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Abstract

Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle
of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled
receptors (GPCRs) over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent
of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not
by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems
level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating
mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the
absence of b-arrestin 2 (b-arr2) augments the constitutive coupling of μ receptors to voltage-activated Ca2+

channels in primary afferent dorsal root ganglion neurons from b-arr2-/- mice. We used this in vitro approach to
characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors
in neurons. We administered these agents to b-arr2-/- mice to explore the role of constitutive μ receptor activity in
nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo
in b-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists,
but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar
in b-arr2-/- and b-arr2+/+ mice, suggesting that hedonic tone was unaffected.

Introduction
Costa and Herz first demonstrated agonist independent
opioid receptor signaling in the membranes of NG-108-
15 neuroblastoma cells by assaying GTPase activity [1].
They identified δ opioid receptor ligands that inhibit the
actions of agonists but have minimal inhibitory effects
on basal δ receptor activity. These agents are neutral
competitive antagonists. By contrast, ligands that inhibit
both basal signaling and agonist-evoked signaling are
inverse agonists, drugs that exhibit negative intrinsic
efficacy.
μ Opioid receptors exhibit low levels of constitutive

activity and therefore several studies have employed
strategies of over-expression, mutagenesis and/or phar-
macological manipulation in order to enhance basal sig-
naling [2-6]. Initial studies examining constitutive
activity of the μ receptor measured inverse agonist

induced reductions in GTP-g-S binding or cAMP accu-
mulation in cell lines over-expressing recombinant
receptors [5-8]. These studies established that naloxone
and naltrexone have negative efficacy. By contrast, the
hydroxyl derivatives of both naloxone (6a- and 6b-
naloxol) and naltrexone (6b-naltrexol) have minimal
negative efficacy and are therefore considered to be neu-
tral antagonists [9,10]. Prolonged morphine treatment in
vivo increases μ receptor constitutive activity in the
striatum of morphine dependent mice [11] and this is
associated with enhanced naloxone induced aversion
which persists after cessation of morphine administra-
tion [12,13]. These studies suggest that an agonist-
induced induction of μ receptor constitutive activity dis-
rupts hedonic homeostasis.
In addition to inhibiting adenylyl cyclase, active opioid

receptors inhibit high threshold voltage dependent Ca2+

channels (VDCCs) and activate K+ channels [14]. Cou-
pling to all three effectors occurs through inhibitory G-
proteins, which upon activation dissociate into compo-
nent Gai/o and bg subunits. The bg subunits bind to N-
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and P/Q-type VDCCs directly inhibiting Ca2+ entry in a
voltage-dependent fashion [15]. Strong depolarization
reverses the interaction of the bg subunits with VDCCs
causing a facilitation of current amplitude that repre-
sents reversal of inhibition. Voltage-dependent reversal
of basal inhibition of VDCCs by μ receptors provides an
assay for constitutive activity in neurons [16]. We
demonstrated that DRG neurons from mice lacking b-
arrestin 2 (b-arr2) exhibited constitutive μ receptor inhi-
bition of VDCCs, revealed by an enhancement of vol-
tage-dependent facilitation compared to that observed in
recordings from b-arr2+/+ neurons [17]. The inverse
agonist naltrexone inhibited facilitation while the neutral
antagonist CTAP had no effect. The peptide CTAP has
limited bioavailability in vivo therefore in this study we
used b-arr2-/- DRG neurons to establish the relative
intrinsic efficacies of the alkaloids naloxone, 6a-naloxol,
6b-naloxol and 6b-naltrexol in peripheral nociceptors.
Having characterized these agents in vitro we used them
to probe a role for constitutively active μ receptors
nociception.
In agreement with a previous finding [18] we demon-

strated that b-arr2-/- mice exhibit enhanced basal ther-
mal analgesia compared to b-arr2+/+ mice. Our findings
suggest that basal thermal analgesia in b-arr2-/- mice is
mediated by constitutively active μ receptors. By con-
trast, there was no difference in hedonic homeostasis
between b-arr2-/- and b-arr2+/+ mice assessed using
naloxone-evoked conditioned place aversion.

Methods
Cell culture
DRGs from all spinal levels were harvested from early
postnatal (p0-1) or adult mice (4-6 weeks old), which
contained both (b-arr2+/+) or neither (b-arr2-/-) of the
b-arr2 alleles in the C57BL/6 background. DRGs were
dissociated in trypsin (Invitrogen, Carlsbad, CA) for the
early postnatal neurons, or Collagenase (Liberase TH and
TM, Roche, Indianapolis, IN) for the adult neurons. 1 ×
104 cells were plated on each poly-D-lysine (Sigma, MO)
and laminin (Invitrogen, CA) coated coverslip of MatTek
dishes, (Ashland, MA) as previously described [17].

Electrophysiology
After 24-48 h in vitro, the whole-cell patch-clamp (Axo-
patch 200A amplifier, Axon Instruments Inc., CA) tech-
nique was used to record VDCC activity from small
DRG neurons (capacitance less than 15 pF). The exter-
nal solution contained (in mM): 130 TEA-Cl, 10 CaCl2,
5 HEPES, 25 D-glucose and 0.25 tetrodotoxin (pH 7.2).
Recording electrodes contained (in mM): 105 CsCl, 40
HEPES, 5 D-glucose, 2.5 MgCl2, 10 EGTA, 2 Mg2+-ATP
and 0.5 Na+-GTP (pH 7.2). VDCCs were activated using
voltage-steps from -80 mV to 10 mV at 20 s intervals.

Such steps were carried out in the absence or presence
of a prepulse to 80 mV, a 2 step-protocol. Voltage-acti-
vated currents were low-pass filtered at 2 KHz, digitized
(Digidata, Axon Instruments Inc., CA) at 10 KHz, and
stored on a PC. Leak currents were nulled using the P/4
subtraction method. All ligands were diluted in the
external solution on the day of the experiment and
applied through the perfusion system at ~10 ml/min.
Mean current amplitudes were measured (pCLAMP 9.0,
Molecular Devices, CA) between 5 and 10 ms after initi-
ating the depolarizing step. Once a stable recording was
obtained, Ca2+ in the external solution was replaced by
Ba2+ (10 mM) to minimize Ca2+ current inactivation.

Behavioral experiments
For behavioral experiments male and female 2-3 month
old progeny of heterozygous matings of mice fully back-
crossed into the C57Bl/6 background were used to test
thermal or mechanical analgesia or place conditioning,
each mouse undergoing a single test. Thermal analgesia
was also tested in double knockout mice lacking both μ
receptors and b-arrestin 2 generated from heterozygous
matings of both lines, both of which were fully back-
crossed into the C57Bl/6 background. All animal
research was conducted in accordance with the federal
regulations as set forth in the Animal Welfare Act
(AWA), the 1996 Guide for the Care and Use of Labora-
tory Animals, PHS Policy for the Humane Care and Use
of Laboratory Animals, as well as UCLA’s policies and
procedures as set forth in the UCLA Animal Care and
Use Training Manual.

Nociception
Thermal nociception was measured by either the tail
immersion [19] or the Hargreaves [20] test and mechan-
ical nociception by von Frey filaments [21]. For all tests
animals were habituated to the test environment for 2
days prior to testing which took place between 8.00 and
16.00 h. For the tail immersion test the last 2.5 cm of
the tail was immersed in 48°C water and the latency for
tail withdrawal measured. The maximum immersion
time was 15 s. After 3 basal measurements, saline or the
test drug was injected subcutaneously (sc) at a volume
of 10 μl/g body weight (bw) and the time to respond
measured 30, 60 and 90 min thereafter. The compounds
tested and doses used were (in mg/kg): naloxone (0.5),
6a-naloxol (1.0), 6b-naloxol (10), naltrexone (0.5) and
6b-naltrexol (10). Naloxone and naltrexone were
obtained from Sigma (MO) and the hydroxyl derivatives
from the National Institute on Drug Abuse. For the
Hargreaves test each mouse was habituated to the 10
cm × 10 cm × 15 cm enclosure on a heated (22°C) glass
plate for 20 min prior to testing. A medium intensity
infrared beam was shone on the rear foot pad of the
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hind paw and the latency to lift the paw was measured.
The average responses of both left and right hind paws
were obtained for each data-point with a minimum
interval of 5 min between testing either paw. After the
baseline measurements were obtained naloxone was
injected (0.5 mg/kg) and the response measured 30 min
later. For mechanical nociception the response threshold
to punctate mechanical stimuli was tested according to
the up-and-down method [21] as previously described
[22]. In this case, the plantar surface of one hind paw
was stimulated with a series of eight von Frey filaments
(bending force ranging from 0.01 to 2 g). A response
was defined as a lifting or shaking of the paw upon
stimulation.

Place conditioning
The conditioning apparatus (Coulbourn Instruments,
Allentown, PA, USA) and experimental protocol have
been described previously [23]. Briefly, arenas were
divided into three distinctively patterned chambers: a
neutral start chamber and two conditioning chambers,
which were discernable by pattern and odor. The drug-
paired chamber was randomized across subjects and
treatments. On day 1 (habituation session), mice were
placed in the start chamber, permitted access to the
entire apparatus for 15 minutes, and time spent in each
chamber was recorded. On the mornings of days 2-4
(conditioning sessions), animals received saline (10 μl/g
bw sc) and were confined to the ‘vehicle-paired’ cham-
ber for 30 minutes. Four hours later, the same mice
received a single naloxone injection (0.25, 0.5, 1.0, or 10
mg/kg sc) or vehicle and were confined to the ‘drug-
paired’ chamber for 30 min. On day 5 (test session), ani-
mals, in a drug-free state, were placed in the neutral
chamber and permitted to explore the entire apparatus
for 15 minutes, with time spent in each chamber
recorded. Separate groups of b-arr2-/- and b-arr2+/+
mice were used for each dose of naloxone.

Statistical analysis
Nociception assays involved sample sizes of 9-22 mice
per group. Data from these and the electrophysiological
assays were analyzed by one way ANOVA for genotype,
and the post hoc Scheffe test. Data are presented as the
mean ± SEM of the time to respond. For place condi-
tioning analysis of initial bias between future drug-
paired versus future vehicle-paired chamber was con-
ducted by three way ANOVA with factors of genotype,
dose, and the repeated-measures factor of chamber. Sta-
tistical comparisons of times spent in the drug-paired
chamber between habituation and test day were made
using three way ANOVA with factors of genotype, dose,
and the repeated-measures factor of day (habituation
versus test).

Results
Constitutive μ receptor coupling to VDCCs in small b-
arr2-/- neurons from postnatal and adult mice
VDCC inhibition by μ receptors is mediated by Gbg sub-
units which bind to VDCCs in a voltage-dependent man-
ner [24]. Inhibition mediated by Gbg subunits can be
reversed by strongly depolarizing pre-pulses leading to
facilitation of current mediated by VDCCs [15]. We pre-
viously demonstrated that facilitation can be used to
monitor the level of inhibitory opioid receptor coupling
to VDCCs in the absence of agonist [17]. We used a vol-
tage protocol to generate a current (activated by stepping
from -80 to 10 mV) either in the absence (P1) or in the
presence (P2) of a depolarizing pre-pulse from -80 to 80
mV (Figure 1A). In our previous study we used small to
medium sized neurons [17]. In the current study we mea-
sured facilitation in small (classified as having a whole-
cell capacitance of < 15 pF) DRG neurons, by determin-
ing the P2/P1 ratio (Figure 1A). In agreement with our
previous report, the pre-pulse-evoked facilitation was sig-
nificantly larger (p < 0.005) in b-arr2-/- (1.10 ± 0.02)
compared to b-arr2+/+ DRG neurons (1.02 ± 0.01) from
early postnatal mice and was augmented when the non-
hydrolyzable GTP analog, GTP-g-S (100 μM) was
included in the intracellular recording solution (Figure
1A). An increased facilitation was not seen in DRG neu-
rons from postnatal mice lacking both μ receptors and b-
arr2 (1.03 ± 0.02, p < 0.05 Figure 1A), indicating that the
μ receptor is required for this phenomenon. Similar to
early postnatal DRG neurons, a pre-pulse evoked facilita-
tion was also seen in adult DRG neurons from b-arr2-/-
(1.10 ± 0.02) but not b-arr2+/+ (1.03 ± 0.02) mice (p <
0.05, Figure 1B). Again, facilitation was enhanced by the
presence of intracellular GTP-g-S (Figure 1B). Early post-
natal DRG neurons were used for all subsequent electro-
physiological experiments.

Characterization of neutral antagonists and inverse
agonists in b-arr2-/- DRG neurons
We previously demonstrated that facilitation in b-arr2-/-
neurons is mediated by constitutively active μ receptors;
it is inhibited by the inverse agonist naltrexone, but
unaffected by the neutral antagonist CTAP [17]. The
relatively poor bioavailability of the peptide CTAP com-
pared to alkaloids [25] prompted us to use voltage-
dependent facilitation of VDCC activity in b-arr2-/-
neurons as an assay to identify alkaloids that lack nega-
tive efficacy for subsequent use in vivo. We examined
naloxone and naltrexone, previously classified as inverse
agonists and 6a-naloxol, 6b-naloxol and 6b-naltrexol
classified as neutral antagonists in the reward pathway
in vivo [11] and in assays of adenylyl cyclase activity in
vitro [9]. Naloxone (1 μM) reduced facilitation recorded
from b-arr2-/- DRG neurons (Figure 2A). By contrast,
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6a-naloxol (1 μM), 6b-naloxol (1 μM) and 6b-naltrexol
(1 and 10 μM) did not influence facilitation in b-arr2-/-
neurons. In agreement with our previous study [17] nal-
trexone (1 μM), like naloxone, inhibited facilitation. The
naloxone-evoked reduction in pre-pulse evoked facilita-
tion in b-arr2-/- neurons was prevented by the co-appli-
cation of the neutral antagonist, 6a-naloxol (Figure 2A).
None of the alkaloids tested affected facilitation in b-
arr2+/+ neurons.

Recovery of VDCC activity in b-arr2-/- neurons by inverse
agonists but not neutral antagonists
We also examined the effect of the inverse agonists on
currents activated by depolarizing neurons from -80 to
10 mV in the absence of a depolarizing pre-pulse. This
approach reveals the amplitude of current recovery by
inverse agonist-evoked inhibition of constitutive μ
receptor activity. Naloxone (1 μM) and naltrexone (1
μM) caused small enhancements of VDCC mediated
currents recorded from b-arr2-/- neurons (5.3 ± 1.0%
and 4.3 ± 1.1% of control amplitude) not seen in record-
ings from b-arr2+/+ neurons (Figure 2B). By contrast,
the neutral antagonists 6a-naloxol (1 μM), 6b-naloxol (1
μM) and 6b-naltrexol (1 and 10 μM), had no significant
effect on the amplitude of currents recorded from DRG
neurons, regardless of genotype. The enhancement of
VDCC mediate currents by naloxone (1 μM) was inhib-
ited by co-application of the neutral antagonist, 6a-
naloxol (1 μM; Figure 2B).

Neutral antagonists inhibit agonist-dependent μ receptor
coupling to VDCCs
We tested the ability of the neutral antagonists to inhi-
bit agonist induced μ receptor coupling to VDCCs. The
specific μ receptor agonist DAMGO (1 μM) inhibited
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Figure 1 Increased facilitation in early post-natal and adult
DRG neurons. An increase in Ba2+ current facilitation following a
depolarizing pre-pulse to 80 mV is consistent with constitutive
coupling of GPCRs with voltage-dependent Ca2+ channels (VDCCs)
through Gbg subunits. Facilitation was quantified by a two-step
protocol comparing the current amplitude with (P2) or without a
pre-pulse (P1), the P2/P1 ratio. A. Early post-natal DRG neurons i.
Whole cell patch clamp recordings for all experiments were
conducted in small DRGs (highlighted by the arrow, the scale-bar
represents 10 μM), the population of cells most likely to express the
μ receptor. ii. Exemplar recordings from b-arr2+/+ and b-arr2-/-

cells, in which GTP-g-S was included in the intracellular recording
solution, demonstrate the relative increase in current following a
depolarizing pre-pulse to 80 mV (P2). Horizontal and vertical scale-
bars represent 20 ms and 0.4 nA respectively. iii. The P2/P1 ratio
reveals increased facilitation in barr2-/- but not b-arr2+/+ early post-
natal neurons. This difference was enhanced in the presence of
GTP-g-S and absent in neurons lacking both b-arr2 and the μ

receptor (μbarr2-/-). B. Adult DRG neurons. i. Similar to the early
post-natal DRGs, recordings were made in small DRG neurons from
adult mice (highlighted by the arrow, the scale-bar represents 10
μM). ii. Exemplar recordings from adult DRG neurons in which GTP-
g-S was included in the intracellular recording solution, similarly
demonstrate an increased current after the depolarizing pre-pulse
(P2) in barr2-/- neurons. Horizontal and vertical scale-bars represent
20 ms and 1.0 nA, respectively. iii. Recordings from adult DRG
neurons show a similar effect as early post-natal DRGs in which the
P2/P1 ratio was enhanced in b-arr2-/- vs b-arr2+/+ neurons. This
effect was enhanced by GTP-g-S. ***p < 0.0001 vs b-arr2+/+., * p <
0.05 vs b-arr2+/+, #p < 0.05 vs untreated b-arr2-/- recordings.
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Figure 2 Constitutive coupling of the μ-receptor with VDCC in b-arr2-/- but not b-arr2+/+ DRG neurons. A Constitutive coupling of
GPCRs to VDCCs can be reversed by inverse agonists but not neutral antagonists. Accordingly the enhanced facilitation ratio in b-arr2-/- vs b-
arr2+/+ neurons, shown in Figure 1 and reproduced here for comparison, was inhibited by naloxone (Nal), naltrexone (Ntx), but not by 6a-
naloxol, 6b-naloxol (6a-Nal, 6b-Nal), 6b-naltrexol, (6b-Ntx), or by the combination of naloxone with 6a-naloxol (6a-Nal+Nal). These ligands had
no effect in b-arr2+/+ neurons. The upper panels show exemplar traces generated by the two-step protocol (scale-bars represent 20 ms
(horizontal) and 0.5 nA (vertical) and the data from 12-22 cells are summarized in the underlying graph, with P2/P1 ratio on the ordinate and
treatment on the abscissa. ***p < 0.0001 vs b-arr2+/+, *p < 0.05 vs b-arr2+/+, #p < 0.05 vs untreated b-arr2-/-. The concentration of each drug
in μM is indicated in parentheses. B. A single-step voltage protocol was used to measure Ba2+ current amplitude in the presence (2) or absence
(1) of naloxone, or 6a- and 6b-naloxol, as shown by the exemplar traces in the top panels. Naloxone and naltrexone increased the current
amplitude in b-arr2-/- but not b-arr2+/+ neurons, whereas 6a-, 6b-naloxol or 6b-naltrexol, or the combination of naloxone with 6a-naloxol, had
no effect on the current amplitude in either cell type. The upper panels show exemplar traces for all conditions. Scale-bars represent 20 ms
(horizontal) and 0.5 nA (vertical) and the data for 7-12 cells are summarized in the underlying graph, inhibition (%) shown on the ordinate and
treatment on the abscissa. *p < 0.05 vs b-arr2+/+. The concentration of each drug in μM is indicated in parentheses.
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currents recorded from b-arr2+/+ neurons to 28 ± 3%
of control current amplitude. By contrast, DAMGO (1
μM) co-applied with the neutral antagonists (1 μM of
each) 6a-naloxol, 6b-naloxol, or 6b-naltrexol, barely
inhibited currents (2.6 ± 1.0%, 0.1 ± 0.5% and 2.3 ±
1.6%, respectively, n = 4-10). These data confirm that, at
the concentrations used, the neutral antagonists bind to
μ receptors and inhibit VDCC coupling.
Having determined the relative intrinsic efficacies of

naloxone, naltrexone, 6a-naloxol, 6b-naloxol, and 6b-
naltrexol in vitro we used these bioavailable compounds
to investigate the behavioral significance of constitutive
μ receptor activity in vivo.

Mice lacking b-arr2 exhibit reduced thermal nociception
that is reversed by naloxone and naltrexone
Mice lacking b-arr2 have previously been shown to
exhibit a delayed thermal response in the tail withdrawal
assay [26]. We similarly found an attenuated tail with-
drawal response in b-arr2-/- mice that was absent in
their b-arr2+/+ littermates (Figure 3A). This enhanced
tail withdrawal latency was not seen in mice lacking
both μ receptors and b-arr2 (μ-/-/b-arr2-/-: 2.8 ± 0.2 s,
μ+/+/b-arr2-/-: 4.6 ± 0.4 s, μ+/+/b-arr2+/+: 2.5 ± 0.3 s,
p < 0.05 μ-/-/b-arr2-/- vs μ+/+/b-arr2-/-) indicating that
the μ receptor is necessary for the prolonged response
to noxious heat.
We examined whether constitutive activity of the μ

receptor is responsible for the prolonged withdrawal
latency in b-arr2-/- mice. Initially we used the inverse
agonist, naloxone (Figure 3B) and the neutral antago-
nists, 6a-naloxol (Figure 3C) and 6b-naloxol (Figure 3D)
using doses of 0.5, 1 and 10 mg/kg for naloxone, 6a-
and 6b-naloxol respectively, previously shown to be
effective in vivo [9,12,13,27,28]. We examined a time
course of up to 90 min after each injection, to allow suf-
ficient time for different rates of receptor activation.
Naloxone, 30 min after administration, reduced tail
withdrawal latency of b-arr2-/- mice from 4.6 ± 0.4s to
3.0 ± 0.3s (Figure 3B), but had no effect in b-arr2+/- or
b-arr2+/+ mice (Figure 3B). The mean withdrawal laten-
cies in naloxone treated b-arr2-/- mice at the 30 and 60
min time points were similar to those of b-arr2+/+ mice
with or without naloxone administration. Unlike nalox-
one, neither the neutral antagonist 6a-naloxol nor 6b-
naloxol significantly affected tail withdrawal latencies in
b-arr2+/+, b-arr2+/- or b-arr2-/- mice (Figure 3C and
3D). However, the co-administration of 6a-naloxol with
naloxone abolished the reduction in tail withdrawal
latency seen in b-arr2-/- mice treated with naloxone
alone, indicating that both drugs have access to μ recep-
tors in vivo (Figure 3E). Consistent with these effects
being mediated by μ receptors, naloxone had no effect
when administered to μ-/-/b-arr2-/- mice 30 min after

injection (untreated: 2.81 ± 0.24 s, Nal: 3.03 ± 0.22 s, p
= 0.5).
Although naloxone is an inverse agonist at μ recep-

tors, it also binds to δ and � receptor subtypes [29]. We
therefore tested the effect of naltrexone (0.5 mg/kg), an
inverse agonist with a similar negative efficacy to that of
naloxone [30], but with higher μ receptor selectivity [29]
as well as the structurally related neutral antagonist 6b-
naltrexol. Since 6b-naltrexol may have a lower affinity
for the μ receptor and a slower rate of activation, a
higher dose of 6b-naltrexol, effective in vivo, was admi-
nistered [27,31]. We found that similar to naloxone, nal-
trexone reduced tail withdrawal latency in b-arr2-/-
mice, but was without effect in b-arr2+/+ or b-arr2+/-
mice 30 min after administration (Figure 3F). By con-
trast, the neutral antagonist 6b-naltrexol (10 mg/kg) had
no effect on tail withdrawal latencies, irrespective of
genotype (Figure 3G).

The b-arr2 gene deletion does not affect all pain
modalities
Similar to the tail-immersion response, b-arr2-/- mice
also exhibited a delayed response to thermal pain
assessed by the Hargreaves test (b-arr2+/+: 2.17 ± 0.11
s, b-arr2-/-: 3.55 ± 0.03 s, p < 0.05; Figure 4A). The
response latency was reduced by naloxone (0.5 mg/kg;
b-arr2+/+: 2.30 ± 0.34 s, b-arr2-/-: 2.75 ± 0.35 s, p <
0.05 vs untreated b-arr2-/-). However, there was no
effect of genotype in the response to mechanical pain
assessed by von Frey filaments (b-arr2+/+: 1.31 ± 0.31 g,
b-arr2-/-, 1.29 ± 0.15 g; Figure 4B). These data suggest
that the enhanced analgesic tone mediated by constitu-
tively active μ receptors in b-arr2-/- mice is specific to
the thermal nociceptive pathway.

Mice lacking b-arr2 exhibit unaltered naloxone
conditioned place aversion
In addition to nociception, μ receptors regulate reward
and hedonic tone [23,32]. Agonists of the μ receptor
induce a conditioned place preference, a measure of
reward, while antagonists and inverse agonists produce
a conditioned place aversion (CPA), a measure of μ
receptor-mediated hedonic tone [12]. As enhanced con-
stitutive activity of the μ receptor induced by morphine
treatment leads to increased naloxone aversion [12] we
examined whether the enhanced μ receptor constitutive
activity seen in b-arr2-/- mice would similarly affect
basal hedonic tone. Although naloxone administration
(0.25-10 mg/kg sc) produced an aversion to the drug-
paired chamber (F1,61 = 33.75, p < 0.0001) in a dose-
dependent manner (dose × day interaction: F4,61 = 6.41,
p < 0.001, Figure 4C), there was no effect of genotype.
This was evident from the lack of interaction between
genotype and day (F1.,61 = 0.62, p = 0.44), or between
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Figure 3 Increased basal analgesia in b-arr2-/- mice is reversed by μ receptor inverse agonists and unaffected by neutral antagonists.
A. Using time to respond to tail withdrawal from 48°C water, b-arr2-/- mice showed a delayed withdrawal latency compared to b-arr2+/+ mice,
(p < 0.05 b-arr2-/- vs b-arr2+/+). B. Naloxone (0.5 mg/kg), reduced the tail withdrawal latency when administered to b-arr2-/- mice 30 and 60
min after injection (#p < 0.05 vs untreated b-arr2-/-), but had no effect in b-arr2+/+ or b-arr2+/- mice. C, D and E. 6a- and 6b-naloxol, (1 mg
and 10 mg/kg respectively) and the combination of 6a-naloxol (1 mg/kg) with naloxone (0.5 mg/kg), had no effect on the analgesic profile of
the b-arr2-/- mice who continued to show an attenuated response compared with b-arr2+/+ mice (*p < 0.05, **p < 0.005 and ***p < 0.0001 vs
b-arr2+/+). F. Similar to naloxone, naltrexone (0.5 mg/kg) reduced the increase in basal analgesia seen in b-arr2-/- mice to wild-type levels 30
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untreated b-arr2-/- mice. G. In contrast, 6b-naltrexol (10 mg/kg) had no effect on the analgesic profile of b-arr2-/-, b-arr2+/-, or b-arr2+/+ mice.
**p < 0.001 vs b-arr2+/+ and *p < 0.05 vs b-arr2+/+ mice.
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genotype, day and dose (F4,61 = 0.15, p = 0.96). There
was no overall initial bias between the future drug-
paired versus vehicle-paired chamber on habituation day
(F1,61 = 0.10, p = 0.75), no interaction with dose (F4,69 =
0.58, p = 0.68) or genotype (F1,61 = 1.29, p = 0.26), and
no three-way interaction (F4,61 = 0.59, p = 0.67).

Discussion
Behavioral experiments using inverse agonists and
antagonists, characterized in our electrophysiological
recordings from DRG neurons, reveal that constitutively
active μ receptors in b-arr2-/- mice delay withdrawal
responses to noxious heat. By contrast, there was no
detectable differences in either the threshold of mechan-
ical pain or the aversive effects of naloxone, in b-arr2
+/+ and b-arr2-/- mice. These data suggest that an
absence of b-arr2 has pathway specific behavioral effects

mediated by constitutively active μ receptors in b-
arr2-/- mice.
Our demonstration that constitutively active μ recep-

tors play a role in thermal nociception in b-arr2-/- mice
provides a mechanism for the phenomenon of pro-
longed basal tail withdrawal latencies observed in pre-
vious studies using these animals [26]. It is well
established that μ opioid receptors are located on pri-
mary afferent neurons that transmit pain evoked by
noxious heat [32]; therefore it is perhaps not surprising
that enhanced constitutive μ receptor activity affects
thermal nociception. It is interesting that, unlike the
antinociceptive effect of morphine, which succumbs to
tolerance [18,32], analgesia mediated by constitutively
active μ receptors appears to persist providing a long
lasting basal analgesic tone in b-arr2-/- mice.
It is likely that the lack of effect of constitutive μ

receptor activity on paw withdrawal using the von Frey
assay in b-arr2-/- mice can be explained by an absence
of μ receptors in mechanical nociceptive neurons which
appear to predominantly express delta receptors [33].
However, pathway specific effects of constitutive μ
receptor activity may also be explained by a disparate
influence of b-arr2 in different neuronal populations.
The ability of morphine to induce μ receptor internali-
zation in striatal neurons, but not spinal neurons, for
example, has been attributed to differing properties of
b-arr2 in these cell types [34].
A previous study also observed differences in basal

nociception in b-arr2-/- mice using different behavioral
assays [26]. In keeping with our findings, tail withdrawal
from immersion in hot water was prolonged in b-arr2-/-
compared to b-arr2+/+ mice. However, there was no
difference in paw responses to heat generated using a
hotplate. The latter assay quantifies the response to heat
by scoring paw lifting and licking and the basal levels of
these behaviors appear somewhat variable between stu-
dies [18,26]. The different anatomical locations of the
pain does not account for differences between tail and
paw responses since we observed prolonged basal paw
withdrawal in b-arr2-/- compared to b-arr2+/+ mice
using the Hargreaves assay. However, it is likely that the
more complex pain behavior generated by the hot-plate
assay involves a greater input from the CNS perhaps
recruiting neuronal pathways that are unaffected by con-
stitutive μ receptor activity. This could account for a
lack of effect of genotype on basal responses to the
hotplate.
The possibility that constitutive μ receptors in b-

arr2-/- mice play a greater role in peripherally-or spin-
ally-mediated responses compared to centrally-mediated
responses is supported by our findings using the condi-
tioned place aversion assay of basal hedonic tone. Sti-
mulation of hedonic tone by prolonged exposure to
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Figure 4 Constitutive activity of the μ receptor prolongs
withdrawal from noxious heat but neither contributes to
mechanical pain nor naloxone-mediated conditioned place
aversion in b-arr2-/- mice. A. Similar to the tail-immersion assay, b-
arr2-/- mice exhibit a delayed latency to respond in the Hargreaves
test of thermal pain. This delay was reversed by naloxone (0.5 mg/
kg). **p < 0.001 vs b-arr2+/+, #p < 0.05 vs untreated b-arr2-/- mice.
B. However, mechanical pain, as assessed by the response to von
Frey filaments, was unaffected by the absence of b-arr2. C Naloxone
conditioned place preference is similarly not affected by the
absence of b-arr2. After 3 days of conditioning, the aversive effect
of naloxone resulted in less time spent in the naloxone-paired
chamber for both b-arr2+/+ and b-arr2-/- mice (F2,34 = 4.27, p <
0.05). “Habituation” represents the time spent in the naloxone-
paired chamber prior to conditioning. “Test” represents the time
spent in the naloxone-paired chamber 24 h after the last of the
three conditioning sessions. Numbers on the abscissa represent
doses (mg/kg) of naloxone administered.
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morphine causes an enhanced aversive response to the
inverse agonist naloxone but not to the neutral competi-
tive antagonists [11]. By contrast, there was no differ-
ence between the aversive responses to naloxone of b-
arr2-/- and b-arr2+/+ mice. These data suggest that the
nature of the regulation μ receptors by b-arr2 within the
reward pathway differs from that of the peripheral pain
pathway. In keeping with this idea b-arr2-/- mice exhibit
delayed analgesic tolerance to chronic morphine without
altered centrally-mediated morphine dependence [35].
Our study reveals that there are key differences

between ligand-independent constitutive signaling and
agonist-induced μ receptor activity. The former causes a
low level basal inhibition of VDCC activity in DRG neu-
rons and this is associated with a modest but sustained
antinociception in b-arr2-/- mice. By contrast, the latter
produces a more profound VDCC inhibition [17] result-
ing in strong analgesia, the duration of which is limited
by the adaptive process of tolerance and the opponent
process of hyperalgesia [14,36]. Furthermore, unlike μ
receptor activation by morphine, which can lead to
reward and dependence, constitutive μ receptor activity,
induced by the absence of b-arr2, appears not to disrupt
hedonic tone.
We previously demonstrated that inhibition of Src in

b-arr2+/+ neurons mimics the enhancement of μ recep-
tor constitutive activity seen in b-arr2-/- neurons [17].
b-arr2, Src and Akt form a signaling complex in vivo
that is disrupted in b-arr2-/- mice [37]. μ Receptor acti-
vation stimulates Akt [38] a process implicated in cross
talk with the NMDA receptor and tolerance [39,40].
Further studies are required to examine whether target-
ing the signaling pathway mediated by the b-arr2 com-
plex can produce sustained analgesia through
constitutive μ receptor activity.
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