
17: Remove_from_delay_list(delay); // Remove the current statement and reset all

statements in the list available
18: }
19: else
20: Deadlock();
21: }
22: }

Fig. 11 The PET scheduler

virtual time domain, the virtual time does not progress until all executable actions are
performed.5

The behavior of the PET scheduler is shown in Fig. 11. When the scheduler
grants a statement (line 8), the corresponding node checks whether it is interrupted
or guarded. Only if it is not interrupted and all its guards are open, the node accepts
the grant and carries out its statement. In the other case, the node refuses the grant
and the scheduler picks another statement in the list. When a node has actually per-
formed its statement, its PET adjusts the tree structure, withdraws statements from
the list6 and provides the new statements to be executed to the scheduler (line 9).
Since the execution of a statement may insert new statements into the action list or
may change the status of interruptions or guards, the nodes that refused a previous
grant may be available again for the next choice of the PET scheduler. The scheduler
repeatedly grants the statements in the action list until there is no statement anymore
that accepts the grant. Then, the scheduler grants the first delay statement in the delay
list, where delay statements are ordered according to their expiration times. When a

5Some actions in the list may not be executable because a corresponding guard may be closed or the action
may be interrupted.
6For instance, assume a tree constrains the following non-deterministic choice sel x := x +1 or y := y +1
les. If x := x + 1 is granted by the scheduler, then y := y + 1 should be withdrawn from the list.

182 Real-Time Syst (2007) 36: 159–198

delay statement is granted, the virtual time progresses by the duration of the delay
statement (line 16), and new statements are inserted into the lists. At the same time,
the durations of the remaining delay statements in the list are adjusted accordingly.
When the scheduler finds no delay statement to grant, the system is terminated or
enters a deadlock state (line 20).

In the next subsection, we show how Rotalumis extends the PET scheduler to
comply with the absolute [x, y]-hypothesis.

6.3 Rotalumis

Rotalumis takes as input a POOSL model built during system modeling and automat-
ically generates the executable realization for the target platform. In this subsection,
we show how the Rotalumis tool supports the absolute [x, y]-hypothesis. The follow-
ing techniques are adopted in Rotalumis.

(1) Process execution trees: The POOSL language provides ample facilities to de-
scribe system characteristics such as parallelism, nondeterministic choice and
communication that are not directly supported by implementation languages such
as C, C++ and Java. In order to provide a correct and smooth mapping from a
POOSL model to a C++ realization, PETs are used to bridge the gap between the
semantics of the two languages. The data part of a POOSL model is transformed
into byte code interpreted by Rotalumis during run-time. The process part of a
POOSL model is transformed into a set of PETs implemented in C++.

The PETs in the realization have the same (virtual) time semantics as their
counterparts in the model. The PET scheduler in Rotalumis also behaves the
same as the PET scheduler used to execute the POOSL model. It schedules the
PET nodes based on their (virtual) time semantics. As a result, the realization
exhibits exactly the same behavior as the model, if interpreted in the virtual time
domain.

Since the progress of the virtual time is monotonically increasing, which is
consistent with the progress of the auxiliary time, the action order observed in the
virtual time domain is consistent with that in the auxiliary time domain. There-
fore, the PET scheduler in Rotalumis ensures that for any timed execution of the
realization, a corresponding timed execution in the POOSL model can always be
found, such that both executions exhibit the same observable action sequence.
Therefore, the first requirement (see Sect. 5.1) of the absolute [x, y]-hypothesis
is guaranteed by the synthesis tool.

(2) Synchronization between the virtual time and the digital hardware time: To min-
imize the timing inconsistencies between the realization interpreted in the digi-
tal hardware and virtual time domains, the PET scheduler in Rotalumis tries to
schedule these actions in the digital hardware time domain according to their
time of occurrence in the virtual time domain. To achieves this, the initial value
of the digital hardware time is stored in Td by accessing the hardware clock.
Therefore, Td := Read_real_time() is inserted between lines 4 and 5 in Fig. 11.
Notice that the virtual time is still kept as a “reference” in the PET scheduler of
Rotalumis. For instance, when a delay statement with duration t is granted by
the PET scheduler, the virtual time Tv advances to Tv + t . Correspondingly, in

Real-Time Syst (2007) 36: 159–198 183

Fig. 12 The Rotalumis realization of IEEE flash controller

the digital hardware time domain, the PET scheduler of Rotalumis should keep
on checking whether the digital hardware clock has the offset Tv + t w.r.t. its
initial digital hardware time, before it starts to grant statements in the action list.
Therefore, the following code is inserted between lines 17 and 18 in Fig. 11.

while (Read_real_time() − Td <= Tv) do{}

Consequently, we can see that the delay statement with duration t in Rotalumis
is interpreted as no more than t in the digital hardware time domain to compen-
sate for the execution times of actions and scheduling overhead. This is different
from the traditional interpretation in implementation languages such as Java, C
and C++, where the interpretation is at least t . In this way, accumulated timing
errors between the model and its realization are minimized. For instance, when
Rotalumis maps the IEEE flashboard controller onto the target platform, the PET
scheduler schedules actions from three processes according to their virtual times.
Compared to the realization generated by TAU G2 (illustrated in Fig. 2(b)), the
realization generated by Rotalumis (illustrated in Fig. 12) not only avoids incor-
rect outputs but avoids accumulated timing errors as well.

The timing errors between the model and its realization in the digital hardware
time domain can be estimated to lie in certain interval [a, b] (see the discussion
in Sect. 7.3). The timing deviation of the analog hardware clock w.r.t. the digital
hardware clock is determined by the quality of the digital hardware clock and
the step-width chosen for constructing the auxiliary clock. As we have discussed
in Sect. 4.2, we can assume that the time errors are within interval [−δ, δ]. For
commonly-used oscillator clocks in PCs, δ is no larger than 10−3. For higher
quality oscillators, the time errors can be assumed to lie in a much tighter interval.
Therefore the execution of the realization in the auxiliary time domain is absolute
[a − δ, b + δ]-close to a trace of the model. Hence the tool complies with the
second requirement (see Sect. 5.1) of the absolute [x, y]-hypothesis.

Combining items (1) and (2), we conclude that the absolute [x, y]-hypothesis is
complied with by the synthesis tool. The quality of the digital hardware clock and
the step-width chosen for constructing the auxiliary clock (see Sect. 4.2) determines
whether the relative [x, y]-hypothesis is complied with as well.

It should be noticed that the satisfaction of both hypotheses does not always imply
a correct realization. However, the parameters of both hypotheses allow designers to
quantitatively predict the real-time properties of the realization. Based on this infor-
mation, the correctness of the realization can be judged. If the real-time properties
of the realization are relaxed too much, designers can choose a faster platform to re-
duce the execution times of actions and the scheduling overhead, they can use a more
stable hardware clock, or refine the model itself.

184 Real-Time Syst (2007) 36: 159–198

Fig. 13 A railroad crossing
system

7 A case study

In this section, we use a railroad crossing system to demonstrate how a real-time
software controller can be generated from its POOSL model while preserving the
correctness.

7.1 System description

The railroad crossing system that we choose is similar to the standard railroad cross-
ing problem used to compare different formal frameworks for modeling real-time
systems (Heitmeyer et al. 1993). As shown in Fig. 13, four stations are connected by
two orthogonal tracks. Train a (b) runs back and forth between stations 1 and 2 (and
stations 3 and 4). Four sensors (A, B , C and D) are installed at some distance to the
crossing to detect the passing of the trains. To compensate for the deceleration time
of the train and to avoid the stopping of the train inside the crossing area, a critical
zone is defined as shown in Fig. 13. When a train approaches a border of the critical
zone from outside of the zone, it has to request permission to enter the crossing. If the
request is denied, the train has to stop and wait until permission is granted. When the
train leaves the crossing, it has to release the crossing. As a consequence, the crossing
is free and available for the other train to enter. We assume that the speed of the train
is constant between two sensor points (e.g. from point A to B) if no stop occurs.

In our case, the physical system is built by LEGO materials, where the relevant
parameters are given in Table 2.7 In this article, we focus on the synthesis of the
model into the realization.8 The preservation of correctness is demonstrated by the
preservation of an important quantitative real-time property P , which specifies that
the trains should never collide and the system should operate as efficient as possible at
the same time. The definition of P will be formally presented in the next subsection.

7In the table, the deceleration distance of a train refers to the distance from the point where the train starts
to decelerate to the point where the train stops completely.
8For a more detailed description of the complete system design including requirement analysis, step-wise
model refinement and system synthesis, interested readers are referred to (Huang 2005).

Real-Time Syst (2007) 36: 159–198 185

Table 2 Parameters of the railroad crossing system

Para. Value Meaning

Crossing lsc 0.556 m The distance from each sensor to the nearest border of the crossing

lc 0.044 m The size of the crossing

Train lt 0.198 m The length of the train

va 0.47 m/s The speed of train a

vb 0.25 m/s The speed of train b

Da 0.045 m The deceleration distance of train a

Db 0.015 m The deceleration distance of train b

Fig. 14 The model of the railroad crossing system

7.2 System modeling

In this section, we introduce a parallel solution to design the railroad crossing sys-
tem, which is modeled by the POOSL language. Figure 14(a) shows the POOSL
model of the system, where the system consists of two parts, a controller and an en-
vironment. The controller consists of five parallel processes: a Crossing, two train
image processes (TrainA_ Image and TrainB_Image) and two interface processes
(InterfaceA and InterfaceB). The environment consists of two train actor processes:
TrainA_Actor and TrainB_Actor, which model the behavior of the physical trains.
The interactions between these processes are accomplished through ports connected
by static channels. For example, port tr_a of the Crossing process and port cr of the
TrainA_Image process are connected by channel A. In the following, we give a more
detailed explanation of each process in the controller.

(a) The Crossing: The Crossing process is used to control the access to the physical
crossing based on the requests from the train images. It is required that:

• No collision should occur between two trains. The Crossing should grant access to
the physical crossing to at most one train at a time.

186 Real-Time Syst (2007) 36: 159–198

1: Check_leftsensor()(); //polling the sensor state till receiving a sensor signal
2: delay (T1); // the duration from the train passing the 1st sensor to reaching the border of the critical

zone
3: cr!request;
4: sel
5: cr?granted;
6: i!continue;
7: delay (T2); // the duration from the train entering the critical zone to leaving the crossing without

stopping
8: or
9: cr?denied;

10: i!pause;
11: cr?granted;
12: i!resume;
13: delay (T3); // the duration from the train restarting in the critical zone to leaving the crossing area
14: les;
15: cr!release;

Fig. 15 Behavior of the train image moving from left to right

• The system should be deadlock free. The Crossing should never block access to
both trains at the same time.

In addition, to ensure the operation efficiency, the Crossing should avoid unnecessary
waiting of the trains. Therefore, in our solution, the Crossing process always grants
the request to access the physical crossing immediately when it is aware that the
physical crossing is free. Figure 14(b) shows a state-action diagram of the Crossing,
where tr_a?request indicates that the Crossing receives a request message through
port tr_a and tr_a!granted indicates that the Crossing sends out a granted message
through port tr_a. When the Crossing is at the Initial state, the physical crossing is
assumed to be free. If the Crossing receives an access request from a train image (e.g.
tr_a?request), it immediately grants the request (e.g. tr_a!granted) and enters into a
state (Refuse TrainB or Refuse TrainA) where the request from the other train is de-
nied. At this state, if the physical crossing is released (e.g. tr_a?released) before the
request from the other train arrives, the Crossing returns to the Initial state. Other-
wise, the request from the other train is denied immediately and will be granted when
the physical crossing is released.

(b) The train image processes: Each train image (e.g. TrainA_Image or TrainB_
Image) refers to a physical train and can be considered as its mirrored image inside
the controller. A train image monitors the states of a physical train and controls the
physical train according to its states. For example, Fig. 15 shows a piece of code,
which describes a part of the behavior of the train image, starting from the moment
when it receives a message from the first sensor until the moment when it releases
the physical crossing. T1, T2 and T3 are used to specify the timing relations between
actions, which are estimated according to relevant information (such as the speed of
the train and the size of the critical zone). In our case, T1 is 1.015 seconds and T2 is
0.7 seconds for TrainA_Image. If the request from a train image to access the crossing
is granted, the train image occupies the crossing for T2 seconds before it releases the
crossing. If the request to access the crossing is denied, the train image stops the
physical train immediately and waits for the granted message to restart the physical
train.

Real-Time Syst (2007) 36: 159–198 187

(c) The interface processes: The interface processes establish the communication
between the control processes (train images) and the physical environment (train ac-
tors).

(d) Real-time property P: Now we can specify property P w.r.t. the design solu-
tion we have adopted. We assume that the speed of each physical train is constant
between two sensors (such as A and B in Fig. 13), if no stop occurs. When the train
image receives the first sensor signal on each journey, it can estimate time t at which
it should send the request to access the physical crossing. Time t should be chosen
appropriately. Sending the request too early can increase the occupancy time of the
crossing and decrease the efficiency of the system when the request is granted. On the
other hand, sending the request too late can lead to the physical train stooping inside
the physical crossing and causing a collision when the request is denied. In our exam-
ple, t is required to be in interval [1,1.025] for TrainA_Image. Furthermore, suppose
that the corresponding physical train of TrainA_Image takes at most 1.7 seconds to
pass the physical crossing. Then, property P can be formalized using the following
MTL formula:

P = �(pa → ((♦[1,1.025]ra ∧ ♦[1,1.025]qa) ∨ �[0,1.7]¬ra)),

where pa , qa and ra are given as follows:

• pa : TrainA_Image receives the first sensor signal on one journey.
• qa : TrainA_Image sends out message pause.
• ra : TrainA_Image receives message denied.

Formula P states that after TrainA_Image receives the first sensor signal, either both
ra and qa are observed within interval [1,1.025] or the physical train passes the
crossing without stopping.

Under the assumption that actions are instantaneous, a stronger property Pv is
satisfied in the model,9 which is given as follows:

�(pa → ((♦[1.015,1.015]ra ∧ ♦[1.015,1.015]qa) ∨ �[0,1.7]¬ra)).

Here, we give an informal explanation that Pv is indeed satisfied by the model. Let
us look at the code in Fig. 15. After TrainA_Image receives the first sensor sig-
nal on one journey (pa is observed), it waits for 1.015 (T1) seconds. After 1.015
seconds, TrainA_Image sends a request message to the Crossing. Note that all in-
teractions are instantaneous in the virtual time domain and the crossing replies to
TrainA_Image without any time delay (see Fig. 14(b)). In the case that the request is
denied, TrainA_Image gets the denied message and sends out the pause message after
exactly 1.015 seconds. In this case, pa → (♦[1.015,1.015]ra ∧♦[1.015,1.015]qa) holds. In
the case that the request is granted, the physical train of TrainA_ Image just moves
on for another 0.7 (T2) seconds to pass the crossing. In this case, pa → �[0,1.7]¬ra
holds. Therefore, Pv is indeed satisfied by the model. In the next subsection, we will
illustrate how to predict real-time property Pr of the realization from Pv , and how
to preserve the correctness of the model into the realization (i.e. P is satisfied by the
realization).

9The weakening or strengthening relation between real-time properties is discussed in (Huang 2005).

188 Real-Time Syst (2007) 36: 159–198

1: static PDO *PDM_TurnOff(PDO **LV){ // LV is an object carrying the ID of the target train
2: unsigned char trainID; byte buffer[2];
3: trainID = (unsigned char) LV[1]→i; // the ID of the target train
4: buffer[0]=0x21; // the byte code to turn off a motor
5: buffer[1]= 1�(trainID-1); //converting the ID according to the protocol
6: _output(serialPort, buffer[0]); // serial communication
7: _output(serialPort, buffer[1]);
8: return LV[0];}

Fig. 16 A method to implement the interaction of sending a pause message

7.3 System synthesis

In this phase, the model devised during the design stage is automatically transformed
into an executable realization. In order to generate a correct realization, two impor-
tant tasks should be carried out: implementation of communication interfaces and
estimation of timing differences.

(1) Implementation of interfaces: Synthesis tool Rotalumis can transform a
POOSL model into its realization by adopting different strategies to map the process
part and the data part of a POOSL model (see Sect. 6.3). For a POOSL model that in-
teracts with the physical world, the standard Rotalumis tool provides the mechanism
to convert abstract interactions with the outside world into actual physical interac-
tions. For example, an interaction “sending a pause message to the physical envi-
ronment” (e.g. a!pause in InterfaceA process) can be implemented by the C++ code
given in Fig. 16. For more detailed information about this issue, readers are referred
to (van Bokhoven 2002).

(2) Parameter estimation in the absolute [x, y]-hypothesis: In Sect. 6.3, we have
demonstrated that the Rotalumis tool supports the absolute [x, y]-hypothesis. Para-
meters x and y are lower and upper bounds respectively of the timing deviation be-
tween the observation times of corresponding actions in the model and in the realiza-
tion. In general, the larger the difference between y and x is, the larger the deviation
is between the quantitative real-time properties satisfied by the model and the realiza-
tion. In practice, we can obtain the values of x and y in various ways. Here we give
two examples.

• Measurement-based approach During the execution of the realization, the sched-
uler can record the timing deviation of each action at run time. Then the values of
x and y can be estimated according to the recorded timing deviations. Since this
approach is based on simulation, it offers the benefit of easy applicability. Further-
more, no estimation is required of the execution time of each action and of the
scheduling cost in this case. The major pitfall of this approach is that the analysis
results based on simulation techniques may not be reliable, since each simulation
run only explores a part of a single trace.

• Model-based approach Instead of measuring the parameters of the absolute hy-
pothesis during run-time, we could also use model-based approaches to esti-
mate the parameters. In these approaches, we could make use of existing results
in worse-case execution time (WCET) analysis such as (Park 1993; Gupta and
Micheli 1997). For instance, we could label each individual action with its WCET.
Based on the time labelling, we could do exhaustive analysis of the time bound by

Real-Time Syst (2007) 36: 159–198 189

Table 3 Statistics of the timing deviations

Timing deviations (10−4 seconds) 0.1–0.5 0.5–1 1–2 2–3 3–5

Frequency 1 877 257 112 813 9909 26 3

analyzing actions to be performed at each virtual time point along each possible
execution path. It is also possible to monitor the timing deviations during the sim-
ulation of the model (Florescu et al. 2004). However, it is still an interesting topic
to investigate how to estimate tight bounds for the absolute hypothesis.

In the scheduler of Rotalumis, an action is executed when its digital hardware time
has exceeded its virtual time. In other words, the digital (or analog) hardware time
of each action is no earlier than its virtual time. Therefore, we can safely estimate
the lower bound x in the absolute [x, y]-hypothesis to be 0. In our example, we
estimated y using the simulation-based approach.10 We recorded around 2 000 000
timing deviations of actions between the virtual time and the digital hardware time.
To reduce the overhead caused by recording activities, only the timing deviation of
the last action observed at each virtual time moment is recorded. As shown in Table 3,
most timing deviations fall between 1 × 10−5 and 5 × 10−5 seconds, and only a few
timing deviations reach up to 5 × 10−4 seconds.11 These larger deviations can be
contributed to the background activities of the operating system.

We have discussed that the absolute timing differences between the digital hard-
ware time domain and the auxiliary time domain can also contribute to the parameters
of the absolute hypothesis. We choose the step-width consisting of 7 × 108 hardware
clock steps to construct the auxiliary analog clock (using the derived step-width in
Sect. 4.2). Most PC hardware clocks cost less than 1$ and can only provide marginal
timekeeping performance. The average error of these clocks is at the order of mag-
nitude 10−5 per-second. We assume that the absolute timing difference between the
digital hardware clock and the auxiliary analog clock is less than 10−3 seconds (about
7 × 105 hardware clock steps).

Based on the above analysis, we estimate that y is 10−3. Therefore, the absolute
[0−10−3,10−3 +10−3]-hypothesis is complied with. Now, we can predict the quan-
titative timing properties of the realization in the auxiliary time domain. For example,
we already know that property Pv is satisfied by the model in the virtual time domain,
so we can predict that property Pa = R

0.003�
a (Pv) holds in the realization interpreted

in the auxiliary time domain. Property Pa is given by the following

�(pa → ((♦[1.012,1.018]ra ∧ ♦[1.012,1.018]qa) ∨ �[0,1.712]¬ra)).

In this example, the accuracy of the PC hardware clock is sufficient enough. How-
ever, in certain situations, to obtain a better preservation result from the auxiliary time

10The underlying platform in our case is a PC with a PIII 700 MHz processor, 128 MB memory and the
Windows 98 OS.
11Note that the timing deviations are observed after the issuing of the actions. Hence, the actual timing
deviations should be smaller than this value.

190 Real-Time Syst (2007) 36: 159–198

Fig. 17 A snapshot of the
realization of the system

domain to the reference time domain, we can replace the low cost clock of the PC
with a better oscillator (such as a quartz, a rubidium, or a cesium oscillator), which
clock error is in the order of magnitude of 10−8 per-second or less (Lombardi 2002).

(3) Parameter estimation in the relative [x, y]-hypothesis: The inaccuracy of the
platform clock also affects the quantitative real-time properties of a realization. This
influence is addressed by the relative [x, y]-hypothesis. In our example, we choose
the time of the environment as the reference time, which is counted by a perfect ref-
erence clock. Since the average error of most PC hardware clocks is in the order of
magnitude of 10−5 per-second, we estimate the relative timing drift between the aux-
iliary analog clock and the reference clock to be 10−3. Then x and y in the hypothesis
are 0.999 and 1.001 respectively. Now we can predict that real-time property Pr is sat-

isfied by the realization in the reference time domain. Property Pr = R
[1

1.001 , 1
0.999]

r (Pa)

is given by the following formula

�(pa → ((♦[1.012
1.001 , 1.018

0.999]ra ∧ ♦[1.012
1.001 , 1.018

0.999]qa) ∨ �[0, 1.712
1.001]¬ra)).

Property Pr ensures that after TrainA_Image receives the first signal, it either receives
a denied message and sends out a pause message within interval [1.010,1.020], or
continues to move on during time interval [0,1.711].12 This is stronger than the re-
quired property P in Sect. 7.2. Consequently, we can guarantee that the physical train
of TrainA_Image never stops inside the crossing area, while still maintaining the op-
erating efficiency of the system. Figure 17 gives a snapshot of a physical realization
of the system.

8 Related work

In this paper, we propose a synthesis approach to address the automatic generation
of concurrent real-time software from models. Particularly, our approach focuses on

12Notice that [1.012
1.001 , 1.018

0.999] ⊂ [1.010,1.020] and [0, 1.712
1.001] ⊃ [0,1.711], Pr is actually stronger than

property �(pa → ((♦[1.010,1.020]ra ∧ ♦[1.010,1.020]qa) ∨ �[0,0,1.711]¬ra)). For more information about
the weakening relation between formulas, readers are referred to (Huang 2005).

Real-Time Syst (2007) 36: 159–198 191

minimizing the negative effects of timing differences on the behavior inconsistency
between a model and its realization. It also provides a way to predict the quantitative
impact of the timing differences between a model and its realization. Compared with
the existing synthesis approaches for real-time systems, the proposed approach in this
article has the following characteristics.

• The proposed approach gives a systematic way to address the quantitative impact
on the correctness of the realization caused by ineliminable timing differences be-
tween the model and the realization. Most existing approaches treat the impact of
timing differences in a limited way. For instance, the timing differences between
the digital hardware clock and the environment clock are not explicitly addressed.

• Most synthesis approaches aim at building a scheduler, which triggers timed
processes to satisfy timing constraints of the system (Altisen et al. 2002; Hune et
al. 2001) (see also Sect. 8.2 in this section). In the proposed approach, the timing
behavior of the model is considered as the “reference” behavior, and the realiza-
tion is generated as “close” as possible to the model. Based on the distance between
the model and the realization, we can predict the properties of the realization and
further judge its correctness.

• The proposed approach does not contradict with existing scheduling theory and
scheduling algorithms. On the contrary, the combination with the existing schedul-
ing techniques can strengthen the applicability of the approach. For example, in
Sect. 9.3, we discuss that real-time properties of interest may be only related with
some observable actions. In this case, we measure the distance between the model
and the realization based on the timing differences between these observable ac-
tions only. The times of unobservable actions do not have a direct impact on the
distance measure, but they may have an influence on the times of observable ac-
tions, which in turn affect the distance measure. If we consider these unobservable
actions as internal actions in the theory of observational equivalence (Milner 1989),
the possible change in the execution order between observable actions and unob-
servable actions does not change the properties of the system, but it may result in a
smaller distance (Florescu et al. 2006). In this case, a more sophisticated scheduler
is required to manipulate the execution order of all actions.

In literature, many synthesis approaches for real-time software have been pro-
posed. In the following, we compare these approaches with the proposed approach.
These approaches are classified into three categories according to their different ways
to treat the impact of the timing differences between the model and the realization.

8.1 Digital circuit synchrony hypothesis

One of the related work is in the area of synchronous design approaches. In these ap-
proaches, synchronous modeling languages, such as Argos, Esterel, Lustre and State-
charts are used to model reactive systems. The timing semantics of these languages is
often based on the synchrony hypothesis, which assumes that the underlying machine
is infinitely fast, and hence that system reactions are synchronized with the system
inputs. The synchrony hypothesis actually makes the same assumption as many for-
mal timed models does. It assumes that actions are instantaneous. The synthesized
realization in synchronous design approaches is required to react to any input within

192 Real-Time Syst (2007) 36: 159–198

exactly one clock cycle, no matter how complex the realization is. In other words,
the absolute timing difference between the observation times of actions in the model
and in the realization are synchronized within one cycle (which is also called digital
circuit synchrony hypothesis (Berry 1992)). Under this restriction, the properties of
the realization are considered to be almost the same as those of the model, due to
their closeness in distance. The digital circuit synchrony hypothesis can actually be
viewed as a special case of the absolute hypothesis.

8.2 WCET-based schedulability analysis

The approaches in this category employ two different models: a communication
model and a timed model. In the communication model, actions are assumed to
be instantaneous and qualitative properties (such as deadlock, safety and liveness
properties) are evaluated based on synchronizations between concurrent components
(or processes). In the timed model, concurrent components (or processes) are ab-
stracted by priorities, worst case execution times (WCET) and deadlines. The quan-
titative real-time properties are guaranteed on the basis of a schedulability analysis.
The influence of action execution times in different time domains is usually not ex-
plicitly considered and is implicitly assumed to be covered by the WCETs of con-
current processes. Typical examples of these approaches are (Amnell et al. 2002;
Henzinger et al. 2003; Liu and Lee 2003).

In (Amnell et al. 2002), the authors use timed automata with a real-time task exten-
sion to model real-time systems. A transition of a timed automaton can be associated
with the starting of a real-time task, which has parameters such as a priority, a worst
case execution time and a deadline. The schedulability of tasks can be checked in
the model. During system synthesis, the prefect synchrony hypothesis is employed,
which assumes that the execution times of control activities are neglected.

In (Henzinger et al. 2003), the Giotto design methodology based on time triggered
architectures is proposed. In a Giotto model, a real-time system consists of a set of
concurrent tasks, each of which has a well-defined start and stop time. The commu-
nication between tasks can only be carried out at the beginning or at the end of the
execution of tasks. These constraints result in a concise framework to reason about
the behavior of the system. During system synthesis, the Giotto compiler ensures
that timing constraints of tasks are guaranteed by performing a schedulability analy-
sis based on the worse-case execution time of tasks. During run-time, a scheduler
invokes each task based on the result of the analysis.

In (Liu and Lee 2003), a framework called Timed multitasking (TM in short) to
model real-time software is proposed. Different from the Giotto approach, TM trig-
gers tasks (also called actors) by events instead of by time. Similar to Giotto models,
the execution times of tasks are fixed, which also yields a concise framework to rea-
son about the behavior of a system, and the correctness of the realization is also
guaranteed by the schedulability analysis.

8.3 Timing difference analysis

In the past years, studying the impact of timing differences between models and real-
izations has become a promising research area. Till now, there are at least two ways

Real-Time Syst (2007) 36: 159–198 193

to formally address this problem in literature. One is based on property preserva-
tion in which one tries to find the most relaxed Realization R(ε) from the model M

such that R(ε) can satisfy the desired property P verified in M . The parameter ε re-
flects the extend of the relaxation. Typical work in this area is (Wulf et al. 2005). The
other is property transformation, which simply predicts properties of the realization
R from those of the model M according to their timing difference ε. Properties of
R are not necessarily the same as those of the model, but the smaller the value of ε

is, the closer their properties are. Typical work in this scope is (Huang et al. 2003;
Henzinger et al. 2005; Huang et al. 2006). Note that in this scope, to ensure that R

satisfies a property P in the end, we can require that M satisfies a stronger property
P ′ so that the relaxation of P ′ is still stronger than P . In the following, we give a
more detailed comparison between the property-preservation technique (Wulf et al.
2005) and the property-transformation technique (Huang et al. 2003).

In (Wulf et al. 2005), the authors address the differences in timing semantics be-
tween a model and its realization. In their work, models of real-time systems are
represented by timed automata. The timing semantics (called Almost ASAP) of
their corresponding realizations can be derived from the relaxation of timing con-
straints (or guards) in timed automata. There are several differences between the
work in (Wulf et al. 2005) and our work. An essential one is the different assump-
tions that are used to relax the timing semantics of the model in the realization.
This is illustrated by the following example. Assume that the model has a timed
trace τ̄ given by (α1, t1), (α2, t2) . . . (αi, ti) According to the relaxation mech-
anism proposed in (Wulf et al. 2005), the following set of relaxed timed traces
{τ̄ ′ | ∀i ∈ N, |ti − ti−1 − (t ′i − t ′i−1)| ≤ ε ∧ α′

i = αi} are valid in the realization with
relaxation parameter ε. In contrast, according to the relaxation mechanism proposed
in our work, a set of relaxed timed traces {τ̄ ′ | ∀i ∈ N, |ti − t ′i | ≤ ε ∧ α′

i = αi} can be
observed in the realization which is absolute [−ε, ε]-close to the model. Intuitively
speaking, the former one relaxes the timing constraints based on the “relative” timing
relation between two adjacent actions in the sequence, while the latter one relaxes
timing constraints based on the “global” time of actions in the sequence.

In our work we go further than the theoretical work described above. First we
have carefully constructed intermediate time domains to reduce the timing differences
between the model and the realization. In addition, a synthesis approach has been
developed to guide software synthesis. We have also implemented the approach in a
concrete tool set.

In this section, we mainly focused on the approaches which generate real-time
realizations from the model. It should be noticed that there is a lot of other work
carried out to solve an inverse problem on how to make an adequate model for an
existing system to analyze its real-time properties. For instance, in (Gupta et al. 1997;
Puri 2000; Alur et al. 2005), the authors address the creation of models that are robust
w.r.t. timing deviations.

9 Open issues and future work

In this article, we have introduced a synthesis approach to automatically generate re-
liable real-time software from models. It is most suitable for synthesizing concurrent

194 Real-Time Syst (2007) 36: 159–198

control systems running on a single processor platform, where a central scheduler
ensures the absolute closeness between a model and its realization in the digital hard-
ware time domain. In this section, we will further investigate some possible exten-
sions of this work and existing open issues.

9.1 Distributed applications

In a distributed system, the software components are deployed on multi-processor
platforms using (different) hardware clocks. The proposed work in this article can be
applied to the distributed system in the following way: software components on the
same processor are synthesized independently from the components on other proces-
sors. Although each synthesized sub-system runs on a different processor with a dif-
ferent hardware clock, its real-time properties in a unified reference time domain
can be predicted by using the proposed approach. Consequently, the real-time prop-
erties of the whole system can be analyzed on the basis of real-time properties of
sub-systems in the unified reference time domain. However, this approach can not
be applied to directly predict global properties of the whole system, since no central
scheduler exists to ensure the compliance of the absolute [x, y]-hypothesis for the
whole system. Even when a central scheduler is implemented in the distributed en-
vironment, it would possibly be inefficient to ensure the compliance of the absolute
[x, y]-hypothesis due to the communication overhead among distributed processors.
Further investigation is still needed for automatically synthesizing distributed sys-
tems in a correctness-preserving way.

9.2 Computationally intensive applications

For computationally intensive applications such as video- and image- processing ap-
plications, the execution of some actions may take a significant amount of physical
time, which may lead to a large interval [x, y] in the absolute [x, y]-hypothesis. As a
consequence, the quantitative real-time properties predicted in the realization can be
far away from those in the model. However, this problem can be relieved by introduc-
ing a proper abstraction mechanism, which hides computationally intensive actions.
For example, in process calculus (e.g. CCS and CSP), an abstraction mechanism is
used to hide actions that are not observable or not interesting, and certain properties
of the system can be verified based on observable actions alone. Consequently, the
transformation of these properties is determined by the deviation bounds between the
observation times of observable actions (Florescu et al. 2006).

9.3 Parameter estimation of the absolute [x, y]-hypothesis

A key issue of our approach is the estimation of the parameters in the absolute [x, y]-
hypothesis. The estimation results give feedback to designers to further improve mod-
els or ensure the correctness of realizations. In Sect. 7.3, we have given a brief dis-
cussion of possible measurement-based and model-based estimation approaches. It is
desirable to obtain the bounds of interval [x, y] as tight as possible.

For large systems, the accurate estimation of the parameter values is not a trivial
task. For instance, in the measurement-based approaches and the model-based ap-
proaches based on simulation, the estimation process only covers a small fraction of

Real-Time Syst (2007) 36: 159–198 195

the possible traces. Some traces, which occur with a probability, may not be covered
by the estimation process and may have a larger deviation when they are executed
in the realization. Consequently, the estimation results may not be reliable. In the
approaches based on the exhaustive technique, the estimation process often suffers
from the well-known state-space explosion problem. However, it has been theoreti-
cally proven that it is possible to compute the distance between two timed systems
using an EXPTIME algorithm in (Henzinger et al. 2005). The distance metric used
in (Henzinger et al. 2005) is consistent with the absolute metric in this article. There-
fore, their algorithm also provides a way to compute the parameters of the absolute
hypothesis.

10 Conclusions

In this article, we first used an example to show that functional inconsistencies can
be observed during the synthesis of a real-time system from its model. These incon-
sistencies can be contributed to the large time gap between the model in the virtual
time and the realization in the reference time. To bridge this gap, we built a series
of dedicated intermediate time domains between the virtual time domain and the ref-
erence time domain (see Fig. 8). Two parameterized hypotheses (the absolute and
relative [x, y]-hypotheses) were proposed to capture bounds of the absolute timing
differences and the relative timing differences between various time domains. The
satisfaction of the two hypotheses ensures that qualitative real-time properties can
be preserved between different time domains. Furthermore, the parameters of both
hypotheses can be used to predict quantitatively the properties of the realization. Fol-
lowing that, we proposed a tool set for real-time software synthesis, which complies
with the absolute [x, y]-hypothesis. Finally, we used the proposed synthesis approach
to design a railroad crossing system. The correctness-preservation of software syn-
thesis is illustrated by preserving an important quantitative property from the model
to the realization in the reference time domain.

References

Altisen K, Gossler G, Sifakis J (2002) Scheduler modeling based on the controller synthesis paradigm.
Real-Time Syst 23(1–2):55–84

Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
Alur R, Torre SL, Madhusudan P (2005) Perturbed timed automata. In: Proceedings of eighth international

workshop on hybrid systems: computation and control
Amnell T, Fersman E, Pettersson P, Yi W, Sun H (2002) Code synthesis for timed automata. Nord J Comput

9(4):269–300
Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W (2003) TIMES: a tool for schedulability analysis

and code generation of real-time systems. In: Formal modeling and analysis of timed systems: first
international workshop, FORMATS 2003. Springer, Berlin, pp 60–72

Berry G (1992) A hardware implementation of pure Esterel. In: Academy proceedings in engineering
sciences, vol 17. Indian Academy of Sciences, pp 95–130

Florescu O, Voeten J, Huang J, Corporaal H (2004) Error estimation in model-driven development for
real-time software. In: Proceedings of forum on specification and design language, FDL’04, Lille,
France

196 Real-Time Syst (2007) 36: 159–198

Florescu O, Huang J, Voeten J, Corporaal H (2006) Strengthening property preservation in concurrent
real-time systems. In: Proceedings of the IEEE international conference on embedded and real-time
computing systems and applications (RTCSA), Sydney, Australia, pp 106–109

Geilen M (2002) Formal techniques for verification of complex real-time systems. PhD thesis, Eindhoven
University of Technology, The Netherlands

Geilen M, Voeten J, van der Putten P, van Bokhoven L, Stevens M (2001) Object-oriented modelling and
specification using SHE. J Comput Lang 27:19–38

Glasser U (1998) ASM semantics of SDL: concepts, methods, tools. In: 1st SAM workshop on SDL and
MSC, pp 271–280

Glasser U, Gotzhein R, Prinz A (2003) The formal semantics of SDL-2000: status and perspectives. Com-
put Netw Int J Comput Telecommun Netw 42(3):343–358

Gupta R, Micheli GD (1997) Specification and analysis of timing constraints for embedded systems. IEEE
Trans Comput Des Integr Circuits Syst 16(3):240–256

Gupta V, Henzinger T, Jagadeesan R (1997) Robust timed automata. In: Maler O (ed) Hybrid and real-
time systems, proceedings of international workshop HART’97, Grenoble, France. Springer, Berlin,
pp 331–345

Heitmeyer CL, Jeffords RD, Labaw BG (1993) A benchmark for comparing different approaches for speci-
fying and verifying real-time systems. In: Proceedings of the tenth international workshop on real-time
operating systems and software

Henzinger TA, Manna Z, Pnueli A (1992) Timed transition systems. In: Proceedings of the real-time:
theory in practice, REX workshop, London, UK, Springer, Berlin, pp 226–251

Henzinger T, Kirsch C, Sanvido M, Pree W (2003) From control models to real-time code using Giotto.
IEEE Control Syst Mag 23(1):50–64

Henzinger TA, Majumdar R, Prabhu V (2005) Quantifying similarities between timed systems. In: Pro-
ceedings of the third international conference on formal modeling and analysis of timed systems
(FORMATS). Lecture notes in computer science, vol 3829. Springer, New York, pp 226–241

Huang J (2005) Predictability in real-time system design. PhD thesis, Eindhoven University of Technology,
The Netherlands

Huang J, Voeten J, Geilen M (2003) Real-time property preservation in approximations of timed systems.
In: Proceedings of 1st ACM and IEEE international conference on formal methods and models for
codesign. IEEE Computer Society, Los Alamitos, pp 163–171

Huang J, Geilen M, Voeten J, Corporaal H (2006) Branching-time property preservation between real-time
systems. In: Proceedings of fourth international symposium on automated technology for verification
and analysis 2006, Beijing, Springer, Berlin, pp 260–275

Hune T, Larsen K, Pettersson P (2001) Guided synthesis of control programs using UPPAAL. Nord J
Comput 8(1):43–64

Koymans R (1990) Specifying real-time properties with metric temporal logic. Real-Time Syst 2(4):255–
299

Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a nutshell. Int J Softw Tools Technol Transf 1(1–
2):134–152

Liu J, Lee E (2003) Timed multitasking for real-time embedded software. IEEE Control Syst Mag
23(1):65–75 (special issue on Advances in software enabled control)

Lombardi M (2002) Time and frequency from a to z. http://tf.nist.gov/general/glossary.htm
Milner R (1989) Communication and concurrency. Prentice Hall, New York, ISBN 0-13-114984-9
Newton I (1999/1687) The principia: mathematical principles of natural philosophy. University of Califor-

nia Press, Berkeley (edited by I. Bernard Cohen and Anne Miller Whitman)
Nicola RD, Vaandrager F (1990) Action versus state based logics for transition systems. In: Proceedings

of the LITP spring school on theoretical computer science on semantics of systems of concurrent
processes, pp 407–419

Nicollin X, Sifakis J (1994) The algebra of timed processes, ATP: theory and application. Inf Comput
114(1):131–178

Noonan L, Flanagan C (2004) Modeling a network processor using object oriented techniques. In: Pro-
ceedings of the digital system design, EUROMICRO systems on (DSD’04), Washington, DC. IEEE
Computer Society, Los Alamitos, pp 484–490

Park CY (1993) Predicting program execution times by analyzing static and dynamic program paths. Real-
Time Syst 5(1):31–62

Puri A (2000) Dynamical properties of timed automata. Discret Event Dyn Syst 10(1–2):87–113
Smyth N (1998) Communicating sequential processes domain in Ptolemy II. MS Report UCB/ERL Mem-

orandum M98/70, Dept. of EECS, University of California, Berkeley

Real-Time Syst (2007) 36: 159–198 197

Stotts PD, Pratt T (1985) Hierarchical modeling of software systems with timed petri nets. In: International
workshop on timed petri nets. IEEE Computer Society, Los Alamitos, pp 32–39

Theelen B, Voeten J, van Bokhoven L, van der Putten P, de Jong G, Niemegeers A (2001) Performance
modeling in the large: a case study. In: Proceedings of the European simulation symposium

Theelen B, Voeten J, Kramer R (2003) Performance modelling of a network processor using POOSL.
J Comput Netw 41(5):667–684 (special issue on Network processors)

van Bokhoven L (2002) Constructive tool design for formal languages from semantics to executing models.
PhD thesis, Eindhoven University of Technology, The Netherlands

van der Putten P, Voeten J (1997) Specification of reactive hardware/software systems. PhD thesis, Eind-
hoven University of Technology, The Netherlands

van Wijk F, Voeten J, ten Berg A (2003) An abstract modeling approach towards system-level design-space
exploration. In: System specification and design languages. Kluwer Academic, Dordrecht, pp 267–
282

Wulf MD, Doyen L, Raskin J-F (2005) Almost asap semantics: from timed models to timed implementa-
tions. Formal Aspects Comput 17(3):319–341

Jinfeng Huang received his B.Eng. in computer science from China University of Mining and Tech-
nology, China, in 1997, and his M.Sc. in computer science from Xi’an Jiaotong University, China, in
2000 respectively. In 2005, he received his Ph.D degree from Eindhoven University of Technology, The
Netherlands, for his work on predictable real-time software design. Since April 2005, he works as a post-
doc researcher at Electrical Engineering Department, Eindhoven University of Technology. His research
interests include formal methods on concurrent, real-time and distributed systems and software synthesis.

Jeroen Voeten received his master’s degree in Mathematics and Computing Science in 1991 and his Ph.D.
in Electrical Engineering in 1997 from the Eindhoven University of Technology, the Netherlands. Since
1997 he is working as an assistant professor in the Electronic Systems group at the faculty of Electrical
Engineering. As from January 2005 he is also working as a senior research fellow at the Embedded Systems
Institute in Eindhoven. His research interests include system-level design methodology and performance
modeling for embedded systems.

198 Real-Time Syst (2007) 36: 159–198

Henk Corporaal has gained a MSc in Theoretical Physics from the University of Groningen, and a PhD
in Electrical Engineering, in the area of Computer Architecture, from Delft University of Technology. Cor-
poraal has been teaching at several schools for higher education, worked at the Delft University of Tech-
nology in the field of computer architecture and code generation, had a joint appointment at the National
University of Singapore, has been scientific director of the joined NUS-TUE Design Technology Institute,
and has been department head and chief scientist within the DESICS (Design Technology for Integrated
Information and Communication Systems) division at IMEC, Leuven (Belgium). Currently Corporaal is
Professor in Embedded System Architectures at the Einhoven University of Technology (TU/e) in The
Netherlands. He has co-authored many papers in the (multi-)processor architecture and embedded system
design area. Furthermore he has invented a new class of VLIW architectures, the Transport Triggered Ar-
chitectures; a book about these architectures has been published. His current research projects are on the
predictable design of soft- and hard real-time embedded systems.

	Predictable real-time software synthesis
	Abstract
	Introduction
	Problem illustration
	Solution sketch
	Organization

	Property relations between real-time systems
	Measuring proximity between real-time systems
	Specifying real-time properties
	Property relations between real-time systems

	Proximity measures vs. time domains
	Concrete time domains in real-time software synthesis
	Timing differences between the virtual time domain and the digital hardware time domain
	Timing differences between the digital hardware time domain and the reference time domain

	Hypotheses for real-time software synthesis
	The absolute [x,y]-hypothesis
	Relative [x,y]-hypothesis

	Correctness-preserving software synthesis
	POOSL
	The PET scheduler
	Rotalumis

	A case study
	System description
	System modeling
	System synthesis

	Related work
	Digital circuit synchrony hypothesis
	WCET-based schedulability analysis
	Timing difference analysis

	Open issues and future work
	Distributed applications
	Computationally intensive applications
	Parameter estimation of the absolute [x,y]-hypothesis

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

