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Abstract

SpoTyping is a fast and accurate program for in silico spoligotyping of Mycobacterium tuberculosis isolates from next-
generation sequencing reads. This novel method achieves high accuracy for reads of both uniform and varying
lengths, and is about 20 to 40 times faster than SpolPred. SpoTyping also integrates the function of producing a
report summarizing associated epidemiological data from a global database of all isolates having the same
spoligotype. SpoTyping is freely available at: https://github.com/xiaeryu/SpoTyping-v2.0.

Background
Tuberculosis (TB), caused mainly by Mycobacterium
tuberculosis (Mtb), is a top infectious disease killer
around the world and remains an acute international
health problem, resulting in an estimated 9.6 million
new cases and 1.5 million deaths globally in 2014 [1].
The global emergence and spread of drug-resistant TB
have compounded the difficulty of treating and eradicat-
ing this disease.
Spoligotyping (spacer oligonucleotide typing) is a

widely used genotyping method for Mtb, which exploits
the genetic diversity in the clustered regularly inter-
spersed short palindromic repeats (CRISPR) locus, which
is also known as the direct repeat (DR) locus in Mtb
genome [2]. Each DR region consists of several copies of
the 36 bp DR sequence, which are interspersed with
34 bp to 41 bp non-repetitive spacers [3]. A set of 43
unique spacer sequences is used to classify Mtb
strains based on their presence or absence. The patterns
of presence and absence in each of the 43 spacer se-
quences can be summarized with a 43-digit binary code
with 1 denoting the presence and 0 denoting the absence
for each spacer, which can also be translated into a
15-digit numerical code [4] termed as the spoligotype.

Spoligotypes can be used to compare Mtb isolates
collected between different laboratories and countries.
Spoligotyping is traditionally conducted using the PCR-
based reverse line hybridization blotting technique [2].
Various new methods have recently been proposed for
spoligotyping, the most of which are microarrays, such as
the PixSysn QUAD 4500 Microarrayer [5], DNA
microarray [6], hydrogel microarray (biochip) [7], Spo-
ligorifytyping [8], and its follow-up TB-SPRINT [9].
Other spoligotyping methods include those based on a
matrix-assisted laser desorption/ionization time-of-flight
mass-spectrometry (MALDI-ToF MS) platform [10, 11].
Spoligotyping has also been applied to strain typing in
other bacteria species such as Legionella pneumophila
[12], Campylobacter jejuni [13, 14], and Salmonella [15].
Technological advancements in next-generation se-

quencing provide single nucleotide resolution for Mtb
phylogenetic studies by allowing the construction of a
single nucleotide polymorphism (SNP)-based phylogen-
etic tree. However, genotyping of bacteria is still needed
for fast strain identification and correlation to previous
isolates. For previous isolates, particularly the historical
isolates, genotypes including spoligotypes may have been
determined but whole genome sequences are not avail-
able and some isolates are not able to be sequenced.
Under such circumstances, in silico genotyping from the
whole genome sequences is necessary for correlating
current isolates with previously genotyped ones. Several
molecular genotyping techniques exist for Mtb, of which
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the most widely used are: (1) spoligotyping; (2) mycobac-
terial interspersed repetitive units - variable numbers
of tandem repeat (MIRU-VNTR); and (3) IS6110-based
restriction fragment length polymorphism (IS6110-
RFLP) [16]. The inference of MIRU-VNTR from next-
generation sequencing reads involves resolving the tan-
dem repeats, which is extremely challenging for the
current short sequence reads generated by the most
widely used sequencing platforms. IS6110-RFLP com-
monly has its result based on the DNA fragment blots
on electrophoresis gel image and thus focuses on the
determination of the fragment lengths, which is also
extremely challenging to infer since short read sequencing
cannot be used alone to construct finished genomes. Spo-
ligotyping, therefore, provides a unique opportunity to ob-
tain the same result from whole genome sequences as the
molecular genotyping result achieved in laboratories,
which can correlate the isolates investigated using differ-
ent approaches. In silico spoligotyping is also important
for investigations using public data, where sequencing
reads or complete genomic sequences are available but
the spoligotypes of the isolates are not reported.
SpolPred [17] is a tool that accurately predicts the spo-

ligotype of Mtb isolates from sequence reads of uniform
length obtained from platforms such as Illumina GAII
and HiSeq. However, for reads produced by platforms
marketed for clinical diagnostics such as Illumina MiSeq
and Ion sequencers, where the throughput is moderate
and length of the reads are non-uniform, the accuracy of
SpolPred is significantly reduced. SpoTyping improves
the performance of SpolPred in three ways: (1) SpolPred
reads in a fixed number of bases from each sequencing
read as specified by the user. As a result, for sequencing
experiments with non-uniform read length, the accuracy
of prediction is highly dependent on the choices of the
read length by the users. SpoTyping, by reading in the
full length of the reads, makes use of all the available se-
quence data. (2) SpolPred requires the user to specify a
direction for the reads, which can be either direct or re-
verse. However, since each FASTQ file consists of both
direct and reverse reads, SpolPred only utilizes a fraction
of the input sequence reads which can lead to incorrect
predictions for sequencing experiments with low
throughput. SpoTyping explicitly considers the reads in
both directions, thereby using all the information pre-
sented in the sequence reads. (3) SpolPred relies on an
inefficient sequence search algorithm, whereas SpoTyp-
ing integrates the BLAST algorithm in the search which
reduces the time of the search considerably. In addition
to the improvements listed above, SpoTyping also comes
with novel functions not previously found in SpolPred
or other software: (1) For TB disease outbreak investi-
gation, it is necessary to quickly identify isolates with
matching spoligotypes. SpoTyping thus automatically

queries SITVIT [18], a global Mtb molecular markers
database to retrieve associated epidemiological data
for isolates with matched spoligotypes in an Excel
spreadsheet, which can be presented as a graphical re-
port showing the distribution summaries of the meta-data
corresponding to the clades, years, and countries of isola-
tion for these isolates. (2) SpoTyping works on different in-
put files such as next-generations sequencing reads in
FASTQ format, and complete genomic sequences or as-
sembled contigs in FASTA format. (3) SpoTyping can be
run on most operating systems such as Windows, Linux,
and Mac OS, either as a non-interactive script which can
be integrated into individual analysis pipelines or as an
interactive application with a graphical user interface.
Thus, we believe SpoTyping would be a useful tool for
public health surveillance and genotyping from next-
generation sequencing data in microbiological clinical
diagnostic of Mtb strains.

Implementation
SpoTyping is implemented with Python and accepts two
kinds of input files: single-end or pair-end sequence
reads in FASTQ format, and complete genomic se-
quences or assembled contigs in FASTA format. A sche-
matic representation of the SpoTyping workflow is
shown in Fig. 1. When the input files are sequence
reads, SpoTyping first concatenates all sequence reads in
the input FASTQ file(s) into a single contiguous se-
quence in FASTA format which would be constructed
into a BLAST [19] nucleotide database. The current pro-
gram default (enabling the swift mode) is to read in no
more than 250 Mbp of the sequence reads, which corre-
sponds to a read depth of approximately 55X of the Mtb
genome and would be sufficient in most situations. Dis-
abling the swift mode would require SpoTyping to utilize
all sequence reads with increased execution time. The
set of 43 spacer sequences, each of 25 bp in length,
would be queried against the constructed database using
the standard nucleotide BLAST program. The BLAST
output is then parsed to determine the number of hits
for each spacer sequence in the input file(s). A max-
imum of one mismatch out of 25 bp of the spacer se-
quence is allowed for a BLAST match to be considered
as a hit. For sequence reads, if a spacer sequence is ab-
sent in the Mtb isolate, then no or very few hits would
be identified, while if the number of hits exceeds a
threshold (hit threshold has a default of five error-free
hits and six 1-error-tolerant hits), it indicates the pres-
ence of the spacer sequence where the number of hits
correlates with the sequence read depth of the locus. For
genomic sequences or assembled contigs, the presence
of one hit for a spacer sequence indicates the presence
of the spacer. The binary string of 43 digits, each digit
representing one of the 43 spacer sequences with 0
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indicating absence and 1 indicating presence, can there-
fore be written into an octal code that defines the spoli-
gotype of the Mtb isolate. The predicted spoligotype is
then automatically queried in the SITVIT database to
retrieve all reported isolates having identical spoligo-
types, where associated data corresponding to the
MIRU12, VNTR, SIT, MIT, VIT, clades, countries of ori-
gin, countries of isolation, and year of report for these
isolates would be downloaded in an Excel spreadsheet.
SpoTyping also includes an R script that can present
summary statistics of the associated meta-data as a pdf
report.
The accuracy of SpoTyping was assessed in comparison

with SpolPred on three datasets: (1) 161 isolates se-
quenced on Illumina HiSeq (SRA: SRA065095); (2) 30 iso-
lates sequenced on Illumina MiSeq (ENA: PRJNA218508);
and (3) 16 isolates sequenced on Ion Torrent (ENA:
PRJEB6576). The first assessment was conducted on a
dataset of 161 Mtb isolates sequenced on Illumina HiSeq
with experimentally determined spoligotypes reported
[20]. Both SpoTyping and SpolPred were run with default
parameters. The predicted octal codes were each queried
in the SITVIT database to identify the matching spoligo-
type for comparison with the reported spoligotype. Dis-
cordant results were examined by searching the spacer

sequences on the contigs assembled using the de novo as-
sembly software Velvet [21]. The next assessment was
conducted on a dataset of 30 Mtb isolates sequenced on
Illumina MiSeq without reported spoligotypes. The refer-
ence spoligotype for each isolate was determined by man-
ual inspection of the BLAST output file to determine the
number of hits for each spacer sequence in the sequence
reads. Given that the sequence read depths are above 20X
for all isolates, no hit for a spacer sequence is a strong in-
dication of its absence while a number of above five hits is
a strong indication of the presence of the spacer sequence.
While a judgement cannot be safely made based on a hit
number of 1 to 5, isolates with at least one such case were
removed from the study, leaving only isolates with
confident reference spoligotypes. SpoTyping was run with
default parameters while SpolPred calls for a specified read
length, where a range of read lengths were used based on
the read length percentiles from 0.04 to 1 at a step of 0.04,
resulting in a total of 25 predictions for each isolate. The
accuracy of SpoTyping was also assessed in comparison
with SpolPred on a dataset of 16 Mtb isolates sequenced
on Ion Torrent. The reference spoligotypes were deter-
mined similarly as those for Illumina MiSeq data. The
running parameters were also similar as those for Illumina
MiSeq data.

Query sequence
43 Spacers

Database

Result
Number of hits for each spacer

Binary code based on a threshold

Octal code of the spoligotype

Number of hits 0-4 5-9 10-19 20-29 >=30

000000000003771

Query database
SITVIT

A summary report for the query spoligotype offered by the database

Pie plot of the  
summary report

Concatenation of FASTQ reads Concatenated sequencing reads or genomic 
sequences in FASTA format

Fig. 1 A schematic representation of the SpoTyping workflow. If the specified input contains sequencing reads, SpoTyping first concatenates the
sequencing reads to form an artificial sequence. The artificial sequence, or genetic sequences when the input contains complete genomic
sequence or assembled contigs, would be built into the BLAST database. After querying the 43 spacer sequences in the database, the results are
parsed to count the number of hits for each spacer sequence. A hit threshold is set to define a spacer as ‘present’ in the genome, resulting in a
43-digit binary code with 1 as present and 0 as absent, which is further translated into the octal code of the spoligotype. The SITVIT database is
then queried to identify matching isolates having the same spoligotype, where the associated data of the matched isolates are downloaded and
summarized as pie charts
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The time performance of SpoTyping was compared
with SpolPred based on the first dataset. The programs
were run on a 64-bit Fedora Linux server workstation
having a 2.0 GHz quad processor and 32 GB RAM. Both
SpoTyping and SpolPred were run twice for each isolate
either with or without the swift mode. Default parame-
ters were used for SpoTyping swift mode, while for non-
swift mode, 10 error-free hits or 12 1-error-tolerant hits
(options of -m 10 -r 12) was taken as the hit threshold
due to the high sequencing coverage to eliminate false
positives. For SpolPred, the pair-end sequence reads
were first concatenated (concatenation time not counted
toward the running time). The read lengths were set to
be the actual read lengths. The hit threshold was simi-
larly set to be 10 (option of -m 10) in the non-swift
mode.
The performance of SpoTyping was assessed for vari-

ous sequence read depths to determine its applicable
range, where we determined the accuracies of the
SpoTyping prediction for: (1) an H37Ra Mtb isolate
which had a sequencing throughput of 3,000 Mbp
(approximately 670X); and (2) a Beijing-genotype Mtb
isolate with a sequencing throughput of 2,700 Mbp
(approximately 600X) by performing 50 iterations each
for six down-sampling ratios of 50 %, 20 %, 10 %, 5 %,
2 %, and 1 % of the initial number of reads for each
isolate. In each down-sampling experiment, a certain
percent of the sequence reads were randomly selected
from the original FASTQ file to form a new file with a
lower read depth, where the percentage is called the
down-sampling ratio. For all of the down-sampling ex-
periments, default settings were used except for the
categories of 2 % and 1 % where the hit threshold was
set to two error-free hits and three 1-error-tolerant
hits (options of -m 2 -r 3). The false positives caused
by the concatenation of sequence reads were also
assessed in the down-sampling experiment.
The selection of the hit thresholds was also based on

the down-sampling experiments. In each down-sampling
experiment, the number of both error-free hits and 1-
error-tolerant hits for each spacer identified by SpoTyping
were divided by the estimated read depth (number of se-
quence bases/ 4,500,000) of the experiment, representing
the number of hits as a percentage of the estimated read
depth. For each spacer in each experiment, the percentage
is used as the feature to classify a spacer as present or ab-
sent, while the spacer’s actual class of presence or absence
is used to assess whether the classification is correct. A set
of percentages was used as the thresholds to calculate the
respective true positive rates and false positive rates,
which were plotted as a receiver operating characteristic
(ROC) curve. The thresholds were selected to maximize
the true positive rate while minimizing the false positive
rate.

The Beijing-genotype isolate can be accessed through the
European Nucleotide Archive (ENA) code ERP006354. The
H37Ra isolate is a laboratory strain that was sequenced as
part of a validation sequencing run, and the FASTQ files
will be provided upon request.

Results
In silico spoligotyping of 161 Mtb isolates sequenced on
Illumina HiSeq
For all the 161 Mtb isolates, SpoTyping and SpolPred
predicted the same spoligotypes (Additional file 1:
Table S1), of which 20 isolates either without a match
in the SITVIT database or reported as ‘New’ were ex-
cluded from subsequent comparisons. Of the remaining
141 isolates, predictions of SpoTyping and the laboratory
determined spoligotypes for 127 isolates (90.07 %) were
identical. For the 14 discordant isolates, the spacer se-
quences were searched in the assembled contigs to deter-
mine the spoligotypes, which are all concordant with the
predictions from SpoTyping (Additional file 1: Table S2).

In silico spoligotyping of 30 Mtb isolates sequenced on
Illumina MiSeq
The accuracy of SpoTyping was then assessed in com-
parison with SpolPred on 30 Mtb isolates sequenced on
Illumina MiSeq, among which 21 passed filtering for
having reference spoligotypes confidently determined.
SpoTyping correctly inferred the spoligotypes for all 21
isolates. Since SpolPred requires for a read length to be
specified as input, a range of read lengths were assessed
based on the percentiles from 0.04 to 1 at a step of 0.04,
resulting in a total of 25 predictions for each isolate
whose read length specifications are summarized in
Additional file 1: Table S3. At each percentile, the pre-
dictions for the 21 isolates were analyzed to calculate
the prediction accuracy, which is summarized in Fig. 2
and Additional file 1: Table S4. SpolPred performs the
best using the read lengths at the 0.36, 0.40, or 0.44
percentiles, with accuracies around 50 %. The prediction
accuracy of SpolPred is significantly lower than that
obtained by SpoTyping and is also highly dependent on
the choice of read length used as input which in itself is
difficult to determine.

In silico spoligotyping of 16 Mtb isolates sequenced on
Ion Torrent
The accuracy for spoligotype inference was also deter-
mined on 16 Mtb isolates sequenced on Ion Torrent
with spoligotypes reported to be all Beijing genotype
[22]. Of the 16 isolates, 11 have confidently determined
spoligotypes, which are all of the spoligotype
‘000000000003771’ as are consistent with the reported
Beijing genotype. SpoTyping makes correct prediction
for all the 11 isolates. The performance of SpolPred is
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summarized in Fig. 2, Additional file 1: Table S5 and
Table S6. SpolPred performs best using the read length
at the 0.08 and 0.12 percentile, with accuracies of only
around 10 %.

Comparison of time performance for SpoTyping and
SpolPred on 161 Mtb isolates
For the 161 Mtb isolates tested, SpoTyping is about 20 to
40 times faster than SpolPred, with SpoTyping taking an
average of 28.8 s (standard deviation is 5.3 s) in its swift
mode, and an average of 56.4 s (standard deviation is
8.0 s) to process all reads, while SpolPred took an
average of 17 min 19.3 s (standard deviation is 1 min
35.3 s) by using the -s option, or an average of 18 min
20.0 s (standard deviation is 50.2 s) to process all reads
(Additional file 1: Table S1).

Down-sampling experiments
Based on the down-sampling experiments which first ex-
plore the applicable throughput for accurate spoligotype
inference, SpoTyping is able to efficiently and accurately
predict the spoligotype for isolates having sequencing
throughput over 54 Mbp (read depth of approximately
12X) with accuracies above 98 % (Fig. 3, Additional
file 1: Table S7 for H37Ra and Additional file 1: Table S8
for Beijing). However, for isolates that are sequenced
at very low coverage (below 10X), using the lower
threshold is still not sufficient to make accurate pre-
dictions as some of the spacer sequences would not

be adequately sequenced and represented in the input
FASTQ file(s).
Since SpoTyping concatenates sequence reads into an

artificial sequence to create the BLAST database, an im-
mediate concern is the false positives created due to
chimera sequences. In all of 600 down-sampling experi-
ments performed for both H37Ra and Beijing genotype
Mtb isolates, the maximum number of false positive hit
is 1 for both error-free hits and 1-error-tolerant hits. Of
the experiments, 98.3 % (590/600) show no false positive
error-free hits while 95.7 % (574/600) show no false
positive 1-error-tolerant hits. The likelihood of false pos-
itives created due to chimera sequences is thus low
which can be further reduced by setting more stringent
hit thresholds.

Threshold selection
We evaluated the choice of the hit thresholds to deter-
mine the presence or absence of a spacer sequence used
in SpoTyping. The evaluation was conducted in the
down-sampling experiments, based on the groups with
down-sampling ratios from 2 % to 50 % (read depths be-
tween approximately 12X and approximately 300X)
where accurate inferences for the spacer sequences are
possible to be made. A total of 21,586 spacer sequence
instances ((5 down-sampling ratios * 50 rounds for each
down-sampling ratio * 43 spacer for each round + 43
spacers without down-sampling) = 10,793 spacers for
each of the two strains) with their respective number of
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Fig. 2 Prediction accuracy of Mtb isolates sequenced on Illumina MiSeq and Ion Torrent. SpolPred requires a read length to be specified which
results in inconsistent predictions for different specifications. The accuracy assessment was conducted between SpoTyping (a) and SpolPred (b) on
21 MiSeq-sequenced isolates and 11 Ion-sequenced isolates, with SpoTyping predictions using default parameters and SpolPred predictions using
different read length percentiles as the input read lengths. While SpoTyping have perfect accuracies for both datasets, SpolPred gives varying
accuracies depending on the read length, which are always lower than 50 %
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hits identified by SpoTyping were included in the ana-
lysis, of which 10,040 are absent cases and 11,546 are
present cases. The number of hits was divided by the
estimated read depth to represent the number of hits
as a percentage of the read depth in order to adjust
for the difference in sequencing throughput. A set of

percentages was used as the thresholds to calculate
the respective true positive rates and false positive
rates, which were plotted as an ROC curve (Fig. 4).
The ROC curves for both the error-free hits (Fig. 4a)
and 1-error-tolerant hits (Fig. 4b) show very high true
positive rates and very low false positive rates, with
the areas under the ROC being 0.9999997 and
0.9999998, respectively. False positive rates are always
nearly 0, while the true positive rates are above 99 %
by setting the thresholds to be 1.80 % to 14.86 % of
the read depth for error-free hits and 1.80 % to 14.88
% of the read depth for 1-error-tolerant hits. Thus
the default thresholds of five error-free hits and six 1-
error-tolerant hits are applicable to sequencing exper-
iments with estimated read depths between approxi-
mately 30X and approximately 280X. The thresholds
can be adjusted accordingly given sequencing throughputs
beyond this range.

Discussion
The increasing global burden of TB, especially drug-
resistant strains, has put a significant spotlight on patho-
gen whole genome sequencing as a rapid diagnostic tool,
which is of great relevance to both public health sur-
veillance and clinical treatment. The application of
next-generation sequencing in clinical microbiology
requires fast and easy-to-use software that is able to
accurately produce easily comprehensible results. As
shown, SpoTyping is able to accurately determine the
spoligotype of the Mtb isolate rapidly. Contrary to
SpolPred which is sensitive to the user-specified read
length and gives inconsistent predictions at different
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read lengths, SpoTyping gives accurate predictions based
on sequence reads produced from different technologies
regardless of the length uniformity of the sequence reads
and is 20 to 40 times faster than SpolPred. The additional
functions of database query, information visualization and
report generation provided by SpoTyping where the pre-
dicted spoligotype is automatically queried in the SITVIT
database to retrieve all associated epidemiological data
corresponding to the MIRU12, VNTR, SIT, MIT, VIT,
clades, countries of origin, countries of isolation, and year
of report and presented as a report would be a useful tool
for public health surveillance of Mtb strains causing
tuberculosis.
While there are several molecular typing techniques

for Mtb, the most widely used are spoligotyping, MIRU-
VNTR, and IS6110-RFLP. Spoligotyping, though being a
relatively simple, cost-effective, and high-throughput
method, suffers from the limitations of: (1) having rela-
tively low discriminatory power [23] due to its use of
only a single genetic locus; and (2) having limited use in
phylogenetic study. Among the genotyping methods for
Mtb, a combination of spoligotyping and MIRU-VNTR
was reported to be the best strategy [24, 25]. However,
significant technical challenges currently exist for the
accurate in silico typing from next-generation sequen-
cing reads of MIRU-VNTR which involves resolving tan-
dem repeats and IS6110-RFLP whose result is based on
DNA fragment blots on electrophoresis gel image and
thus involves the determination of the fragment lengths.
Spoligotyping, as a result, provides a unique chance to
obtain the same result from whole genome sequences as
the molecular typing result achieved in laboratories,
which can correlate the isolates investigated with differ-
ent approaches. Though spoligotyping has less discrim-
ination power than SNP phylogeny inferred from whole
genome sequences, it is unique in correlating the gen-
omic data produced in research labs and the molecular
typing data from clinical laboratories. Thus in silico spo-
ligotyping is not only a genotyping method for Mtb iso-
late differentiation, but also a bridge between isolates
with whole genome sequences available and isolates
typed and investigated with traditional laboratory pro-
tocols, especially those historical isolates that are not
sequenced. Inexorably, clinical surveillance and man-
agement of TB, particularly for disease diagnosis and
treatment, will progress towards the use of direct Mtb
sequencing. Thus the ease of use and interpretability
of the results will be of considerable importance to
users within a clinical setting, which is well achieved
with SpoTyping.
A recently published letter reported CASTB, an ana-

lysis server for the Mycobacterium tuberculosis complex,
which provides next-generation sequencing data analysis
tools for virtual typing (spoligotyping included), virtual

drug resistance analysis, and phylogenetic analysis [26].
While the webserver provides a comprehensive overview
at the sequencing data, the performance of each tool is
not well evaluated in the publication. More accurate and
well assessed tools are thus needed for further analysis.
SpoTyping is well assessed to provide high accuracy for
in silico spoligotyping and thus demonstrates the reli-
ability of the results. SpoTyping also benefits from its
open source nature that it can be easily integrated into
in-house analysis pipelines for in-depth analysis of the
sequencing data. When talking about execution time,
services provided by web servers may be very slow due
to the inherent issues such as the process of data
uploading and the availability of the computational re-
sources. SpoTyping, on the other hand, can be set up lo-
cally and provides the spoligotyping result within a
minute.
For the 14 discordant spoligotypes between the la-

boratory tests and the in silico predictions made by
SpoTyping in the 161 Mtb isolates sequenced on Illumina
HiSeq, the SNP-based phylogenetic tree of these 161 Mtb
isolates in the original article [20] was examined to com-
pare the lineage with the spoligotyping results (Additional
file 1: Table S9). Out of the 14 discordant results, three
showed better concordance of the in silico prediction
with the lineage on the tree. As an example, an isolate
(Accession: SRR671868, Strain: 143) located at Lineage
4.2 on the SNP-based phylogenetic tree is reported to
be a Beijing genotype based on the laboratory test in
the publication, while predicted to be a T2 genotype
by SpoTyping. However, the Beijing genotype is usually
found at East Asia Lineage 2, while Lineage 4 usually
harbors the Euro-American genotypes. One of the dis-
crepancies may be caused by the different naming of
spoligotypes in different databases (Beijing and Beijing-
like). Definite conclusion cannot be made for the
remaining 10 isolates for which the reported spoligotype
and in silico predicted spoligotype are different while the
lineages for both spoligotypes are similar (T2 and H3, for
example). For such isolates, the difference could be due to
the discrepancy between laboratory tests and the genomic
features.

Conclusions
SpoTyping is an accurate, fast, and easy-to-use program
for in silico spoligotyping of Mtb isolates from next-
generation sequencing reads, complete genomic se-
quences, and assembled contigs. In addition, SpoTyping
automatically queries the global Mtb molecular markers
database SITVIT to retrieve associated data for match-
ing isolates with the inferred spoligotypes, which can be
summarized graphically to generate a report. SpoTyping
would be a useful tool for public health surveillance and
genotyping of Mtb strains.
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Availability and requirements

� Project name: SpoTyping
� Project home page: https://github.com/xiaeryu/

SpoTyping-v2.0
� Operating systems: Linux, Mac OS, Windows
� Programming language: Python (version 2.7)
� Other requirements: BLAST
� License: GNU General Public License
� Any restrictions to use by non-academics: None

Additional file

Additional file 1: Table S1. Spoligotype prediction and time
performance of 161 Mtb isolates with SpoTyping in comparison with
SpolPred. Table S2. Spoligotypes of 14 Mtb isolates determined from
contigs obtained by de novo assembly, Velvet. Table S3. Actual
length at different percentiles used as the read length for SpolPred
spoligotype prediction of isolates sequenced on Illumina MiSeq.
Table S4. Spoligotype prediction for Mtb isolates sequenced by
Illumina MiSeq with SpoTyping in comparison with SpolPred. Table S5.
Actual length at different percentiles used as the read length for SpolPred
spoligotype prediction of isolates sequenced on Ion Torrent. Table S6.
Spoligotype prediction for Mtb isolates sequenced by Ion Torrent
with SpoTyping in comparison with SpolPred. Table S7. Statistics of
time and accuracy of running SpoTyping on 50 iterations each for
various down-sampling ratios of an H37Ra Mtb isolate. Table S8. Statistics
of time and accuracy of running SpoTyping on 50 iterations each for various
down-sampling ratios of a Beijing Mtb isolate. Table S9. Lineages of
14 discordant Mtb isolates by SpoTyping, experimentally reported and
phylogenetic tree. (XLSX 55 kb)
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