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1 Introduction

The power growth of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1–3] amplitude contra-

dicts the unitarity condition and should be modified. In the pioneering paper of Gribov,

Levin and Ryskin (GLR) [4] the authors introduced a gluon saturation, meaning that the

gluon density grows at large energy resulting in an overlap of the gluon states which tams

growth of the amplitude with increase of energy. This mechanism introduces a new scale

commonly referred to as a saturation scale Q2
s. The GLR equation was first to account for

non-linear effects for describing the physics of the Deep Inelastic Scattering (DIS). The GLR

equation has a linear term representing BFKL type ladder diagrams, but also it includes a

non-linear term, which stands for so-called fan diagrams describing the pomeron splitting

into two pomerons. The GLR equation was formulated in double logarithmic kinematics,

where one resums powers of logarithm of energy and typical transverse momentum. This

kinematics is more restricted with respect to the BFKL multi-Regge kinematics, where the

energy of the colliding particles is much larger than any transverse momentum. A decade

after formulation of the GLR equation the unitarization corrections in the Regge kinematics

were taken into account in the further generalization of the BFKL equation in the Wilson

line formalism by Balitsky [5] and soon after that independently by Kovchegov [6, 7] in

the color dipole approach [8–12]. The Balitsky chain reduced to the equation derived by

Kovchegov in the limit of infinite number of colors. The resulting Balitsky-Kovchegov (BK)

equation has a relatively simple form in the transverse coordinate space where the integral

Kernel of the linear and the non-linear terms are happened to be the same and have a

simple interpretation of splitting of the color dipole into two dipoles. Despite numerous

attempts during almost two decades the full analytic solution to the BK equation is still to

be found. The linear part of the BK equation corresponds to the BFKL evolution, which

was completely solved exploiting conformal symmetry of the BFKL Kernel in the space of

transverse coordinates. However, the direct substitution of the BFKL eigenfunctions in the

coordinate space to the BK equation does not lead to significant simplifications in solving

the BK equation. It was recently proposed that BFKL equation in color adjoint repre-

sentation can be solved for non-zero transverse momentum using the eigenfunction in the
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momentum space. This was done for calculating the Regge (Mandelstam) cut contribution

to the planar helicity amplitudes in Regge kinematics. A resulting series of publications

confirmed this calculations to be correct by performing analytic continuation followed by

Regge limit of the so-called remainder function of the Bern-Dixon-Smirnov (BDS) [13]

scattering amplitude. The analytic solution of the color adjoint BFKL was also useful

for calculating Regge cut corrections to the planar amplitudes of the next-to-maximally

helicity violating (NMHV) configuration of the scattered particles [14]. The Moebius rep-

resentation of the adjoint BFKL equation was calculated in ref. [15, 16].

In the present study we build a general form of the analytic solution to the BK equa-

tion (see eq. (2.10)) based on the eigenfunctions of the color adjoint BFKL equation. The

difference between the eigenfunctions of the adjoint BFKL in eq. (2.6) and the eigenfunc-

tions of the singlet BFKL in eq. (2.7) is mainly in the proper normalization condition

leading to a factor, which is related to a shift the argument of the BFKL eigenvalue by 1/2

with respect the eigenvalue of adjoint BFKL. This factor is needed to restore the conformal

symmetry in the momentum space of dual coordinates pi = zi−zi+1, i = 1, 2 present in the

adjoint BFKL and broken in the singlet case. The dual conformal symmetry is believed

to be a sign of integrability in planar amplitudes and is supposed to be present in the

integrable singlet BFKL equation.

Next, assuming a particular dependence of the impact factor on the transferred mo-

mentum in eq. (2.30) we find a closed analytic solution of the Balitsky-Kovchegov equation

in this particular kinematics. Finally, we check that our solution correctly reproduces the

initial condition and the high energy asymptotics of the scattering amplitude. Some details

of the calculations are presented in the appendix.

2 Solution of the BK equation

The Balitsky-Kovchegov (BK) [5–7] equation describes the energy evolution of the imagi-

nary part of the scattering amplitude N(x,y) as follows

∂Y N(x,y) =
ᾱs

2π

∫

d2z (x− y)2

(x− z)2 (z− y)2

(

N(x, z) +N(z,y)−N(x,y)−N(x, z)N(z,y)
)

.

(2.1)

The BK equation is written in terms of ‘t Hooft coupling

ᾱs =
αsNc

π
(2.2)

and the rapidity

Y = ln

(

s

s0

)

, (2.3)

where s is the square of the total energy of the scattering particles and s0 is some energy

scale. Numerous attempts of solving BK equation in coordinate space suggest us looking

for analytic solution in other representations. It is natural to start with momentum space

using a notation of ref. [17] for the corresponding Fourier transform

N (k,q) =

∫

d2x

2π

d2y

2π
eikxei(q−k)y N(x,y)

(x− y)2
(2.4)
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and write the Balitsky-Kovchegov equation in the momentum space as follows

∂Y N (k,q) =
ᾱs

π

∫

d2k′

(k− k′)2

(

N (k′,q)− 1

4

[

(q− k)2

(q− k′)2
+

k2

k′2

]

N (k,q)

)

− ᾱs

2π

∫

d2k′N (k,k′)N (k− k′,q− k′). (2.5)

Before considering the non-linear evolution we go back to the linear BFKL equation,

which can be solved in two different ways; in the coordinate and in the momentum spaces.

Both solutions are well known and usually addressed to as q = 0 solution (momentum space)

and q 6= 0 solution (coordinate space). Those two were thoroughly discussed in numerous

studies and we do not focus on them for the sake of brevity. For more details on these two

solutions the reader is referred to review texts [18–22]. This is true for the BFKL equation

projected on the color singlet state of two interacting reggeized gluons. However, if one

considers color adjoint BFKL with some infra-red divergent parts removed, there is another

q 6= 0 solution in the momentum space expressed through the adjoint BFKL eigenfunctions1

fν,n(k, q) =

(

k

q − k

)iν+n
2
(

k∗

q∗ − k∗

)iν−n
2

, (2.6)

which were used in a serious of publications [23–30] for calculations of the Regge (Man-

delstam) cut contribution to the helicity amplitudes in maximally supersymmetric theory.

Its solution was written in terms of fν,n(k, q) and a corresponding eigenvalue of the adjoint

BFKL equation of shifted argument with respect to the singlet BFKL eigenvalue. The

corresponding adjoint BFKL Green function was investigated in ref. [31].

In the present study we consider a non-linear generalization of the linear BFKL equa-

tion, namely the Balitsky-Kovchegov (BK) evolution equation. We introduce an ansatz

for the BK solution in a particular kinematic regime, which can be written in terms of

functions similar to fν,n(k, q). We slightly redefine the “adjoint” fν,n(k, q) to account for

a proper normalization of the singlet BFKL as well as a minus sign, which happens to be

important for the non-linear term of the BK equation as follows

Fν,n(k, q) =
1√
2 π

1

|k||k − q|

(

k

k − q

)iν+n
2
(

k∗

k∗ − q∗

)iν−n
2

=
1√
2 π

(−1)n

|k||k − q|fν,n(k, q).
(2.7)

The function in eq. (2.7) solves the leading order singlet BFKL equation as we show below.

The major difference between the adjoint and singlet eigenfunctions is the factor 1
|k||k−q| ,

which restores the dual conformal symmetry of the singlet BFKL equation. This analysis

is beyond the scope of the present study and will be published by us elsewhere.

The corresponding orthogonality condition is given by
∫

d2k F ∗
ν,n(k, q) Fν′,n′(k, q) =

δ(ν − ν ′)δn,n′

|q|2 (2.8)

and the completeness condition reads
∞
∑

n=−∞

∫ ∞

−∞
dν F ∗

ν,n(k
′, q) Fν,n(k, q) =

δ2(k − k′)
|q|2 . (2.9)

1Here we use complex coordinates defined by k = kx + iky, k
∗ = kx − iky
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Then we can write the analytic solution of the Balitsky-Kovchegov equation in the mo-

mentum space as follows

N (k,q) =
∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y ) Fν,n(k, q), (2.10)

where the coefficient function Cν,n(Y ) is found below plugging eq. (2.10) in the BK equa-

tion. Here we make a basic assumption that the coefficient function Cν,n(Y ) does not

depend on k or q. We discuss this approximation in more details below, where we consider

the initial condition and the high energy limit of the obtained BK solution.

It is useful to introduce new complex variables

k

k − q
= w,

k∗

k∗ − q∗
= w∗. (2.11)

In terms of the coordinates w and w∗ the function in eq. (2.7) reads

Fν,n(k, q) = F̃ν,n(w, q) =
1√
2 π

|w − 1|2
|q|2 wiν+n

2
− 1

2w∗iν−n
2
− 1

2 (2.12)

and the completeness relation in eq. (2.9) is given by

∞
∑

n=−∞

∫ ∞

−∞
dν F̃ ∗

ν,n(w
′, q) F̃ν,n(w, q) =

|w − 1|4
|q|4 δ2(w − w′). (2.13)

Consider the first linear term of the BK equation in the momentum space eq. (2.5)

ᾱs

2π

∫

d2k′

(k− k′)2
N (k′,q) =

ᾱ

2π

∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y )

∫

d2k′

(k− k′)2
Fν,n(k

′, q) (2.14)

and calculate the following expression

∫

d2k′

(k− k′)2
Fν,n(k

′, q) =

∫

d2k′

(k− k′)2
1√
2 π

1

|k′||k′ − q|

(

k′

k′ − q

)iν+n
2
(

k′∗

k′∗ − q∗

)iν−n
2

=
1√
2 π

|w − 1|2
|q|2

∫

d2w′

|w − w′|2
w′iν+n

2 w′∗iν−n
2

|w′|

=
1√
2 π

|w − 1|2
|q|2

wiν+n
2 w∗iν−n

2

|w|

∫

d2z ziν+
n
2
− 1

2 z∗iν−
n
2
− 1

2

|1− z|2

= Fν,n(k, q)

∫

d2z

|1− z|2 z
iν+n

2
− 1

2 z∗iν−
n
2
− 1

2 (2.15)

with z = w′/w. Thus we have

ᾱs

π

∫

d2k′

(k−k′)2
N (k′,q)=

ᾱs

π

∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y ) Fν,n(k, q)

∫

d2z

|1−z|2 ziν+
n
2
− 1

2 z∗iν−
n
2
− 1

2 .

(2.16)
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In a similar way the second linear term of the BK equation in eq. (2.10) can be written

as

− 1

4

ᾱs

π

∫

d2k′

(k− k′)2
(q− k)2

(q− k′)2
N (k,q) = −1

4

ᾱs

π

∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y ) Fν,n(k, q)

∫

d2z

|1− z|2
(2.17)

and finally the third linear term reads

− 1

4

ᾱs

π

∫

d2k′

(k− k′)2
k2

k′2N (k,q) = −1

4

ᾱs

π

∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y ) Fν,n(k, q)

∫

d2z

|z|2|1− z|2 .

(2.18)

The sum of these three linear terms gives an expression, which determines the BFKL

eigenvalue

ω(ν, n) = ᾱsχ(ν, n) (2.19)

through a function

χ(ν, n) =

∫

d2z

|1− z|2
(

ziν+
n
2
+ 1

2 z∗iν−
n
2
− 1

2 − 1

|z|2 + |1− z|2
)

= 2ψ(1)− ψ

(

iν +
|n|
2

+
1

2

)

− ψ

(

−iν +
|n|
2

+
1

2

)

, (2.20)

which is expressed in terms of the digamma function defined as a logarithmic derivative of

Euler gamma function

ψ(z) =
d ln Γ(z)

dz
=

∫ 1

0
dx

xz−1

x− 1
. (2.21)

In deriving eq. (2.20) we used the identity

∫

d2z

|z|2|1− z|2 = 2

∫

d2z

|1− z|2 (|z|2 + |1− z|2) . (2.22)

For more details on the calculation of χ(ν, n) the reader is referred to review texts [18–22].

This way we have shown that Fν,n(k, q) in eq. (2.7) is indeed the BFKL eigenfunction with

the eigenvalue ω(ν, n) given in commonly used notation without any possible shift of the

argument of digamma functions.

Now we are in position of plugging Fν,n(k, q) into the BK equation in eq. (2.5). Namely,

consider the non-linear term

−
ᾱs

2π

∫
d
2
k
′N (k,k′)N (k− k

′

,q− k
′) (2.23)

= −
ᾱs

2π

∫
d
2
k
′

∞∑
n1=−∞

∞∑
n2=−∞

∫
∞

−∞

dν1

∫
∞

−∞

dν2Cν1,n1
(Y )Cν2,n2

(Y )Fν1,n1
(k, k′)Fν2,n2

(k − k
′

, q − k
′)

= −
ᾱs

2π

∞∑
n1=−∞

∞∑
n2=−∞

∫
∞

−∞

dν1

∫
∞

−∞

dν2
kiν1+

n1

2

(k−q)iν2+
n2

2

k∗iν1−
n1

2

(k∗−q∗)iν2−
n2

2

1

|k||k−q|
Cν1,n1

(Y )Cν2,n2
(Y ) Rν2,n2

ν1,n1
,

(2.24)
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where Rν2,n2
ν1,n1

is calculated as follows (here we define k/k∗ = ei2φ)

Rν2,n2
ν1,n1

=

∫

d2k′

2π2
(k − k′)−iν1−n1

2
+iν2+

n2
2
−1(k∗ − k′∗)−iν1+

n1
2
+iν2−n2

2
−1 (2.25)

=

∫ ∞

0

d(|k′|2)
4π2

∫ 2π

0
dφ |k′|−i2ν1+i2ν2−2eiφ(n2−n1) = δ(ν2 − ν1) δn1,n2

.

Using the last expression we write

− ᾱs

2π

∫

d2k′N (k, k′)N (k − k′, q − k′) = − ᾱs√
2

∞
∑

n=−∞

∫ ∞

−∞
dν Fν,n(k, q)(Cν,n(Y ))2. (2.26)

Note that the coefficient of the non-linear term typically associated with the triple Pomeron

vertex, in this notation, is a number independent of anomalous dimension and conformal

spin. Therefore the (ν, n) dependence of the BK solution enters only through eigenfunctions

Fν,n(k, q) and the BFKL eigenvalue ω(ν, n) in eq. (2.7) and eq. (2.19) respectively.

Using the expression for the non-linear term eq. (2.26) in the BK equation we get an

equation for the coefficient function Cν,n(Y ) as follows

dCν,n(Y )

dY
= a Cν,n(Y ) + b Cν,n(Y )2. (2.27)

Its solution reads

Cν,n(Y ) =
aCν,n(0) e

aY

a+ b Cν,n(0) (1− eaY )
, (2.28)

where a = ω(ν, n) is the BFKL eigenvalue in eq. (2.19) and b = −ᾱs/(
√
2) is the coefficient

of the non-linear term in eq. (2.26).2 The initial condition of the coefficient function Cν,n(Y )

is set by the following expression

Cν,n(0) = |q|2
∫

d2k′ F ∗
ν,n(k

′, q) Φ(k′, q) = |q|4
∫

d2w′

|w′ − 1|4 F̃ ∗
ν,n(w

′, q) Φ̃(w′, q). (2.29)

The function Φ(k, q) is some impact factor determining an initial condition of the

non-linear evolution. The self-consistency of the approach suggests a choice of the im-

pact factor describing multiple rescatterings, e.g. an impact factor of the Glauber-Mueller

type [32] (see also ref. [33]). Our basic assumption is that the coefficient function Cν,n(0)

does not depend on the transferred momentum q. This means that we choose the impact

factor in such a way that

Φ̃(w′, q) =
Φ̃(w′)
|q|2 (2.30)

in accordance with eq. (2.29) and eq. (2.12), where Φ̃(w) is some function of w and inde-

pendent of q. This approximation seems to be reasonable for small values of the transferred

momentum.

2Note that this coefficient depends on the normalization of the eigenfunctions.
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The evolution equation eq. (2.27) and its solution in eq. (2.28) are similar to that

of the phenomenological summation of the Pomeron Fan diagrams in the Reggen Field

Theory for zero transverse momentum [34, 35] and can be used for summation of pomeron

loops [36–40]. We recall that we wrote a general form of the BK solution in eq. (2.10) as

N (k,q) =
∞
∑

n=−∞

∫ ∞

−∞
dν Cν,n(Y ) Fν,n(k, q), (2.31)

and it follows directly from this definition and the completeness condition in eq. (2.9) that

at Y = 0 for our choice of Cν,n(Y ) we have

N (k,q)|Y=0 = Φ(k,q). (2.32)

A general form of the solution N (k,q) in eq. (2.31) together with the expression for

the coefficient function Cν,n(Y ) in eq. (2.28) and its initial condition Cν,n(0) in eq. (2.29)

present the main result of the this study.

It is easy to see from eq. (2.10) and eq. (2.28) that the solution of the BFKL equation

in the color singlet state is obtained by setting b = 0 in the coefficient function Cν,n(Y ).

Note that in the BFKL equation, which corresponds to the linear part of eq. (2.5) the

transferred momentum q is not mixed with the integration variable of the Kernel and

thus the condition that Cν,n(Y ) does not depend on q can be relaxed reproducing the full

analytic solution of the BFKL equation for a non-zero transferred momentum.

We have shown above that our choice of functions Fν,n(k, q) is consistent with a solution

of the BFKL equation, and the next step is to check that the full solution written in terms

of these functions have a reasonable behaviour at high energy.

In the limit Y → ∞ eq. (2.28) reduced to

Cν,n ≃ −a

b
=

√
2 χ(ν, n) (2.33)

and the amplitude N (k,q) defined by eq. (2.10) in this limit does not depend of the initial

condition resulting in

N (k,q)|Y→∞ ≃
∞
∑

n=−∞

∫ ∞

−∞
dν

√
2 χ(ν, n) Fν,n(k, q) =

2

|q|2 . (2.34)

Details of this calculation are presented in the appendix. This function peaks at small q

and thus can be reasonably approximated by Dirac δ-function.

N (k,q)|Y→∞ ≃ 2δ(|q|2)δ(φ) = 1

|q|δ(|q|)δ(φ) = δ2(q). (2.35)

Note that we have no k dependence at Y → ∞ and the asymptotic amplitude diverges

for q = 0. This amplitude represents so called fixed point at which the derivative ∂Y N (k, q)

vanishes and the amplitude goes to its maximal value. On the other hand one can search

fixed points of the BK equation in the coordinate space in eq. (2.1) and it is widely accepted

that a natural fixed point of eq. (2.1) is N(x,y) = 1, which is also a fixed point in

– 7 –
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phenomenological models. Then for our definition of the Fourier transform in eq. (2.4)

we have

N (k,q) =

∫

d2x

2π

d2y

2π
eikx ei(q−k)y θ((x− y)2 − c2)

(x− y)2

= −δ2(q)

2

(

ln

(

k2

4

)

− 2ψ(1) + ln c2
)

. (2.36)

We have a certain freedom in choosing the cut-off c, which we fix by imposing a condition

that the expressions in eq. (2.35) and eq. (2.36) are to be identical. This condition imposes

a definite choice of the cut-off such that

c2 =
4e2ψ(1)−2

k2
. (2.37)

Note that this choice of the cut-off can be related to two basic values that govern the

saturation physics. Namely, the coefficient that determines the rapidity dependence of the

saturation scale3

Qs(Y ) ≃ Qs(0)e
ᾱs

C
2
Y , C ≃ 4.88 (2.38)

and the critical exponent γc = 0.6275 in

N(x,y) ∝ |x− y|2γc ln |x− y|, for |x− y| → 0. (2.39)

Those two can be expressed at one percent accuracy through our choice of the cut-off

as follows
2√
c2k2

≃ 4.84 (2.40)

and
1

ln
(

2√
c2k2

) ≃ 0.634 (2.41)

establishing a relation
1

lnC
≃ γc. (2.42)

The authors are not aware about any previous study discussing a similar relation.

3 Discussions

We discuss a new form of the singlet BFKL eigenfunction in eq. (2.7) and using it build an

analytic solution of the BK equation in eq. (2.10) for a particular kinematics, where the

impact factor depends on the transferred momentum through eq. (2.30). We check that

the obtained solution satisfies the initial condition, it has a proper high energy behavior

compatible with known values of the saturation scale and its form resembles a solution to

phenomenological fan diagrams resummation.

3For most recent review on saturation physics the reader is refrerred to the book of Yu. V. Kovchegov

and E. M. Levin and other review texts [18–22].
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The Balitsky-Kovchegov equation was extensively studied during past two decades

both numerically and analytically in various approximations. The comparison of the solu-

tion presented in this paper to the approximate solutions available in the literature is not

a simple task and definitely requires a separate analysis which will be published by us else-

where. The most important cross check for us is the compatibility with the linear evolution

of the BFKL equation and the proper high energy behaviour as shown above. We expect

some peculiar technicalities in going back to the coordinate space we have started with

in eq. (2.1), related to the fact that we are dealing with individually divergent quantities,

which nevertheless result into a finite and well defined final answer. The proposed analytic

solution of the BK equation may have many phenomenological applications [41, 42], e.g.

effective high energy description of the proton-nucleus scattering as well as nucleus-nucleus

scattering calculated through pomeron loops built of two symmetric (projectile-target) BK

solutions.

The singlet BFKL equation is reach of symmetries [43–47] and being integrable is sup-

posed to enjoy also the dual conformal symmetry as mentioned above. A similar though a

more general dual superconformal conformal symmetry was identified for planar scattering

amplitudes in maximally supersymmetric theory (see recent results in ref. [48] and refer-

ences wherein). The solution of the Balitsky-Kovchegov equation presented here is written

in the space of transverse momenta and one can expect some manifistations of the dual

superconformal symmetry appearing also in the case of the non-linear BK evolution. We

leave these issues for our further publications.
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A Calculation of N (k, q)|Y →∞

We calculate the high energy asymptotics of the solution in eq. (2.31)

N (k,q)|Y→∞ ≃
∞
∑

n=−∞

∫ ∞

−∞
dν

√
2 χ(ν, n) Fν,n(k, q), (A.1)

where the function χ(ν, n) is given in eq. (2.20) by

χ(ν, n) = 2ψ(1)− ψ

(

iν +
|n|
2

+
1

2

)

− ψ

(

−iν +
|n|
2

+
1

2

)

(A.2)

= −
∞
∑

m=1

iν + |n|
2 − 1

2

m
(

m+ iν + |n|
2 − 1

2

) −
∞
∑

m=1

−iν + |n|
2 − 1

2

m
(

m− iν + |n|
2 − 1

2

)
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and the eigenfunction Fν,n(k, q) is defined in eq. (2.14) as follows

Fν,n(k, q) = F̃ν,n(w, q) =
1√
2 π

|w − 1|2
|q|2 wiν+n

2
− 1

2w∗iν−n
2
− 1

2 . (A.3)

Consider the following expression

I =
∞
∑

n=−∞

∫ ∞

−∞
dν χ(ν, n) wiν+n

2 w∗iν−n
2 =

∞
∑

n=−∞

∫ ∞

−∞
dν χ(ν, n) |w|i2ν einφ (A.4)

=
∞
∑

n=1

∫ ∞

−∞
dν χ(ν, n) |w|i2ν

(

einφ + e−inφ
)

+

∫ ∞

−∞
dν χ(ν, 0) |w|i2ν , (A.5)

where we use w/w∗ = eiφ. We do the ν integration first for |w| > 1 closing integration

contour in the upper complex semiplane and the contribution comes only from one of the

digamma functions in χ(ν, n). Namely,

I = 2π
∞
∑

m=1

∞
∑

n=1

|w|1−n−2m
(

einφ + e−inφ
)

+ 2π
∞
∑

m=1

|w|1−2m

= 2π
∞
∑

m=1

|w|1−2m

(

1 +
∞
∑

n=1

(

w∗−n + w−n
)

)

= 2π
|w|

|w|2 − 1

(

1

w∗ − 1
+

1

w − 1
+ 1

)

= 2π
|w|

|w − 1|2 . (A.6)

In a similar way we close the integration contour for ν in the lower complex semiplane for

|w| < 1 and get the same result. Using the definition of Fν,n(k, q) in eq. (2.14) we finally

obtain

N (k,q)|Y→∞ ≃
∞
∑

n=−∞

∫ ∞

−∞
dν

√
2 χ(ν, n) Fν,n(k, q) =

|w − 1|2
π|q|2|w| I =

2

|q|2 . (A.7)
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