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Abstract As a result of studying and solving certain extremal problems defined on
the basis of finite and infinite dimensional pseudo-Hilbert space, the authors present
a generalization of the classical regression idea. Given discrete or continuous empiric
data, the class of solutions is uniquely determined and expressed in a new form of the
regression function sequences, both within the asynchronous and synchronous type
in a given pseudo-Hilbert space. With the help of this new technique, a large variety
of observed phenomena in different areas of practical and theoretical sciences can be
precisely described and investigated.
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1 Introduction

The contemporary world is characterized by an increasing influx of information. It is
possible to achieve some of them in applied selected moments of time, whereas others
can be observed in continuous time system. In this avalanche of information, one has
to know how to find both relational and functional dependence. The latter is often too
complicated to capture and describe by means of simple mathematical expression.

Approximate functional dependences which would describe a number of inter-
esting phenomena with assigned accuracy should be sought. The study of appropri-
ately constructed approaching functions can lead to detection of not yet discovered
dependences, as well as assessments separate and combined effects caused by sev-
eral observed variables. This has a huge significance, especially in situations where
dependence, expressed in terms of physical, chemical and biological laws, between
observed parameters is unknown.

A particular, although simplified, example of a solution to such a set of scientific
problems is a method of linear regression with its various modifications, formulated
on the basis of probability calculus; cf. [1,11,14,15,17]. This method led to a series
of implementations and experienced numerous theoretical modifications, crucial due
to the seriousness of the implementation problem; cf. [4–6,13,15,16].

The regression problem considered in this paper has the form of solution of a
properly formulated extremal problem well defined and stated in the both finite and
infinite dimensional pseudo-Hilbert space environment.

A short presentation of the classical approach to the regression problem can be
formulated as follows.

For any p, q ∈ R set

Zp,q := {k ∈ Z : p ≤ k ≤ q} and Zp,∞ := {k ∈ Z : p ≤ k}.

Let F be the family of all functions R � t �→ at + b, where a, b ∈ R, and let
x, y : Z0,n → R be arbitrarily given sequences. It is well known that if x is not
a constant sequence, then there exists the unique f0 ∈ F satisfying the following
condition

n∑

k=0

( f (xk) − yk)
2 ≥

n∑

k=0

( f0(xk) − yk)
2 , f ∈ F . (1.1)

In fact, the function f0 is of the form f0(t) = a0t + b0 as t ∈ R, where

a0 := (n + 1)
∑n

k=0 xk yk − ∑n
k=0 xk

∑n
k=0 yk

(n + 1)
∑n

k=0 x
2
k − (∑n

k=0 xk
)2 and

b0 :=
∑n

k=0 yk − a0
∑n

k=0 xk
n + 1

;
(1.2)
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cf. e.g. [17] and [4]. The function f0 is usually said to be the regression line for the
empiric sequences x, y : Z0,n → R. In view of (1.1), the function f0 has a natural
interpretation as an optimal function with the smallest quadratic deviation from the
empiric observations {(xk, yk) : k ∈ Z0,n}. The function f0 plays the very essential
role in different areas of the applied mathematics; cf. e.g. [6] and [4]. It shows that
the mentioned above extremal problem, can be considerably qeneralized and solved,
which is a subject of this paper. To this end we introduce the regression structures
R := (A, B, δ; x, y), where:
I.1 A, B are given nonempty sets;

I.2 x : �1 → A and y : �2 → B for some nonempty sets �1 and �2;

I.3 δ : (�1 → B) × (�2 → B) → R.

A set F is called the functional model ofR if F ⊂ (A → B), where A → B denotes
the class of all functions acting from A to B.

According to the extremal problem (1.1), the components δ, x and y as well as a
functional model F of R have the following interpretations:

– F is a theoretic functional model of the observed phenomena, i.e. F consists of
all functions describing theoretically the considered phenomena;

– x : �1 → A and y : �2 → B are empirical functions derived from an experiment
or observation, called the empirical data functions in the sequel;

– δ is a deviation criterion of the theoretic functions from the empirical ones.

Given a regression structureR and a functional model F ofR we seek the optimal
theoretic functions f0 ∈ F which are the best fitted to the empirical data—represented
by the empirical data functions x and y—with respect to the criterion δ. To be more
precise, we consider the extremal problem of determining all functions f0 ∈ F mini-
mizing the functional

F � f → F( f ) := δ( f ◦ x, y) ∈ R, (1.3)

i.e. all functions f0 ∈ F satisfying the following inequality

F( f ) ≥ F( f0), f ∈ F . (1.4)

The set of all f0 ∈ F satisfying the inequality (1.4) will be denoted by Reg(F ,R).
Each function f0 ∈ Reg(F ,R) is said to be the regression function in F with respect
to R. The problem of describing all regression functions in F with respect to R we
call the regression problem for F with respect to R.

Example 1.1 Consider an electric circuit with direct current. According to Ohm’s
law the voltage V depends on the intension I by the equality V = RI , where the
multiplier R is the resistance of the circuit. We want to determine the parameter R by
means of measurements samples of intensity and voltage represented by a sequence
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Z0,n � k �→ (ik, vk). To this end we consider the regression structure R, where
A := R, B := R, the empiric data functions are defined by

Z0,n � k �→ x(k) := ik and Z0,n � k �→ y(k) := vk,

and, as a criterion of deviation δ, we take the least squares method, i.e.

δ( f, g) :=
n∑

k=0

( f (k) − g(k))2 , f, g : Z0,n → R. (1.5)

The theoretic functional model F is represented by linear functions R � t �→ r t
for r ∈ R. Calculating the critical point of the function

R � r �→
n∑

k=0

(rik − vk)
2

we obtain

R =
n∑

k=0

ikvk
/ n∑

k=0

i2k . (1.6)

In what follows we shall study the regression problem for a wide range of theoretic
functional models F and regression structures R involving a generalized variant of
quadratic deviation applied in (1.1). The main idea of our approach was presented in
the paper [12] where we confined ourselves to the case where the theoretic functional
model F is a finite-dimensional linear set with respect to the standard operations of
adding and multiplying complex-valued functions. In the present paper we consider
the general case where F is an arbitrary linear set. We also provide various examples
motivating our general approach to the regression problem and discuss the, so called,
diagonal case much related to the classical approach to the regression problem.

2 Asynchronous regression structures

Given a nonempty set � and a σ -field B of its subsets we denote by L(�,B) the
set of all complex valued functions on �, measurable with respect to B. We write
L(�,B) for the linear space supported by L(�,B) and standard operations of adding
and multiplying functions. For a given measure μ : B → [0;+∞] and p ≥ 1, let
Lp(�,B, μ) stand for the class of all functions f ∈ L(�,B) such that

‖ f ‖μ,p :=
(∫

�

| f |pdμ
)1/p

< +∞. (2.1)

We recall that for each p ≥ 1, the class Lp(�,B, μ) is a linear set in L(�,B) and
‖ · ‖μ,p is a pseudo-norm defined on the linear space (Lp(�,B, μ),+, ·) satisfying
the following condition
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‖ f ‖μ,p = 0 �⇒ μ({t ∈ � : f (t) �= 0}) = 0

and the structure

Lp(�,B, μ) := (Lp (�,B, μ) ,+, ·, ‖ · ‖μ,p)

is a complete pseudo-normed space, i.e. Lp(�,B, μ) is a pseudo-Banach space; cf.
e.g. [2, Sect. 2.4], [8, Example 1.2.4]. If p = 2, then the structure

(L2(�,B, μ),+, ·, 〈·|·〉μ)

is a pseudo-Hilbert space, where

〈 f |g〉μ :=
∫

�

f gdμ, f, g ∈ L2(�,B, μ).

Hence and by (2.1),

‖ f ‖μ,2 = ‖ f ‖μ :=
√

〈 f | f 〉μ, f ∈ L2(�,B, μ).

From now on we shall study the family of regression structures

R := (A, B, δ; x, y)

satisfying the following additional assumptions:

II.1 B = R or B = C;

II.2 There exist a σ -fieldB of subsets of the cartesian product�1×�2 and a measure
μ : B → [0;+∞] such that the function δ satisfies for all u : �1 → B and
v : �2 → B the following equality

δ(u, v) =
∫

�1×�2

|u(t1) − v(t2)|2dμ(t1, t2) (2.2)

provided the function

�1 × �2 � (t1, t2) �→ |u(t1) − v(t2)|

is B-measurable, and δ(u, v) = +∞, otherwise.

Then the regression problem for F with respect toR means the extremal problem
of determining all functions f0 ∈ F minimizing the functional F and satisfying,
according to (1.3) and (2.2), the following equality

F( f ) =
∫

�1×�2

| f ◦ x(t1) − y(t2)|2dμ(t1, t2), f ∈ F .
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Definition 2.1 Any regression structureR satisfying the conditions II.1 and II.2 is said
to be the asynchronous regression structure; real asynchronous regression structure
as B = R and complex asynchronous regression structure as B = C.

Example 2.2 Consider a regression structure R defined as follows. Given n,m ∈ N

let �1 := Z0,n and �2 := Z0,m . Let B be the family of all subsets of the cartesian
product �1 × �2. Obviously, the family B is a σ -field of subsets of �1 × �2, and
hence we can define a unique measure μ : B → [0;+∞) satisfying the condition

μ({(k, l)}) = ρk,l , k ∈ �1, l ∈ �2, (2.3)

where �1 × �2 � (k, l) �→ ρk,l ∈ R is a given non-negative function. Then, for any
functions �1 � t �→ u(t) ∈ B and �2 � t �→ v(t) ∈ B, we derive from (2.2),

δ(u, v) =
∫

�1×�2

|u(t1) − v(t2)|2dμ(t1, t2)

=
∑

(k,l)∈�1×�2

∫

{(k,l)}
|u(t1) − v(t2)|2dμ(t1, t2)

=
n∑

k=0

m∑

l=0

ρk,l |u(k) − v(l)|2. (2.4)

In particular, assuming m = n and setting

ρk,l :=
{
1 as k = l,

0 as k �= l,
(2.5)

we conclude from (2.4) that

δ(u, v) =
n∑

k=0

|u(k) − v(k)|2. (2.6)

Combining then (1.3) with (2.4) and (2.5) we can see that

F( f ) =
n∑

k=0

| f ◦ x(k) − y(k)|2 =
n∑

k=0

| f (xk) − yk |2, f ∈ F , (2.7)

for given empirical data functions Z0,n � k �→ xk ∈ A and Z0,n � k �→ yk ∈ B,
where A := R, B := R and F is the family of all functions R � t �→ at + b as
a, b ∈ R. Therefore δ is exactly the classical square deviation used in (1.1).

Fix a regression structure R satisfying the properties II.1–II.2. We consider the
family L1(R) of all functions f : A → B such that

�1 × �2 � (t1, t2) �→ f ◦ x(t1)
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is a B-measurable function and
∫

�1×�2

| f ◦ x(t1)|2dμ(t1, t2) < +∞. (2.8)

We shall also consider the family1 L2(R) of all functions g : B → B such that

�1 × �2 � (t1, t2) �→ g ◦ y(t2)

is a B-measurable function and
∫

�1×�2

|g ◦ y(t2)|2dμ(t1, t2) < +∞. (2.9)

From (2.8) and the inequality

|zw| ≤ 1

2
(|z|2 + |w|2), z, w ∈ C, (2.10)

it follows that the functional

L1(R) × L1(R) � (u, v) → 〈u|v〉 :=
∫

�1×�2

u ◦ x(t1)v ◦ x(t1)dμ(t1, t2) (2.11)

is well defined. Hence, 〈u|u〉 ≥ 0 as u ∈ L1(R), and so the functional

L1(R) � u �→ ‖u‖ := √〈u|u〉 =
(∫

�1×�2

|u ◦ x(t1)|2dμ(t1, t2)

)1/2

, (2.12)

is also well defined.

Lemma 2.3 The structure2 H(R) := (L1(R),+, ·, 〈·|·〉) is a complex (resp. real in
case B = R) pseudo-Hilbert space, i.e. the structure (L1(R),+, ·) is a linear space
and the following properties

〈αu + βv|w〉 = α 〈u|w〉 + β 〈v|w〉 ;
〈u|v〉 = 〈v|u〉;
〈u|u〉 ≥ 0, (2.13)

hold for all α, β ∈ B and u, v, w ∈ L1(R) as well as for every sequence N � n �→
fn ∈ L1(R) satisfying the Cauchy condition

‖ fn − fm‖ → 0 as n,m → ∞ (2.14)

1 Note that the space was redefined as compared to the one in the paper [12]. This simplifies considerations.
2 Here and in the sequel the symbols “+” and “·” denote the standard operations of adding and multiplying
functions in the context of real or complex valued functional spaces.
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there exists f ∈ L1(R) such that

‖ f − fn‖ → 0 as n → ∞. (2.15)

Proof By (2.10) we get

|z + w|2 ≤ 2(|z|2 + |w|2), z, w ∈ C. (2.16)

Hence and by (2.8) we see that for all λ1, λ2 ∈ B and u, v ∈ L1(R),

∫

�1×�2

|(λ1u + λ2v) ◦ x(t1)|2dμ(t1, t2) ≤ 2|λ1|2
∫

�1×�2

|u ◦ x(t1)|2dμ(t1, t2)

+2|λ2|2
∫

�1×�2

|v ◦ x(t1)|2dμ(t1, t2)

< +∞.

Thus λ1u+λ2v ∈ L1(R) for all λ1, λ2 ∈ B and u, v ∈ L1(R), and so the structure
(L1(R),+, ·) is a linear space as a linear subspace of the linear space (A → B,+, ·).
Moreover, by (2.11) we obtain all the properties (2.13).

It remains to prove the completeness of H(R). The mapping x : �1 → A induces
the σ -field

Bx := {V ∈ 2A : x−1(V ) × �2 ∈ B},

where 2A denotes the family of all subsets of the set A, and the measure

Bx � V → μx (V ) := μ(x−1(V ) × �2).

Fix u ∈ L1(R). Since the function

�1 × �2 � (t1, t2) �→ u ◦ x(t1)

is B-measurable we see that for every Borel set U ⊂ B,

x−1(u−1(U )) × �2 = (u ◦ x)−1(U ) × �2 ∈ B,

and hence u−1(U ) ∈ Bx . Thus u is Bx -measurable. Moreover, from (2.12) and
Lemma 7.3 it follows that

‖u‖2 =
∫

�1×�2

|u ◦ x(t1)|2dμ(t1, t2) =
∫

A
|u(t)|2dμx (t) = ‖u‖2μx ,2. (2.17)

Therefore

L1(R) = L2(A,Bx , μx ). (2.18)
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Consider a sequence N � n �→ fn ∈ L1(R) satisfying the Cauchy condition
(2.14). From (2.17) it follows that this sequence is also a Cauchy sequence in the
space L2(A,Bx , μx ), which is complete. Thus

‖ fn − f ‖μx ,2 → 0 as n → ∞ (2.19)

for some f ∈ L2(A,Bx , μx ). Combining (2.19) with (2.18) and (2.17) we conclude
that f ∈ L1(R) and the condition (2.15) holds, which completes the proof. ��

Remark 2.4 The properties (2.13) yield the well known Schwarz inequality

|〈u|v〉| ≤ ‖u‖‖v‖, u, v ∈ L1(R); (2.20)

cf. e.g. [8, Thm 13.1.1]. From (2.11)– (2.13) and (2.20) it follows that the functional
‖ · ‖ is a pseudo-norm on the linear space (L1(R),+, ·), i.e. for any u, v ∈ L1(R) and
λ ∈ C:

‖u + v‖ ≤ ‖u‖ + ‖v‖,
‖λu‖ = λ‖u‖, (2.21)

‖u‖ ≥ 0 and ‖u‖ = 0 �⇒ μ({(t1, t2) ∈ �1 × �2 : u ◦ x(t1) �= 0}) = 0;

cf. e.g. [8, Corollary 13.1.1], [2, Sect. 2.4.8]. Moreover, by Lemma 2.3 we know that
the pseudo-norm ‖ · ‖ satisfies the completeness condition (2.14) �⇒ (2.15). Thus
the structure (L1(R),+, ·, ‖ · ‖) is a pseudo-Banach space.

By (2.8)–(2.10) we see that for each g ∈ L2(R) the functional

L1(R) � u → g∗(u) :=
∫

�1×�2

u ◦ x(t1)g ◦ y(t2)dμ(t1, t2) (2.22)

is well defined.

Lemma 2.5 The structure (L2(R),+, ·) is a complex (resp. real in the case where
B = R) linear space and for each g ∈ L2(R) the functional g∗ is bounded on H(R)

and the supremum norm of g∗ satisfies the following inequality

sup{|g∗( f )| : f ∈ L1(R) and ‖ f ‖ ≤ 1}
≤
(∫

�1×�2

|g ◦ y(t2)|2dμ(t1, t2)

)1/2

. (2.23)

Proof From the inequality (2.16) and by (2.9) we see that for all λ1, λ2 ∈ B and
g1, g2 ∈ L2(R),
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∫

�1×�2

|(λ1g1 + λ2g2) ◦ y(t2)|2dμ(t1, t2) ≤ 2|λ1|2
∫

�1×�2

|g1 ◦ y(t2)|2dμ(t1, t2)

+2|λ2|2
∫

�1×�2

|g2 ◦ y(t2)|2dμ(t1, t2)

< +∞.

Thus λ1g1 + λ2g2 ∈ L2(R) for all λ1, λ2 ∈ B and g1, g2 ∈ L2(R). Hence L2(R) is
a linear set with respect to standard operations of adding and multiplying functions.
Then the structure (L2(R),+, ·) is a linear space as a linear subspace of the linear
space (B → B,+, ·).

The linearity of the functional g∗ comes out from the algebraic properties of the
Lebesgue integral. From Schwarz’s integral inequality and from (2.22), (2.8), (2.9)
and (2.12) it follows that for all f ∈ L1(R) and g ∈ L2(R),

|g∗( f )| ≤
∫

�1×�2

| f ◦ x(t1)g ◦ y(t2)|dμ(t1, t2)

≤
(∫

�1×�2

| f ◦ x(t1)|2dμ(t1, t2)

)1/2 (∫

�1×�2

|g ◦ y(t2)|2dμ(t1, t2)

)1/2

≤
(∫

�1×�2

|g ◦ y(t2)|2dμ(t1, t2)

)1/2

‖ f ‖,

which yields (2.23). ��

3 Solution of the regression problem

Given a regression structureR := (A, B, δ; x, y) satisfying the properties I.1–I.3 we
see that

Rg := (A, B, δ; x, g ◦ y)

is a regression structure for each function g : B → B. From now on we shall study the
regression problem forF with respect toRg , whereR is an arbitrarily given regression
structure satisfying the assumptions II.1–II.2, g : B → B is a fixed function and F
is a linear functional model of R with respect to the standard operations of adding
and multiplying functions, i.e. f + g ∈ F and λ f ∈ F for any f, g ∈ F and λ ∈ B.
If additionally F ⊂ L1(R) and g ∈ L2(R), then the regression problem means the
extremal problem of determining all functions f0 ∈ F which are minimizing the
functional Fg defined by

Fg( f )=δ( f ◦ x, g ◦ y) =
∫

�1×�2

| f ◦ x(t1) − g ◦ y(t2)|2dμ(t1, t2), f ∈ F .

(3.1)

Weshall start our researchwith the followingbasic characterizationof the regression
functions.
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Lemma 3.1 If F �= ∅ is a linear set in H(R) and g ∈ L2(R), then for every f ∈ F
the following property holds

f ∈ Reg(F ,Rg) ⇐⇒ 〈h| f 〉 = g∗(h), h ∈ F . (3.2)

Proof Fix f, h ∈ F , g ∈ L2(R) and λ ∈ B. By (3.1) we have

Fg( f + λh) =
∫

�1×�2

|( f + λh) ◦ x(t1) − g ◦ y(t2)|2dμ(t1, t2)

=
∫

�1×�2

| f ◦ x(t1) − g ◦ y(t2) + λh ◦ x(t1)|2dμ(t1, t2)

=
∫

�1×�2

| f ◦ x(t1) − g ◦ y(t2)|2dμ(t1, t2)

+ 2
∫

�1×�2

Re[( f ◦ x(t1) − g ◦ y(t2))λh ◦ x(t1)]dμ(t1, t2)

+ |λ|2
∫

�1×�2

|h ◦ x(t1)|2dμ(t1, t2).

Hence and by (3.1), (2.22) as well as by (2.11) and (2.12) we get

Fg( f + λh) = Fg( f ) + |λ|2‖h‖2 − 2Re
[
λ g∗(h)

]

+ 2Re

[
λ

∫

�1×�2

f ◦ x(t1)h ◦ x(t1)dμ(t1, t2)

]

= Fg( f ) + |λ|2‖h‖2 − 2Re
[
λ g∗(h)

]
+ 2Re

[
λ 〈 f |h〉] .

By this and by (2.13),

Fg( f + λh) − Fg( f ) = 2Re
[
λ(〈h| f 〉 − g∗(h))

] + |λ|2‖h‖2,
f, h ∈ F , λ ∈ B. (3.3)

Assume now that f ∈ F satisfies the right hand side condition in (3.2). Then setting
λ := 1 we deduce from (3.3) that

Fg( f + h) − Fg( f ) = ‖h‖2 ≥ 0, h ∈ F ,

and so f ∈ Reg(F ,R). Conversely, suppose that f ∈ Reg(F ,R). Then (3.3) yields

2 Re[λ(〈h| f 〉 − g∗(h))] + |λ|2‖h‖2 ≥ 0, h ∈ F , λ ∈ B. (3.4)

Replacing h by (−h) in (3.4) we get

− 2Re[λ(〈h| f 〉 − g∗(h))] + |λ|2‖h‖2 ≥ 0, h ∈ F , λ ∈ B. (3.5)
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Combining (3.4) and (3.5) we have

−1

2
|λ|2‖h‖2 ≤ Re[λ(〈h| f 〉 − g∗(h))] ≤ 1

2
|λ|2‖h‖2, h ∈ F , λ ∈ B,

and consequently,

− 1

2
|λ|‖h‖2 ≤ Re[eiα(λ)(〈h| f 〉 − g∗(h))] ≤ 1

2
|λ|‖h‖2, h ∈ F , λ ∈ B\{0}, (3.6)

where α(λ) ∈ [0; 2π) is the unique number satisfying the equality λ = |λ|eiα(λ). Thus
(3.6) yields, in the limiting case as |λ| → 0, the following equality

Re[eiα(〈h| f 〉 − g∗(h))] = 0, h ∈ F , α ∈ R.

Choosing appropriately α we can see that

〈h| f 〉 − g∗(h) = 0, h ∈ F ,

which completes the proof. ��
By the properties of a pseudo-norm we see that the following set


 := {h ∈ L1(R) : ‖h‖ = 0}

is linear. We call it the null set of H(R). As a matter of fact the set 
 is the closed ball
with radius 0 and center at the zero function θ , defined by θ(t) := 0 for t ∈ A.

We may extend the standard operations of adding and multiplying functions by a
constant to any sets F1, F2 ⊂ (A → B) as follows:

F1 + F2 := { f1 + f2 : f1 ∈ F1, f2 ∈ F2};
λ · F1 := {λ f1 : f1 ∈ F1}, λ ∈ B;
f + F1 := { f } + F1 and F1 + f := F1 + { f }, f ∈ (A → B).

Corollary 3.2 If F �= ∅ is a linear set in H(R) and g ∈ L2(R), then

Reg(F ,Rg) = F ∩ Reg(
 + F ,Rg). (3.7)

If additionally F ⊂ 
, then Reg(F ,Rg) = F .

Proof Fix f, h ∈ L1(R). If ‖h‖ = 0, then from the Schwarz’s inequality (2.20) and
Lemma 2.5 it follows that

| 〈h| f 〉 | ≤ ‖h‖‖ f ‖ = 0

and
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|g∗(h)| ≤
(∫

�1×�2

|g ◦ y(t2)|2dμ(t1, t2)

)1/2

· ‖h‖ = 0.

Hence

〈h| f 〉 = 0 = g∗(h), f ∈ L1(Rg), h ∈ 
. (3.8)

Assume that f ∈ Reg(F ,Rg) and h ∈ 
 + F . Then h = h0 + h1 for some h0 ∈ 


and h1 ∈ F . Applying now Lemma 3.1 and (3.8) we see that

〈h| f 〉 = 〈h0| f 〉 + 〈h1| f 〉 = 0 + g∗(h1) = g∗(h0) + g∗(h1) = g∗(h), h ∈ 
 + F .

By definition, f ∈ F ⊂ 
 + F . Applying Lemma 3.1 once more, we obtain

f ∈ F ∩ Reg(
 + F ,Rg),

and consequently

Reg(F ,Rg) ⊂ F ∩ Reg(
 + F ,Rg). (3.9)

Conversely, assume now that

f ∈ F ∩ Reg(
 + F ,Rg)

and h ∈ F . Since h ∈ 
 + F , we conclude from Lemma 3.1 that

〈h| f 〉 = g∗(h), h ∈ F .

Then Lemma 3.1 says that f ∈ Reg(F ,Rg), and so

F ∩ Reg(
 + F ,Rg) ⊂ Reg(F ,Rg).

Combining this with the inclusion (3.9) we obtain the equality (3.7).
Since 
 ⊂ L1(R), the equalities in (3.8) hold for all f, h ∈ 
. Then Lemma 3.1

yields

Reg(
,Rg) = 
.

If nowF ⊂ 
, then the equality (3.7) takes the form Reg(F ,Rg) = F , which proves
the theorem. ��

Given a set S ⊂ L1(R) we denote by lin(S) the family of all linear combinations∑n
k=1 λkvk where n ∈ N, Z1,n � k �→ λk ∈ B and Z1,n � k �→ vk ∈ S provided

S �= ∅, and we write lin(S) := {θ} otherwise. Obviously, lin(S) is a linear set and

S ⊂ lin(S) = lin(lin(S)) ⊂ V (3.10)
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for every linear set V ⊂ L1(R) such that S ⊂ V . Thus lin(S) is the smallest linear
subset of L1(R) containing S and

lin(S) = S ⇐⇒ S is a linear set. (3.11)

Moreover, for any subsets S1 and S2 of L1(R),

lin(S1 ∪ S2) = lin(S1) + lin(S2). (3.12)

Given a nonempty set S ⊂ L1(R) we denote by S⊥ the orthogonal complement of
S in the space H(R), i.e.

S⊥ := { f ∈ L1(R) : 〈 f |h〉 = 0 for h ∈ S}. (3.13)

It is easy to check that for any nonempty subset S of L1(R):


 ⊂ S⊥ and S⊥ is a linear closed set in the space H(R); (3.14a)

L1(R) = cl(lin(S)) + S⊥ and cl(lin(S)) = (S⊥)⊥; (3.14b)

if S is a linear set, then L1(R) = cl(S) + S⊥ and cl(S) = (S⊥)⊥, (3.14c)

where cl(V ) stands for the closure of a set V ⊂ L1(R) in the space H(R). As a
matter of fact the proofs of these properties are slight modifications of the well known
properties, that hold in aHilbert space; cf. e.g. [8, Sect. 13.4]. The following theorem is
motivated by Lemma 3.1 and the well known representation of a linear and continuous
functional in a Hilbert space by Riesz; cf. e.g. [8, Thm. 13.4.2].

Theorem 3.3 If F �= ∅ is a linear set in H(R), g ∈ L2(R) and S := (g∗)−1(0),
then:

(i) ifReg(F ,Rg) �= ∅, thenReg(F ,Rg) = (
∩F)+ f for each f ∈ Reg(F ,Rg);
(ii) if (F ∩ S)⊥ ∩ F\
 �= ∅, then

Reg(F ,Rg) = (
 ∩ F) + g∗( f )
‖ f ‖2 f, f ∈ (F ∩ S)⊥ ∩ F\
. (3.15)

(iii) Reg(F ,Rg) = 
 ∩ F iff F ⊂ S;
(iv) Reg(F ,Rg) �= ∅ iff F ⊂ (F ∩ S) + (F ∩ S)⊥.

Proof Assume that Reg(F ,Rg) �= ∅. Then f ∈ Reg(F ,Rg) for some f ∈ F , and
by Lemma 3.1,

〈h| f 〉 = g∗(h), h ∈ F . (3.16)

From Lemma 3.1 it also follows that each f ′ ∈ Reg(F ,R) satisfies the equality (3.16)
with f replaced by f ′, and setting h := f − f ′ we obtain

‖h‖2 = 〈
h| f − f ′〉 = 〈h| f 〉 − 〈

h| f ′〉 = g∗(h) − g∗(h) = 0.
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Thus f ′ ∈ (
 ∩ F) + f , and then

Reg(F ,Rg) ⊂ (
 ∩ F) + f.

Conversely, if f ′ ∈ (
 ∩ F) + f , then by (3.16) and by (2.20) we see that for every
h ∈ F ,

| 〈h| f ′〉 − 〈h| f 〉 | = | 〈h| f ′ − f
〉 | ≤ ‖h‖‖ f ′ − f ‖ = 0.

Hence and by (3.16),

〈
h| f ′〉 = 〈h| f 〉 = g∗(h), h ∈ F .

Applying Lemma 3.1 once again we see that f ′ ∈ Reg(F ,Rg), and so

(
 ∩ F) + f ⊂ Reg(F ,Rg).

Both the inclusions yield the equality in (i).
Assume now that

(F ∩ S)⊥ ∩ F\
 �= ∅

and consider any fixed f ∈ (F ∩ S)⊥ ∩ F\
. Then ‖ f ‖ > 0 and

g∗( f )
‖ f ‖2 f ∈ (F ∩ S)⊥ ∩ F . (3.17)

If g∗( f ) = 0, then f ∈ F ∩ S, which gives ‖ f ‖2 = 〈 f | f 〉 = 0. This means that
f ∈ 
, which contradicts our assumption. Therefore g∗( f ) �= 0, and consequently

h − g∗(h)

g∗( f )
f ∈ F ∩ S, h ∈ F . (3.18)

Combining (3.17) with (3.18) we have

〈
h
∣∣∣
g∗( f )
‖ f ‖2 f

〉
=
〈
h − g∗(h)

g∗( f )
f
∣∣∣
g∗( f )
‖ f ‖2 f

〉
+
〈
g∗(h)

g∗( f )
f
∣∣∣
g∗( f )
‖ f ‖2 f

〉

= 0 +
〈
g∗(h)

g∗( f )
f
∣∣∣
g∗( f )
‖ f ‖2 f

〉
= g∗(h)

g∗( f )

(
g∗( f )
‖ f ‖2

)
〈 f | f 〉= g∗(h), h ∈ F .

Then Lemma 3.1 shows that

g∗( f )
‖ f ‖2 f ∈ Reg(F ,Rg),
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which together with the property (i) yields (3.15). This proves the property (ii).
If Reg(F ,Rg) = 
 ∩ F , then

θ ∈ Reg(F ,Rg),

and applying Lemma 3.1 we see that

g∗(h) = 〈h|θ〉 = 0, h ∈ F ,

which means that F ⊂ S. Conversely, if F ⊂ S, then

〈h|θ〉 = 0 = g∗(h), h ∈ F ,

which shows, by Lemma 3.1, that

θ ∈ Reg(Rg).

Hence and by the property (i),

Reg(Rg) = 
 ∩ F ,

which yields the property (iii).
Assume now that f ∈ Reg(F ,Rg) for some f ∈ F . From (3.16) it follows that

〈h| f 〉 = 0 for h ∈ F ∩ S,

and so

f ∈ F ∩ (F ∩ S)⊥. (3.19)

Consider first the case where f /∈ 
 and suppose that g∗( f ) = 0. Then f ∈ F ∩ S,
and by (3.19), ‖ f ‖2 = 〈 f | f 〉 = 0. Hence f ∈ 
, which contradicts our assumption.
Thus g∗( f ) �= 0, and so for each h ∈ F ,

hS := h − g∗(h)

g∗( f )
f ∈ F ∩ S and h − hS = g∗(h)

g∗( f )
f ∈ (F ∩ S)⊥, (3.20)

which leads to

h = hS + (h − hS) ∈ (F ∩ S) + (F ∩ S)⊥.

Therefore

F ⊂ (F ∩ S) + (F ∩ S)⊥, (3.21)
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provided f /∈ 
. If f ∈ 
, then from the properties (i) and (iii) it follows that

F ⊂ F ∩ S,

and obviously the inclusion (3.21) holds. This way the property (iv) was proved in the
direction (⇒). Conversely, assume that the inclusion (3.21) holds. If

(F ∩ S)⊥ ∩ F\
 �= ∅,

then by the property (ii), Reg(F ,Rg) �= ∅. Therefore we may confine ourselves to
the case where

(F ∩ S)⊥ ∩ F\
 = ∅.

Fix now h ∈ F . By (3.21), h = h1 + h2 for some h1 ∈ F ∩ S and h2 ∈ (F ∩ S)⊥.
Then

h2 ∈ (F ∩ S)⊥ ∩ F ⊂ 
.

By (3.8) we see that 
 ⊂ S, which implies

h = h1 + h2 ∈ (F ∩ S) + 
 ⊂ S.

Hence F ⊂ S, and by the property (iii) we see that

Reg(F ,Rg) = 
 ∩ F �= ∅.

Thus we have showed that the inclusion (3.21) implies that

Reg(F ,Rg) �= ∅,

which completes the proof of the property (iv). ��
Corollary 3.4 If F �= ∅ is a closed and linear set in H(R) and g ∈ L2(R), then
Reg(F ,Rg) �= ∅ and Reg(F ,Rg) = 
 + f for each f ∈ Reg(F ,Rg). Moreover, if
F ⊂ S := (g∗)−1(0), then Reg(F ,Rg) = 
; otherwise (F ∩ S)⊥ ∩ F\
 �= ∅ and

Reg(F ,Rg) = 
 + g∗( f )
‖ f ‖2 f, f ∈ (F ∩ S)⊥ ∩ F\
. (3.22)

Proof Since F is a closed set in H(R), we have


 = cl({θ}) ⊂ cl(F) = F ,

and then


 ∩ F = 
. (3.23)
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Since g ∈ L2(R), it follows from Lemma 2.5 that g∗ is a continuous functional on
H(R). Hence S is also a closed set in H(R), and so F ∩ S is a closed set in H(R).
Then each h ∈ F has an orthogonal projection hS onto F ∩ S, i.e.

hS ∈ F ∩ S and 〈h − hS|g〉 = 0, g ∈ F ∩ S; (3.24)

cf. [8, Sect. 13.3] and [10]. Hence

h = hS + (h − hS) ∈ (F ∩ S) + (F ∩ S)⊥,

which yields the inclusion (3.21). Applying now (iv) of Theorem 3.3 we conclude that
Reg(F ,Rg) �= ∅. If f ∈ Reg(F ,Rg), then from (i) of Theorem 3.3 and the equality
(3.23) it follows that

Reg(F ,Rg) = (
 ∩ F) + f = 
 + f.

If F ⊂ S, then from (iii) of Theorem 3.3 and the equality (3.23) we see that

Reg(F ,Rg) = 
 ∩ F = 
.

Otherwise there exists

h ∈ F\S = F\(F ∩ S)

and the property (3.24) holds. From (3.8) it follows that


 ⊂ S.

If h − hS ∈ 
, then by (3.24),

h = hS + (h − hS) ∈ (F ∩ S) + 
 = F ∩ S,

which is impossible. Therefore h − hS /∈ 
, which together with (3.24) means that

h − hS ∈ (F ∩ S)⊥ ∩ F\
.

Then the condition (ii) of Theorem 3.3 and the equality (3.23) imply the equality
(3.22), which completes the proof. ��

We end this section with an important application of Corollaries 3.2 and 3.4.

Corollary 3.5 If F �= ∅ is a finite dimensional linear set in H(R) and g ∈ L2(R),
then

cl(F) = 
 + F and Reg(F ,Rg) �= ∅.
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Proof Given a linear set F in H(R) and f ∈ cl(F) there exists a sequence N � n �→
fn ∈ F such that

‖ f − fn‖ → 0 as n → ∞. (3.25)

Assume first that dim(F) = 1, where dim(X) stands for the dimension of a linear
set X . Then F = lin({h}) for certain h ∈ L1(R). If ‖h‖ = 0, then obviously F ⊂ 
,
which gives cl(F) ⊂ 
 + F . Otherwise ‖h‖ > 0, and there exists a sequence N �
n �→ λn ∈ B such that fn = λnh for n ∈ N. By (3.25) we have

|λn − λm | = 1

‖h‖‖ fn − fm‖ → 0 as n,m → ∞.

Hence |λ − λn| → 0 as n → ∞ for certain λ ∈ B, which together with (3.25) gives

‖ f − λh‖ ≤ ‖ f − fn‖ + ‖ fn − λh‖ → 0 as n → ∞.

We conclude from this that

( f − λh) ∈ 
,

hence that

f ∈ 
 + λh ⊂ 
 + F ,

and finally that

cl(F) ⊂ 
 + F . (3.26)

Fix n ∈ N and suppose that (3.26) holds provided dim(F) ≤ n. Assume now that
dim(F) ≤ n+1. IfF ⊂ 
, then the inclusion (3.26) evidently holds. Otherwise there
exists h ∈ F\
 and we may consider the following sequences

N � n �→ f ′
n := 〈 fn|h〉

‖h‖2 h and N � n �→ f ′′
n := fn − f ′

n .

Setting

F ′ := lin({h}) and F ′′ := F ∩ (F ′)⊥

we can see that

f ′
n ∈ F ′ and f ′′

n ∈ F ′′

for n ∈ N. Let

f ′ := 〈 f |h〉 ‖h‖−2h and f ′′ := f − f ′.
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From (3.25) and Schwarz’s inequality (2.20) it follows that

‖ f ′ − f ′
n‖ = | 〈 f − fn|h〉 |

‖h‖ ≤ ‖ f − fn‖ → 0 as n → ∞,

and consequently

‖ f ′′ − f ′′
n ‖ ≤ ‖ f − fn‖ + ‖ f ′ − f ′

n‖ → 0 as n → ∞.

Therefore

f ′ ∈ cl(F ′) and f ′′ ∈ cl(F ′′),

which gives

f = f ′ + f ′′ ∈ cl(F ′) + cl(F ′′).

Then applying the first part of the proof we deduce that

cl(F) ⊂ cl(F ′) + cl(F ′′) ⊂ 
 + F ′ + cl(F ′′), (3.27)

because dim(F ′) = 1. By definition, F ′ ∩ 
 = {θ}, and so

F ′ ∩ F ′′ = {θ}.

Hence

dim(F ′′) ≤ dim(F) − dim(F ′) ≤ n,

and by the assumption,

cl(F ′′) ⊂ 
 + F ′′.

Combining this with (3.27) we obtain

cl(F) ⊂ 
 + F ′ + 
 + F ′′ = 
 + F ′ + F ′′ ⊂ 
 + F .

Applying now the mathematical induction we conclude that the inclusion (3.26) holds
for every finite dimensional linear set F in H(R). The inverse inclusion is obvious,
because 
 = cl({θ}) ⊂ cl(F) and F ⊂ cl(F). Therefore

cl(F) = 
 + F .

By Corollary 3.4,

Reg(
 + F ,Rg) = Reg(cl(F),Rg) �= ∅,
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and so

f ∈ Reg(
 + F ,Rg) for certain f ∈ 
 + F .

Applying now Corollary 3.4 once more we can see that

Reg(
 + F ,Rg) = 
 + f.

Since f = h + f0 for some h ∈ 
 and f0 ∈ F , we conclude from Corollary 3.2 that

f0 = −h + f ∈ F ∩ (
 + f ) = F ∩ Reg(
 + F ,Rg) = Reg(F ,Rg),

which completes the proof. ��

4 Orthogonal decompositions of regression functions

In this section we establish various results dealing with the orthogonality properties
of regression functions. Given f, g ∈ L1(R) we will write

f ⊥ g iff 〈 f |g〉 = 0.

We extend this relation to any nonempty sets F,G ⊂ L1(R) in the following manner:

F ⊥ G iff 〈 f |g〉 = 0, f ∈ F, g ∈ G. (4.1)

In particular, we write f ⊥ G iff { f } ⊥ G and F ⊥ g iff F ⊥ {g}. Given p, q ∈ Z,
p ≤ q, and a sequence Zp,q � k �→ Fk of nonempty sets in the space H(R), we write∑q

k=p Fk for the set of all
∑q

k=p fk , where Zp,q � k �→ fk ∈ Fk . Obviously,

2∑

k=1

Fk = F1 + F2.

In the sequel we will use the following auxiliary properties that hold for any non-
empty subsets S1 and S2 of L1(R) such that S1 ⊥ S2:

cl(S1) ⊥ cl(S2); (4.2a)

cl(S1 + S2) = cl(S1) + cl(S2); (4.2b)

S1 ∩ S2 ⊂ 
; (4.2c)

lin(S1) ⊥ lin(S2); (4.2d)

h1 + h2 = h′
1 + h′

2 �⇒ h1 − h′
1, h2 − h′

2 ∈ 
, h1, h
′
1 ∈ S1, h2, h

′
2 ∈ S2;

(4.2e)

‖h1 + h2‖2 = ‖h1‖2 + ‖h2‖2, h1 ∈ S1, h2 ∈ S2. (4.2f)
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The proofs of these properties are slight modifications of the well known properties,
that hold in a Hilbert space; cf. e.g. [8, Corollary 13.1.2, Sect. 13.4].

For any p ∈ Z and a sequence Zp,∞ � k �→ Fk of nonempty sets in the space
H(R), we denote by

∑∞
k=p Fk the set of all f ∈ L1(R) for which there exists a

sequence Zp,∞ � k �→ fk ∈ Fk such that

∥∥∥∥∥∥
f −

n∑

k=p

fk

∥∥∥∥∥∥
→ 0 as n → ∞.

In particular, we set

∞∑

k=p

fk :=
∞∑

k=p

{ fk}

for any sequence Zp,∞ � k �→ fk ∈ L1(R).
We first prove the following two auxiliary lemmas.

Lemma 4.1 Given p ∈ Z and q ∈ Zp,∞ ∪ {∞} let Zp,q � k → Fk be a sequence
such that Fk is a nonempty linear set in the space H(R) for every k ∈ Zp,q . If

Fk ⊥ Fl , k, l ∈ Zp,q , k �= l, (4.3)

then
∑q

k=p cl(Fk) is a linear and closed set in H(R) and

cl

⎛

⎝lin

⎛

⎝
q⋃

k=p

Fk

⎞

⎠

⎞

⎠ = cl

⎛

⎝
q∑

k=p

Fk

⎞

⎠ =
q∑

k=p

cl(Fk). (4.4)

Proof If q ∈ N, then by definition,

lin

⎛

⎝
q⋃

k=p

Fk

⎞

⎠ =
q∑

k=p

Fk,

and so the first equality in (4.4) holds. Therefore we may assume that q = ∞. Let
now

f ∈ lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

be given. By definition,

f =
n∑

k=p

λk fk
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for some n ∈ Zp,∞ and sequences Zp,n � k �→ fk ∈ Fk and Zp,n � k �→ λk ∈ B.
Hence f ∈ ∑n

k=p Fk , and consequently,

lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠ ⊂
∞∑

k=p

Fk,

which gives

cl

⎛

⎝lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

⎞

⎠ ⊂ cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ . (4.5)

Conversely, assume that f ∈ ∑∞
k=p Fk . Then

∥∥∥∥∥∥
f −

n∑

k=p

fk

∥∥∥∥∥∥
→ 0 as n → ∞

for certain sequence Zp,∞ � k �→ fk ∈ Fk . By definition,

n∑

k=p

fk ∈ lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

for every n ∈ Zp,∞. Thus

f ∈ cl

⎛

⎝lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

⎞

⎠ ,

and consequently

cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ ⊂ cl

⎛

⎝cl

⎛

⎝lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

⎞

⎠

⎞

⎠ = cl

⎛

⎝lin

⎛

⎝
∞⋃

k=p

Fk

⎞

⎠

⎞

⎠ ,

which together with the inclusion (4.5) leads to the first equality in (4.4).
It remains to prove the second equality in (4.4). From the property (4.2b) it follows

that

cl

⎛

⎝
q∑

k=p

Fk

⎞

⎠ =
q∑

k=p

cl(Fk), q ∈ Zp,∞, (4.6)

and hence the second equality in (4.4) holds for every q ∈ Zp,∞.
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Consider now the infinite case q = ∞. Assume that

f ∈ cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ .

Then there exists a sequence

Zp,∞ � n → f ′
n ∈

∞∑

k=p

Fk

such that

‖ f − f ′
n‖ → 0 as n → ∞. (4.7)

From (3.14c) and (3.14a) we deduce that each set cl(Fk), as k ∈ Zp,∞, is linear and
closed in H(R), and hence there exists an orthogonal projection fk of f onto the set
cl(Fk). Therefore

f − fk ⊥ cl(Fk) and fk ∈ cl(Fk), k ∈ Zp,∞. (4.8)

From (4.3), (4.2a) and (4.8) it follows that for all m, l ∈ Zp,∞ and h ∈ cl(Fl),

〈
f −

m∑

k=p

fk
∣∣∣h
〉

=
〈
f − fl −

m∑

k∈Z1,m\{l}
fk
∣∣∣h
〉

= 〈 f − fl |h〉 −
m∑

k∈Z1,m\{l}
〈 fk |h〉 = 0.

Hence

f −
m∑

k=p

fk ⊥ cl(Fl), m, l ∈ Zp,∞. (4.9)

Given m ∈ Zp,∞ and h ∈ ∑m
k=p cl(Fk) there exists a sequence

Z1,m � k → hk ∈ cl(Fk)

such that h = ∑m
k=p hk . From this and (4.9) we see that

〈
f −

m∑

k=p

fk
∣∣∣h
〉

=
〈
f −

m∑

k=p

fk
∣∣∣

m∑

l=p

hl

〉
=

m∑

l=p

〈
f −

m∑

k=p

fk
∣∣∣hl

〉
= 0.

This together with (4.8) leads to

f −
m∑

k=p

fk ⊥
m∑

k=p

cl(Fk) and
m∑

k=p

fk ∈
m∑

k=p

cl(Fk), m ∈ Zp,∞. (4.10)
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Given ε > 0 we conclude from (4.7) that ‖ f − f ′
n‖ < ε/2 for some n ∈ Zp,∞. Since

f ′
n ∈ ∑∞

k=p Fk , there exists a sequence Zp,∞ � k → f ′′
k ∈ Fk such that

∥∥∥∥∥∥
f ′
n −

m∑

k=p

f ′′
k

∥∥∥∥∥∥
→ 0 as m → ∞,

and so for certain mε ∈ Zp,∞,

∥∥∥∥∥∥
f ′
n −

m∑

k=p

f ′′
k

∥∥∥∥∥∥
<

ε

2
, m ∈ Zmε,∞. (4.11)

From (4.10) it follows that f −∑m
k=p fk is an orthogonal projection of f onto the set∑m

k=p cl(Fk) for every m ∈ Zp,∞. Since

m∑

k=p

f ′′
k ∈

m∑

k=p

Fk,

we conclude from (4.2f) that

∥∥∥∥∥∥
f −

m∑

k=p

fk

∥∥∥∥∥∥
≤
∥∥∥∥∥∥
f −

m∑

k=p

f ′′
k

∥∥∥∥∥∥
, m ∈ Zp,∞.

Combining this with (4.11) we see that

∥∥∥∥∥∥
f −

m∑

k=p

fk

∥∥∥∥∥∥
≤ ‖ f − f ′

n‖ +
∥∥∥∥∥∥
f ′
n −

m∑

k=p

f ′′
k

∥∥∥∥∥∥
<

ε

2
+ ε

2
= ε, m ∈ Zmε ,∞,

which means that f ∈ ∑∞
k=p cl(Fk). Thus

cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ ⊂
∞∑

k=p

cl(Fk). (4.12)

Conversely, assume that

f ∈
∞∑

k=p

cl(Fk).
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Then
∥∥∥∥∥∥
f −

n∑

k=p

fk

∥∥∥∥∥∥
→ 0 as n → ∞

for a sequence Zp,∞ � k �→ fk ∈ cl(Fk). From (4.6) it follows that

n∑

k=p

fk ∈
n∑

k=p

cl(Fk) = cl

⎛

⎝
n∑

k=p

Fk

⎞

⎠ ⊂ cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ , n ∈ Zp,∞.

Thus

f ∈ cl

⎛

⎝cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠

⎞

⎠ = cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ ,

and so

∞∑

k=p

cl(Fk) ⊂ cl

⎛

⎝
∞∑

k=p

Fk

⎞

⎠ ,

which together with the inclusion (4.12) leads to the second equality in (4.4).

Since lin
(⋃q

k=p Fk

)
is a linear set in H(R), we deduce from (3.14c), (3.14a) and

(4.4) that
∑q

k=p cl(Fk) is a linear and closed set in H(R) for every q ∈ Zp,∞ ∪ {∞},
which is the desired conclusion. ��
Lemma 4.2 Given p ∈ Z and q ∈ Zp,∞∪{∞} letZp,q � k → Fk be a function such
that Fk is a nonempty linear set in the space H(R) for every k ∈ Zp,q . If g ∈ L2(R),
Reg(Fk,Rg) �= ∅ for every k ∈ Zp,q and the condition (4.3) holds, then

F ∩
⎛

⎝
q∑

k=p

Reg(Fk,Rg)

⎞

⎠ ⊂ Reg(F ,Rg), (4.13)

where F := ∑q
k=p Fk .

Proof Fix

f ∈ F ∩
⎛

⎝
q∑

k=p

Reg(Fk,Rg)

⎞

⎠ .

By definition, there exists a sequence Zp,q � k �→ fk ∈ Reg(Fk,Rg) such that

f ∈
q∑

k=p

{ fk}. (4.14)
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Applying Lemma 3.1, with F replaced by any Fk , we see that

〈h| fk〉 = g∗(h), h ∈ Fk, k ∈ Zp,q . (4.15)

We will show that

〈h| f 〉 = g∗(h), h ∈ F . (4.16)

Given h ∈ F there exists a sequence Zp,q � k �→ hk ∈ Fk such that

h ∈
q∑

k=p

{hk}.

Consider first the case where q ∈ Z. By (4.3) and (4.15) we get

〈h| f 〉 =
〈 q∑

k=p

hk
∣∣∣

q∑

l=p

fl

〉
=

q∑

k=p

q∑

l=p

〈hk | fl〉 (4.17)

=
q∑

k=p

〈hk | fk〉 =
q∑

k=p

g∗(hk) = g∗
⎛

⎝
q∑

k=p

hk

⎞

⎠ = g∗(h),

which yields (4.16).
Consider now the case of q = ∞. For each n ∈ Zp,∞ set

f ′
n :=

n∑

k=p

fk and h′
n :=

n∑

k=p

hk .

Applying the Schwarz inequality (2.20) we conclude from (4.3) that for all n,m ∈
Zp,∞ with n < m,

〈
h′
m − h′

n| f ′
n

〉 =
〈

m∑

k=n+1

hk
∣∣∣

n∑

l=p

fl

〉
=

m∑

k=n+1

n∑

l=p

〈hk | fl〉 = 0.

Applying again the Schwarz inequality (2.20) we see that for every n ∈ Zp,∞,

| 〈h − h′
n| f ′

n

〉 | = | 〈h − h′
m | f ′

n

〉 + 〈
h′
m − h′

n| f ′
n

〉 |
≤ ‖h − h′

m‖‖ f ′
n‖ + | 〈h′

m − h′
n| f ′

n

〉 | → 0 as m → ∞,

and hence

〈
h − h′

n| f ′
n

〉 = 0, n ∈ Zp,∞. (4.18)
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Likewise, we obtain

〈
h′
n| f − f ′

n

〉 = 0, n ∈ Zp,∞. (4.19)

Analysis similar to that in (4.17) shows that

〈
h′
n| f ′

n

〉 = g∗(h′
n), n ∈ Zp,∞. (4.20)

By Lemma 2.5, the functional g∗ is continuous on H(R), and so

g∗(h′
n − h) → 0 as n → ∞.

Combining this with (4.18), (4.19) and (4.20) as well as applying the Schwarz inequal-
ity (2.20) we obtain

| 〈h| f 〉 − g∗(h)| = | 〈h − h′
n + h′

n| f − f ′
n + f ′

n

〉 − g∗(h)|
= | 〈h − h′

n| f − f ′
n

〉 + 〈
h − h′

n| f ′
n

〉+〈
h′
n| f − f ′

n

〉 + 〈
h′
n| f ′

n

〉−g∗(h)|
≤ | 〈h − h′

n| f − f ′
n

〉 | + |g∗(h′
n) − g∗(h)|

≤ ‖h − h′
n‖‖ f − f ′

n‖ + |g∗(h′
n − h)| → 0 as n → ∞,

which yields (4.16). Hence Lemma 3.1 shows that f ∈ Reg(F ,Rg). Therefore the
inclusion (4.13) holds, which is our claim. ��

The basic result in this section is the following orthogonal decomposition theorem
in the countable case.

Theorem 4.3 Given p ∈ Z and q ∈ Zp,∞ ∪ {∞} let Zp,q � k → Fk be a function
such that Fk is a nonempty closed linear set in the space H(R) for all k ∈ Zp,q . If
g ∈ L2(R) and the condition (4.3) holds, then

Reg(F ,Rg) =
q∑

k=p

Reg(Fk,Rg), (4.21)

where F := ∑q
k=p Fk .

Proof Since the sets Fk , as k ∈ Zp,q , are closed in H(R), we conclude from Corol-
lary 3.4, with F replaced by each Fk , that

Reg(Fk,Rg) = 
 + fk, k ∈ Zp,q , (4.22)

for some sequence Zp,q � k �→ fk ∈ Fk . Fix f ∈ ∑q
k=p{ fk}. From Lemma 4.2 it

follows that f ∈ Reg(F ,Rg). By Lemma 4.1 we deduce that F is a linear and closed
set in H(R). Then by Corollary 3.4 we see that
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Reg(F ,Rg) = 
 + f.

From this and (4.22) we conclude that

Reg(F ,Rg) = 
 + f = 
 +
q∑

k=p

{ fk} =
q∑

k=p

(
 + fk) =
q∑

k=p

Reg(Fk,Rg),

and so the equality (4.21) holds, which is our claim. ��

We now extend the decomposition (4.21) to arbitrary family of closed linear sets
in the space H(R). To this end we write

‖V ‖ := sup
f ∈V

‖ f ‖

for any nonempty set V ⊂ L1(R). Then the following theorem holds.

Theorem 4.4 Given a set A �= ∅ let A � α → Fα be a function such that Fα is a
nonempty closed linear set in the space H(R) for every α ∈ A. If g ∈ L2(R) and

Fα ⊥ Fβ, α, β ∈ A, α �= β, (4.23)

then

A′ := {α ∈ A : ‖Reg(Fα,Rg)‖ > 0}

is a countable set and for every q ∈ N ∪ {∞} and every injective mapping σ of Z1,q
onto A′, the equality

Reg(F ,Rg) =
q∑

k=1

Reg(Fσ(k),Rg), (4.24)

where

F := cl

(
lin
(⋃

α∈A
Fα

)
)

,

holds provided A′ �= ∅ and

Reg(F ,Rg) = 


otherwise.
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Proof Since F and Fα as α ∈ A are closed sets in H(R) we see that


 ⊂ F and 
 ⊂ Fα, α ∈ A. (4.25)

Hence and by Corollary 3.4 we deduce that there exist f ∈ F and a function

A � α �→ fα ∈ Fα

such that

Reg(F ,R) = 
 + f and Reg(Fα,Rg) = 
 + fα, α ∈ A. (4.26)

Given p, q ∈ N with p < q, let us consider an injective sequence

Zp,q � k → γ (k) ∈ A.

Write

Fγ := F ∩
⎛

⎝
q∑

k=p

Fγ (k)

⎞

⎠
⊥

.

From (4.23) and (3.14c) it follows that

F = Fγ +
q∑

k=p

Fγ (k), (4.27)

and applying now Theorem 4.3 we obtain


 + f = 
 + fγ +
q∑

k=p

fγ (k), (4.28)

for some fγ ∈ Reg(Fγ ,Rg). From this, by (4.23) and (4.2f) we have

‖ f ‖2 =
∥∥∥∥∥∥
fγ +

q∑

k=p

fγ (k)

∥∥∥∥∥∥

2

= ‖ fγ ‖2 +
q∑

k=p

‖ fγ (k)‖2 ≥
q∑

k=p

‖ fγ (k)‖2. (4.29)

Fix now m ∈ N and assume that the set

Am :=
{
α ∈ A : ‖ fα‖ ≥ 1

m

}
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is not finite. Then there exists an injective sequence σ : N → Am . Applying the
inequality (4.29) with p := 1 and γ replaced by σ restricted to the set Z1,q we see
that

q ≤ m2‖ f ‖2

for every q ∈ N, which is impossible. This means that the set Am is finite for every
m ∈ N. Since

A′ =
⋃

m∈N
Am

it follows that A′ is a countable set.
From Lemma 3.1 and (4.26) it follows that

〈h| fα〉 = g∗(h), h ∈ Fα, α ∈ A. (4.30)

Setting

A′′ := {α ∈ A : ‖Reg(Fα,Rg)‖ = 0}

we see that

A′ ∪ A′′ = A �= ∅.

The remaining part of the proof will be divided naturally into three cases: A′′ = ∅,
A′ = ∅ and A′ �= ∅ �= A′′.

The case I, where A′′ = ∅. Then A′ = A �= ∅. Since A′ is a countable set, there
exist q ∈ N ∪ {∞} and an injective mapping σ of Z1,q onto A. Setting F ′

k := Fσ(k),
k ∈ Z1,q , we conclude from Lemma 4.1 that

q∑

k=1

F ′
k = cl

(
lin

( q⋃

k=1

F ′
k

))
= cl

(
lin

( q⋃

k=1

Fσ(k)

))
= cl

(
lin

(
⋃

α∈A
Fα

))
= F .

Applying now Theorem 4.3 we can see that

Reg(F ,Rg) =
q∑

k=p

Reg(F ′
k,Rg) =

n∑

k=1

Reg(Fσ(k),Rg),

which yields the equality (4.24).
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The case II, where A′ = ∅. Then A′′ = A �= ∅. Fix h ∈ F . By the definition of F it
follows that there exists a sequence

N � n �→ hn ∈ lin

(
⋃

α∈A
Fα

)

such that

‖h − hn‖ → 0 as n → ∞. (4.31)

For each n ∈ N there exist n′ ∈ N and a sequence Z1,n′ � k �→ αk ∈ A such that

hn ∈ F ′
n :=

n′∑

k=1

Fαk .

Then there exists a sequence

Z1,n′ � k �→ hn,αk ∈ Fαk

such that

hn =
n′∑

k=1

hn,αk .

Applying now (4.30) and the Schwarz inequality (2.20) we obtain

|g∗(hn)| =
∣∣∣∣∣∣
g∗

⎛

⎝
n′∑

k=1

hn,αk

⎞

⎠

∣∣∣∣∣∣
≤

n′∑

k=1

|g∗(hn,αk )| =
n′∑

k=1

| 〈hn,αk | fαk
〉 |

≤
n′∑

k=1

‖hn,αk‖ · ‖ fαk‖ ≤
n′∑

k=1

‖hn,αk‖ · ‖Reg(Fαk ,Rg)‖ = 0.

Thus g∗(hn) = 0 for every n ∈ N. Since g∗ is a continuous functional on the space
H(R), we conclude from (4.31) that g∗(h) = 0 for every h ∈ F . Then Lemma 3.1
shows that θ ∈ Reg(F ,R). Hence and by Corollary 3.4 we obtain

Reg(F ,R) = 
 + θ = 
,

which proves the theorem in the case where A′ = ∅.
The case III, where A′ �= ∅ �= A′′. Setting

F ′ := lin

(
⋃

α∈A′
Fα

)
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and

F ′′ := lin

(
⋃

α∈A′′
Fα

)

we conclude from (4.23) that F ′ ⊥ F ′′. Then (4.2a) yields

cl(F ′) ⊥ cl(F ′′).

Moreover, by (3.12) and (4.2b) we obtain

cl(F ′) + cl(F ′′) = cl(F ′ + F ′′) = cl

(
lin

(
⋃

α∈A′
Fα

)
+ lin

(
⋃

α∈A′′
Fα

))

= cl

(
lin

(
⋃

α∈A′∪A′′
Fα

))
= F .

Theorem 4.3 now implies

Reg(F ,Rg) = Reg(cl(F ′),Rg) + Reg(cl(F ′′),Rg). (4.32)

Applying our theorem in the already proved case I we have

Reg(cl(F ′),Rg) =
q∑

k=1

Reg(Fσ(k),Rg), (4.33)

where q ∈ N ∪ {∞} and σ is an injective mapping of Z1,q onto A′. Applying once
again our theorem in the already proved case II we obtain

Reg(cl(F ′′),Rg) = 
. (4.34)

Combining the equalities (4.32), (4.33) and (4.34) we conclude from Corollary 3.4
that

Reg(F ,Rg) = 
 +
q∑

k=1

Reg(Fσ(k),Rg) =
q∑

k=1

(
 + Reg(Fσ(k),Rg))

=
q∑

k=1

Reg(Fσ(k),Rg),

which yields the equality (4.24) in the third case, and the proof is complete. ��
Corollary 4.5 Given q ∈ N ∪ {∞} let Z1,q � k → Fk be a sequence such that
Fk is a nonempty closed linear set in the space H(R) for every k ∈ Z1,p. If F is a
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closed linear set in the space H(R), g ∈ L2(R), Fk ⊂ F for every k ∈ Z1,p and the
condition (4.3) holds, then

Reg(F ,Rg) = Reg(F0,Rg) +
q∑

k=1

Reg(Fk,Rg), (4.35)

where F0 := F ∩ (∑p
k=1 Fk

)⊥
.

Proof Since F is a nonempty closed linear set in the space H(R), we conclude from
(3.14a) that F0 is also a nonempty closed linear set in the space H(R). Moreover,
F0 ⊥ Fk for every k ∈ Z1,p and, by (3.14c),

p∑

k=0

Fk = F0 +
p∑

k=1

Fk = F .

Then Theorem 4.3 shows that

Reg(F ,Rg) =
q∑

k=0

Reg(Fk,Rg) = Reg(F0,Rg) +
q∑

k=1

Reg(Fk,Rg),

and the equality (4.35) is proved. ��

5 The regression functions calculating procedure

Given an asynchronous regression structure R let F be a nonempty linear set in the
space H(R) and g ∈ L2(R). If Reg(F ,Rg) �= ∅, then Theorem 3.3 enables us to find
regression functions inF with respect toRg , provided we can determine the linear set
(F∩S)⊥∩F , which is rather difficult task, in general. However in the case whereF is
spanned by a finite system of functions we can effectively calculate all the regression
functions in F with respect toRg in terms of these functions; cf. [12, Corollary 3.2].
Obviously, this case is the most essential one from the practical point of view.

In what follows we will show how to use directly Lemma 3.1 in order to determine
all regression functions in F with respect to Rg , provided

F = lin({hk : k ∈ Z1,p}) (5.1)

for some p ∈ N and Z1,p � k �→ hk ∈ L1(R). By (5.1), each f ∈ Reg(F ,Rg) is of
the form f = ∑p

k=1 λkhk for a sequence Z1,p � k �→ λk ∈ B. From Lemma 3.1 it
follows that f satisfies the condition (3.2), which leads to the following equalities

g∗(hl) = 〈hl | f 〉 =
〈
hl
∣∣∣

p∑

k=1

λkhk

〉
=

p∑

k=1

λk 〈hl |hk〉 , l ∈ Z1,p.
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This way we obtain the following linear equation system of the Gramm-Schmidt type

p∑

k=1

λk 〈hk |hl〉 = g∗(hl), l ∈ Z1,p, (5.2)

with respect to the variables λ1, λ2, . . . , λp ∈ B. All solutions of the equation system
(5.2) determine the set Reg(F ,Rg). The system (5.2) simplifies itself much if we
assume that the sequence Z1,p � k �→ hk is orthogonal in the space H(R), i.e.

hk ⊥ hl , k, l ∈ Z1,p, k �= l. (5.3)

Then 〈hk |hl〉 = 0 for k �= l, and by (5.2) we obtain the unique solution

λk = g∗(hk)
‖hk‖2 , k ∈ Z1,p, (5.4)

provided ‖hk‖ > 0 as k ∈ Z1,p. Thus Reg(F ,Rg) = { f }, where

f =
p∑

k=1

g∗(hk)
‖hk‖2 hk; (5.5)

cf. [12, Thm. 3.1].
Using orthogonal decomposition properties from the previous section we can

develop this idea in the form of the following theorem.

Theorem 5.1 Given p ∈ N ∪ {∞} let Z1,p � k �→ hk ∈ L1(R)\
 be an orthogonal
sequence in the space H(R) and g ∈ L2(R). If p ∈ N, then

Reg(F ,Rg) = (
 ∩ F) +
p∑

k=1

g∗(hk)
‖hk‖2 hk, (5.6)

where F := lin({hk : k ∈ Z1,p}). If p = ∞, then

Reg(cl(F),Rg) = 
 +
∞∑

k=1

g∗(hk)
‖hk‖2 hk . (5.7)

Proof Fix p ∈ N ∪ {∞} and an orthogonal sequence Z1,p � k �→ hk ∈ F in H(R).
Consider first the case where p = 1. If g∗(h1) = 0, then F ⊂ S, where S :=

(g∗)−1(0). Then by (iii) of Theorem 3.3,

Reg(F ,Rg) = 
 ∩ F ,
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and so the equality (5.6) obviously holds. Assume in contrary, that g∗(h1) �= 0. Then
F ∩ S = {θ}, and so (F ∩ S)⊥ = L1(R). Hence

h1 ∈ (F ∩ S)⊥ ∩ F\
,

and applying now (ii) of Theorem 3.3 we derive the equality (5.6). Thus the equality
(5.6) holds for every one-dimensional linear set F ⊂ L1(R).

Assume now that p ∈ N or p = ∞. Setting Fk := lin({hk}) for k ∈ Z1,p we see
that each set Fk is a one-dimensional linear subset of L1(R). Hence

Reg(Fk,Rg) = (
 ∩ Fk) + g∗(hk)
‖hk‖2 hk, k ∈ Z1,p. (5.8)

If p ∈ N, then from Lemma 4.2 we conclude that

f :=
p∑

k=1

g∗(hk)
‖hk‖2 hk ∈ F ∩

p∑

k=1

Reg(Fk,Rg) ⊂ Reg(F ,Rg),

and consequently the equality (5.6) follows from (i) of Theorem 3.3. Thus it remains
to consider the case where p = ∞. Since

cl(Fk) = 
 + Fk as k ∈ Z1,∞,

we deduce from (5.8) and Corollary 3.2 that for every k ∈ Z1,∞,

g∗(hk)
‖hk‖2 hk ∈ Reg(Fk,Rg) = Fk ∩ Reg(
 + Fk,Rg) ⊂ Reg(cl(Fk),Rg).

Then Corollary 3.4 yields

Reg(cl(Fk),Rg) = 
 + g∗(hk)
‖hk‖2 hk, k ∈ Z1,∞. (5.9)

Since the sequence Z1,∞ � k �→ hk ∈ F is orthogonal, we deduce from Lemma 4.1
and (4.2a) that

cl(F) =
∞∑

k=1

cl(Fk) and cl(Fk) ⊥ cl(Fl), k, l ∈ Z1,∞, k �= l. (5.10)

Applying now Theorem 4.3 we conclude from (5.9) and (5.10) that

Reg(cl(F),Rg) =
∞∑

k=1

Reg(cl(Fk),Rg) =
∞∑

k=1

(

 + g∗(hk)

‖hk‖2 hk
)

,

which proves the equality (5.7). ��
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As far as applications are concerned we will study theoretic models

F = lin({hk : k ∈ Z1,p})

spanned by sequencesZ1,p � k �→ hk which in general are not orthogonal in the space
H(R), because the pseudo-inner product 〈·|·〉 depends on the empirical data function
x : �1 → A and measure μ. Then we can not apply Theorem 5.1 directly. However,
in such cases we can ortogonalize these sequences. To this end we recall that for a
given p ∈ N ∪ {∞}, a sequence

Z1,p � k �→ h′
k ∈ L1(R)

is said to be an orthogonalization of a sequence

Z1,p � k �→ hk ∈ L1(R),

provided

h′
k ∈ Hk ∩ H⊥

k−1\
, k ∈ Z1,p, (5.11)

where H0 := 
 and Hk := lin({hm : m ∈ Z1,k}), k ∈ Z1,p ∪ {p}. The following
lemma gives a sufficient and necessarily condition for a sequence to be ortogonalized.

Lemma 5.2 Given p ∈ N ∪ {∞}, a sequence Z1,p � k �→ hk ∈ L1(R) is linearly
independent and 
 ∩ Hp = {θ} iff the following condition

Hk ∩ H⊥
k−1\
 �= ∅, k ∈ Z1,p, (5.12)

holds.

Proof Fix p ∈ N and a sequence Z1,p � k �→ hk ∈ L1(R). Assume first that
the condition (5.12) holds. Then there exists a sequence Z1,p � k �→ h′

k ∈ L1(R)

satisfying (5.11). Setting

H ′
p := lin({h′

k : k ∈ Z1,p})

we shall prove that H ′
p = Hp. Since Hk−1 ⊂ Hk for k ∈ Z1,p, the sequence

Z1,p � k �→ h′
k

is orthogonal. Given a sequence Z1,p � k �→ λk ∈ B assume that
∑p

k=1 λkh′
k ∈ 
.

Then for every l ∈ Z1,p,

0 =
〈 p∑

k=1

λkh
′
k

∣∣∣h′
l

〉
=

p∑

k=1

λk
〈
h′
k |h′

l

〉 = λl‖h′
l‖2,
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and henceλl = 0, because ‖h′
l‖ > 0 by (5.11). Therefore the sequenceZ1,p � k �→ h′

k
is linearly independent and

H ′
p ∩ 
 = {θ}. (5.13)

Moreover, from (5.11) it follows that

h′
k ∈ Hk ⊂ Hp as k ∈ Z1,p,

and consequently H ′
p ⊂ Hp. Thus

p = dim(H ′
p) ≤ dim(Hp) ≤ p,

which implies dim(Hp) = p. Hence H ′
p = Hp. Combining this with (5.13) we have


 ∩ Hp = 
 ∩ H ′
p = {θ}.

Moreover the equality dim(Hp) = p implies that the sequence Z1,p � k �→ hk is
linearly independent. This proves the lemma in the direction (⇐), provided p ∈ N.

Conversely, assume that the sequence Z1,p � k �→ hk is linearly independent and
the equality 
 ∩ Hp = {θ} holds. If ‖hk‖ = 0 for certain k ∈ Z1,p, then

hk ∈ 
 ∩ Hp,

and so hk = θ . This is impossible, because the sequence Z1,p � k �→ hk is linearly
independent. Therefore

‖hk‖ > 0, k ∈ Z1,p. (5.14)

In particular,

h1 ∈ H1\
 = H1 ∩ H⊥
0 \
,

and so the property (5.12) holds in the case where p = 1. Therefore we may assume
that p ≥ 2. Then

q := min({k ∈ Z1,p : Hk ∩ H⊥
k−1\
 = ∅}) ∈ Z2,p, (5.15)

provided the condition (5.12) does not hold. Hence there exists a sequence

Z1,q−1 � k �→ h′
k ∈ Hk ∩ H⊥

k−1\
,

and we can define

h′
q := hq −

q−1∑

k=1

〈
hq |h′

k

〉

‖h′
k‖2

h′
k . (5.16)
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Since Hk−1 ⊂ Hk for k ∈ Z1,q , the sequence Z1,q−1 � k �→ h′
k is orthogonal, and

consequently for each l ∈ Z1,q−1,

〈
h′
q |h′

l

〉
= 〈

hq |h′
l

〉 −
q−1∑

k=1

〈
hq |h′

k

〉

‖h′
k‖2

〈
h′
k |h′

l

〉 = 〈
hq |h′

l

〉 −
〈
hq |h′

l

〉

‖h′
l‖2

〈
h′
l |h′

l

〉 = 0. (5.17)

Therefore the sequence Z1,q � k �→ h′
k is orthogonal, and following the first part of

the proof we see that this sequence is linearly independent. Hence

dim(lin({h′
k : k ∈ Z1,q−1})) = q − 1.

Since h′
k ∈ Hk ⊂ Hq−1 for k ∈ Z1,q−1, we see that

lin({h′
k : k ∈ Z1,q−1}) ⊂ Hq−1.

On the other hand side the sequence Z1,q−1 � k �→ hk is also linearly independent,
and consequently

dim(Hq−1) = q − 1.

Thus

lin({h′
k : k ∈ Z1,q−1}) = Hq−1,

which together with (5.16) and (5.17) leads to

h′
q ∈ Hq ∩ H⊥

q−1. (5.18)

Suppose that ‖h′
q‖ = 0. Then

h′
q ∈ 
 ∩ Hq ⊂ 
 ∩ Hp = {θ},

and consequently

hq =
q−1∑

k=1

〈
hq |h′

k

〉

‖h′
k‖2

h′
k .

This is impossible, because the sequence Z1,q � k �→ hk is linearly independent.
Therefore ‖h′

q‖ > 0, which together with (5.18) implies that

h′
q ∈ Hq ∩ H⊥

q−1\
,

contrary to (5.15). This means that the condition (5.12) holds, which proves the lemma
in the direction (⇒), provided p ∈ N.
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It remains to prove the lemma in the case where p = ∞. Then Z1,p = N. Assume
first that a sequence N � k �→ hk ∈ L1(R) is linearly independent and the equality

 ∩ H∞ = {θ} holds. Then for every n ∈ N the sequence Z1,n � k �→ hk is also
linearly independent and

Hn ∩ 
 ⊂ H∞ ∩ 
 = {θ},

which gives

Hn ∩ 
 = {θ}.

Applying now the already proved finite part (⇒) of the lemma we see that

Hn ∩ H⊥
n−1\
 �= ∅

for every n ∈ N, which means that the condition (5.12) holds. Conversely, assume
now that a sequence

N � k �→ hk ∈ L1(R)

satisfies the condition (5.12). From the already proved finite part (⇐) of the lemma
it follows that for every n ∈ N the sequence Z1,n � k �→ hk is linearly independent
and Hn ∩ 
 = {θ}. Hence each finite subsequence of the sequence N � k �→ hk is
linearly independent, and hence the sequence N � k �→ hk is linearly independent as
well. Moreover,


 ∩ H∞ = 
 ∩
∞⋃

n=1

Hn =
∞⋃

n=1


 ∩ Hn = {θ}.

Thus the lemma holds also in the case, where p = ∞, which completes the proof. ��
From Lemma 5.2 it follows that each linearly independent sequence Z1,p � k �→

hk ∈ L1(R) satisfying the condition


 ∩ Hp = {θ}

has an associated sequence being its ortogonalization result. Such a sequence Z1,p �
k �→ h′

k may be determined by using the Gramm-Schmidt recursivemethod by setting

h′
1 := h1 and h′

n := hn −
n−1∑

k=1

〈
hn|h′

k

〉

‖h′
k‖2

h′
k, n ∈ Z2,p. (5.19)

Corollary 5.3 Given p ∈ N ∪ {∞} let Z1,p � k �→ hk ∈ L1(R) be a linearly
independent sequence such that 
 ∩ F = {θ}, where F := lin({hk : k ∈ Z1,p}).
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Suppose that Z1,p � k �→ h′
k ∈ L1(R) is a sequence satisfying (5.11) and that

g ∈ L2(R). If p ∈ N, then

Reg(F ,Rg) = (
 ∩ F) +
p∑

k=1

g∗(h′
k)

‖h′
k‖2

h′
k . (5.20)

If p = ∞, then

Reg(cl(F),Rg) = 
 +
∞∑

k=1

g∗(h′
k)

‖h′
k‖2

h′
k . (5.21)

In particular, the sequence Z1,p � k �→ h′
k may be defined by (5.19).

Proof Fix p ∈ N ∪ {∞} and consider any sequences

Z1,p � k �→ hk ∈ F\


and

Z1,p � k �→ h′
k ∈ L1(R)

satisfying the assumptions. By Lemma 5.2, the condition (5.12) holds. Therefore the
last sequence exists. It may be defined for instance by (5.19). From the property (5.11)
it follows that ‖h′

k‖ �= 0 for k ∈ Z1,p and h′
k ⊥ h′

l for k, l ∈ Z1,p such that k �= l.
Moreover, by definition,

lin({h′
k : k ∈ Z1,p}) = lin({hk : k ∈ Z1,p}) = F .

Thus, applying Theorem 5.1 to the sequence Z1,p � k �→ hk replaced by its ortogo-
nalized associate Z1,p � k �→ h′

k , we derive the assertion. ��
The following example shows how to apply Lemma 5.2 and Corollary 5.3 to numer-

ical computation of the regression functions.

Example 5.4 Given p ∈ N let Z1,p � k �→ hk ∈ L1(R) be a linearly independent
sequence such that 
 ∩ F = {θ}, where F := lin({hk : k ∈ Z1,p}). Suppose that

Z1,p � k �→ h′
k ∈ L1(R)

is a sequence satisfying (5.11) and that g ∈ L2(R). Let us consider the sequence

Z1,p � k �→ vk := hk −
〈
hk |h′

k

〉

‖h′
k‖2

h′
k . (5.22)

Fix n ∈ Z1,p and suppose that h′
n ⊥ hn . Since h′

n ⊥ Hn−1 and

Hn = Hn−1 + lin({hn}), (5.23)
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we have h′
n ⊥ Hn . On the other hand side h′

n ∈ Hn . Hence

‖h′
n‖2 = 〈

h′
n|h′

n

〉 = 0,

which is impossible, because h′
n /∈ 
. Therefore

〈
hk |h′

k

〉 �= 0, k ∈ Z1,p. (5.24)

Since hn, h′
n ∈ Hn , we deduce from (5.22) that vn ∈ Hn . From this and (5.23) we

conclude that vn −μhn ∈ Hn−1 for certain μ ∈ B. Moreover, h′
n ⊥ Hn−1. Hence and

by (5.22) we obtain

0 = 〈
vn − μhn|h′

n

〉 = 〈
vn|h′

n

〉 − μ
〈
hn|h′

n

〉 = −μ
〈
hn|h′

n

〉
.

This together with (5.24) yieldsμ = 0, and consequently vn ∈ Hn−1. Moreover, from
(5.22) it follows that hn − vn ⊥ Hn−1. Therefore

vk ∈ Hk−1 and hk − vk ⊥ Hk−1, k ∈ Z1,p, (5.25)

which means that each vk is an orthogonal projection of hk onto Hk−1. Then

0 = 〈
hk − vk |h′

l

〉 = 〈
hk |h′

l

〉 − 〈
vk |h′

l

〉
, k ∈ Z1,p, l ∈ Z1,k−1,

and, consequently,

〈
hk |h′

l

〉 = 〈
vk |h′

l

〉
, k ∈ Z1,p, l ∈ Z1,k−1. (5.26)

We now define the following two matrixes

Z1,p × Z1,p � (k, l) �→ Rk,l := 〈hk − vk |hl〉 (5.27)

as well as

Z1,p � k �→ Qk := g∗(hk − vk). (5.28)

By (5.11), h′
1 ∈ H1\
. Then both the vectors h1 and h′

1 are collinear, and by (5.22)
we get v1 = θ . Applying now the formulas (5.28) and (5.27) we obtain

Q1 = g∗(h1) and R1,l = 〈h1|hl〉 , l ∈ Z1,p. (5.29)

Now the task is to find recursive formulas in order to determine the remaining terms.
Applying formulas (5.22) and (5.27) we obtain

Rk,l =
〈
hk |h′

k

〉 〈
h′
k |hl

〉

‖h′
k‖2

, k, l ∈ Z1,p. (5.30)
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Since the sequence Z1,p � k �→ h′
k is orthogonal, we have

vk =
k−1∑

s=1

〈
vk |h′

s

〉

‖h′
s‖2

h′
s, k ∈ Z2,p. (5.31)

From this, (5.24) and (5.30) we conclude that for all k ∈ Z2,p and l ∈ Z1,p,

Rk,l =
〈
hk −

k−1∑

s=1

〈
vk |h′

s

〉

‖h′
s‖2

h′
s

∣∣∣hl

〉
= 〈hk |hl〉 −

k−1∑

s=1

〈
vk |h′

s

〉

‖h′
s‖2

〈
h′
s |hl

〉

= 〈hk |hl〉 −
k−1∑

s=1

〈
vk |h′

s

〉
〈
hs |h′

s

〉
〈
hs |h′

s

〉 〈
h′
s |hl

〉

‖h′
s‖2

= 〈hk |hl〉 −
k−1∑

s=1

〈
vk |h′

s

〉
〈
hs |h′

s

〉 Rs,l .

Moreover, by (5.26) we have

〈
vk |h′

s

〉
〈
hs |h′

s

〉 =
〈
hk |h′

s

〉 〈
h′
s |hs

〉

‖h′
s‖2

· ‖h′
s‖2〈

hs |h′
s

〉 〈
h′
s |hs

〉 = Rs,k

Rs,s
, k ∈ Z2,p, s ∈ Z1,k−1. (5.32)

Therefore

Rk,l = 〈hk |hl〉 −
k−1∑

s=1

Rs,k Rs,l

Rs,s
, k ∈ Z2,p, l ∈ Z1,p. (5.33)

Combining (5.11) with (5.22) and (5.24) we conclude that

hk − vk =
〈
hk |h′

k

〉

‖h′
k‖2

h′
k ∈ Hk ∩ H⊥

k−1\
, k ∈ Z1,p. (5.34)

From this, (5.28) and (5.31) it follows that for every k ∈ Z2,p,

Qk = g∗(hk) −
k−1∑

s=1

〈
vk |h′

s

〉

‖h′
s‖2

g∗(h′
s) = g∗(hk) −

k−1∑

s=1

〈
vk |h′

s

〉

‖h′
s‖2

g∗
(

‖h′
s‖2〈

hs |h′
s

〉 (hs − vs)

)

= g∗(hk) −
k−1∑

s=1

〈
vk |h′

s

〉
〈
hs |h′

s

〉g∗(hs − vs) = g∗(hk) −
k−1∑

s=1

〈
vk |h′

s

〉
〈
hs |h′

s

〉Qs,

which together with (5.32) leads to

Qk = g∗(hk) −
k−1∑

s=1

Rs,k

Rs,s
Qs, k ∈ Z2,p. (5.35)
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Applying now (5.34), Lemma 5.2 and Corollary 5.3 we see that

f :=
p∑

k=1

g∗(hk − vk)

‖hk − vk‖2 (hk − vk) ∈ Reg(F ,Rg). (5.36)

Now, we wish to find a sequence Z1,p � k �→ λk ∈ B such that

f =
p∑

k=1

λkhk .

Then (5.25) and (5.27) imply

〈hl − vl | f 〉 =
〈
hl − vl

∣∣∣
p∑

k=1

λkhk

〉
=

p∑

k=1

〈hl − vl |λkhk〉

=
p∑

k=1

λk 〈hl − vl |hk〉 =
p∑

k=l

λk Rl,k, l ∈ Z1,p. (5.37)

Since hk − vk ⊥ hl − vl as k, l ∈ Z1,p, k �= l, we conclude from (5.36) and (5.28)
that

〈hl − vl | f 〉 =
p∑

k=1

g∗(hk − vk)

‖hk − vk‖2 〈hl − vl |hk − vk〉 = g∗(hl − vl) = Ql , l ∈ Z1,p,

which together with (5.37) yields

λp = Qp

Rp,p
and λl = 1

Rl,l

(
Ql −

p∑

k=l+1

λk Rl,k

)
, l ∈ Z1,p−1. (5.38)

Applying the initial formulas (5.29) and the recursive ones (5.33), (5.35) and (5.38)
we can directly compute the coefficients λk , k ∈ Z1,p, of the regression function f in
the basis Z1,p � k �→ hk of F . Therefore these formulas are suitable for numerical
computation of the regression functions.

In certain cases the following corollary can be an useful tool in order to determine
the regression functions.

Corollary 5.5 Given nonempty linear sets F and F ′ in H(R) suppose that F ⊂ F ′.
If g ∈ L2(R) and Reg(F ,Rg) �= ∅ �= Reg(F ′ ∩ F⊥,Rg), then

Reg(F ,Rg) + Reg(F ′ ∩ F⊥,Rg) ⊂ Reg(F ′,Rg). (5.39)
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Proof Setting F1 := F and F2 := F ′ ∩F⊥ we deduce from the assumption F ⊂ F ′
that

F1 + F2 = F ′ and F1 ⊥ F2.

Then Lemma 4.2 shows that

Reg(F1,Rg) + Reg(F2,Rg) = F ′ ∩ Reg(F1,Rg) + F ′ ∩ Reg(F2,Rg)

⊂F ′∩(Reg(F1,Rg)+Reg(F2,Rg)
) ⊂ Reg(F ′,Rg),

which proves the inclusion (5.39). ��
We end this section with a few simple observations arrising from Corollary 5.3 on

the structure of the set consisting of all regression functions.

Remark 5.6 Under the assumptions of Corollary 5.3, we have

θ ∈ 
 ∩ F ,

and so the equality (5.20) yields

f :=
p∑

k=1

g∗(h′
k)

‖h′
k‖2

h′
k ∈ Reg(F ,Rg) and Reg(F ,Rg) = (
 ∩ F) + f, (5.40)

provided p ∈ N. Since 
 ∩ F is a linear set, the second equality in (5.40) shows that
the class Reg(F ,Rg) forms an affine variety in the space H(R).

Moreover from (5.40) we can easily deduce that the following properties are pair-
wise equivalent:

(i) f is a unique regression function in F with respect to Rg;
(ii) 
 ∩ F = {θ};
(iii) ‖h‖ > 0 for every h ∈ F\{θ};
(iv) ‖h‖ = 0 �⇒ h = θ for every h ∈ F .

If additionally the sequence Z1,p � k �→ hk ∈ F\
 satisfies the orthogonality
condition (5.3), then the formulas (5.19) yield

h′
k = hk as k ∈ Z1,p,

and consequently theproperty (5.40) remains valid after replacingh′
k byhk as k ∈ Z1,p.

According to (5.40) the class Reg(F ,Rg) is determined by the sequence

Z1,p � k �→ g∗(h′
k)‖h′

k‖−2h′
k .

We call it the regression functions sequence (RFS) generated by a linearly independent
sequence Z1,p � k �→ hk ∈ L1(R) satisfying the equality


 ∩ F = {θ},
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where

F := lin({hk : k ∈ Z1,p})

is a functional model of Rg .

6 Examples

It is worth noting that our approach to the regression theory is very flexible. We pro-
vide an universal and simple theory covering classical cases of regressions where the
theoretic functional model F is spanned by polynomials, trigonometric polynomials
and other specific functions; cf. e.g. [17] and [4]. Moreover, we study the regression
functions with respect to the wide range of the regression structures R, involving the
generalized quadratic deviation (2.2) by means of certain measures μ. This simplifies
much theoretical considerations on the ground of pseudo-Hilbert spaces. On the other
hand side we gain the possibility of using the modified least squares method which
can be more adequate in more specific situations.

In Example 1.1 the classical least squares method was used. According to the
equality (2.4) in Example 2.2, this is a special case of the criterion δ with the measure
μ satisfying (2.3) and (2.5). In what follows we present an example which motivate
using a more sophisticated measure μ.

Example 6.1 Following Example 1.1 we want to determine now the electric circuit
resistance R by means of measurements samples of intensity and voltage represented
by two sequences Z0,n � k �→ ik and Z0,m � k �→ vk for some n,m ∈ N. Assume
that all measurements were made independently. Given a precision rate let ρ′

k be the
probability that the intensity sample ik satisfies the precision rate for k ∈ �1 := Z0,n
and let ρ′′

l be the probability that the voltage sample vl satisfies the precision rate for
l ∈ �2 := Z0,m . As in Example 1.1 we consider the regression structure R, where
A := R, B := R, the empiric data functions are defined by

Z0,n � k �→ x(k) := ik and Z0,m � k �→ y(k) := vk,

and as the deviation criterion δ we take the generalized quadratic deviation given by
(2.2). Following Example 2.2 we define the measure μ as a unique measure satisfying
the equalities (2.3). Now, we shall need to define the numbers ρk,l for k ∈ �1 and
l ∈ �2. Obviously, we can do it in many ways. In our particular case all measurements
were made independently, so it seems to be natural to set

ρk,l := ρ′
k · ρ′′

l , k ∈ �1, l ∈ �2. (6.1)

Then each coefficient ρk,l is equal to the probability of the event that both the
measurement samples ik and vl satisfy simultaneously the prescribed precision rate.
As a matter of fact the coefficient ρk,l reflects accuracy of the measurement samples
ik and vl , and thereby reflects accuracy of the measurements devices used for getting
these samples. If a coefficient ρk,l is closer to 1, then intuitively the corresponding
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pair (ik, vl) of samples is more valuable for us. Therefore the generalized quadratic
deviation criterion δ, defined by (6.1), seems to bemore natural in this case as compared
to the classical least squaresmethod, where all samples (ik , vk) are treated equivalently
and that the samples of the form (ik, vl) as k �= l, are not considered at all.

As in Example 1.1, we consider the theoretic functional model F represented by
linear functions R � t �→ r t for r ∈ R. Then F = lin({h1}) where h1 is the identity
mapping on R, i.e. h1(t) = t for t ∈ R. Thus we can apply our theory from the
previous sections in order to determine all regression functions in F with respect to
R. The condition (2.8) obviously holds for every function f : A → B, which means
that L1(R) = (R → R). From (2.12) we have

‖h1‖2 =
∫

�1×�2

|(h1 ◦ x)(t1)|2dμ(t1, t2) =
n∑

k=0

m∑

l=0

i2kρk,l . (6.2)

It is also easily seen that each function g : B → B satisfies the condition (2.9), and
so L2(R) = (R → R). From (2.22) it follows that

g∗(h1) =
∫

�1×�2

(h1 ◦ x)(t1)g ◦ y(t2)dμ(t1, t2) =
n∑

k=0

m∑

l=0

ikg(vl)ρk,l . (6.3)

Assume that ‖h1‖ = 0. Then F ⊂ 
, which implies, by Corollary 3.2, that

Reg(F ,R) = F .

Suppose for simplicity that ρk,l > 0 for k ∈ �1 and l ∈ �2. From (6.2) we see
that ‖h1‖ = 0 iff ik = 0 for k ∈ �1. Thus the equality ‖h1‖ = 0 means that the
current intensity vanishes (current does not flow) or the current intensity is below
the sensitivity of intensity measurements devices. In both the cases we are not able
to determine the resistance R. This provides a natural interpretation of the equality
Reg(F ,R) = F .

Assume now that ‖h1‖ �= 0. Then h1 ∈ F\
, and so 
 ∩ F = {θ}. Theorem 3.3
(or directly Theorem 5.1) now leads to

Reg(F ,R) = (
 ∩ F) + g∗(h1)
‖h1‖2 h1 =

{g∗(h1)
‖h1‖2 h1

}
, (6.4)

which means that the set Reg(F ,R) consists of the unique regression function

R � t → g∗(h1)
‖h1‖2 h1(t) = g∗(h1)

‖h1‖2 t.

Combining this with (6.2) and (6.3) we can uniquely determine the resistance

R = g∗(h1)
‖h1‖2 =

n∑

k=0

m∑

l=0

ikg(vl)ρk,l
/ n∑

k=0

m∑

l=0

i2kρk,l . (6.5)
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Note that if n = m, g is the identity function and the coefficients ρk,l are defined by
(2.5), then (6.5) yields (1.6). Such a situation naturally corresponds to the sequence
Z0,n � k → (ik, vk) of n+1 simultaneous measurements of the current intension and
voltage with the same precision.

The following example illustrates the usage of Corollary 5.3 in the case where the
theoretic functional model F is spanned by two functions.

Example 6.2 Given a regression structureR with g ∈ L2(R) let us consider the case
where the functional modelF = lin({h1, h2}) is spanned by two linearly independent
functions h1, h2 ∈ L1(R), such that F ∩ 
 = {θ}. Applying Corollary 5.3 we see
that

Reg(F ,R) = (
 ∩ F) +
2∑

k=1

g∗(h′
k)

‖h′
k‖2

h′
k, (6.6)

where according to (5.19),

h′
1 := h1 and h′

2 := h2 −
〈
h2|h′

1

〉

‖h′
1‖2

h′
1 = h2 − 〈h2|h1〉

‖h1‖2 h1. (6.7)

Hence, h′
2 ⊥ h1, and consequently

‖h′
2‖2 = ‖h2‖2 −

∥∥∥∥
〈h2|h1〉
‖h1‖2 h1

∥∥∥∥
2

= ‖h2‖2 − | 〈h2|h1〉 |2
‖h1‖2 . (6.8)

Setting

a2 := g∗(h′
2)

‖h′
2‖2

and a1 := g∗(h′
1)

‖h′
1‖2

− 〈h2|h1〉
‖h1‖2 a2 (6.9)

we conclude from (6.6) and (6.7) that

Reg(F ,R) = (
 ∩ F) + a2h2 + a1h1. (6.10)

Combining (6.9) with (6.7) and (6.8) we obtain

a2 = g∗(h2)‖h1‖2 − g∗(h1) 〈h2|h1〉
‖h2‖2‖h1‖2 − | 〈h2|h1〉 |2 and a1 = g∗(h1) − 〈h2|h1〉 a2

‖h1‖2 . (6.11)

In particular, if h2(t) = t , h1(t) = 1 and g(t) = t as t ∈ R, and the regression
structure R is defined as in Example 2.2 under the assumption that m = n and the
coefficients ρk,l satisfy (2.5), then the equalities in (6.11) yield a2 = a0 and a1 = b0
where a0 and b0 are defined in (1.2).

The next example deals with applications to econometric sciences.
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Example 6.3 Consider a linear econometric model of the following form

Y = a0 +
p∑

k=1

ak Xk, (6.12)

for some p ∈ N and a sequence of coefficients Z0,p � k �→ ak ∈ R. This model
describes the theoretic dependence the variable Y on the variables X1, X2, . . . , X p,
which represent certain economical parameters; cf. e.g. [7, pp. 89–130], [9, pp.127–
208], [3, pp. 73–93]. We seek the best such model for a given n ∈ N and experimental
data series Z1,n � k �→ ỹk ∈ R and Z1,n � k �→ x̃k,l ∈ R for l ∈ Z1,p, with respect to
the classical quadratic deviation. To bemore precise we seek a sequence of coefficients
Z0,p � k �→ âk ∈ R satisfying the condition

n∑

k=1

(
â0 +

p∑

l=1

âk x̃k,l − ỹk

)2

≤
n∑

k=1

(
a0 +

p∑

l=1

ak x̃k,l − ỹk

)2

(6.13)

for every Z0,p � k �→ ak ∈ R. It shows that this problem can be reduced to the
following regression problem. Let

R := (A, B, δ; x, y)

be an asynchronous regression structure, where:

A := R
p, B := R, �1 := Z1,n, �2 := Z1,n .

The functions x : �1 → A and y : �1 → B are defined by the formulas

x(k) := (Z1,p � l �→ x̃k,l) and y(k) := ỹk, k ∈ Z1,n,

and the deviation criterion δ is defined by the formula (2.6). As a functional model F
of R we set

F := lin({hl : l ∈ Z0,p}),

where h0(v) := 1 and hl(v) := vl as l ∈ Z1,p, for every

v = (Z1,p � k �→ vk) ∈ R
p.

Then for each sequence of coefficients Z0,p � k �→ ak ∈ R, the function

f :=
p∑

l=0

akhk ∈ F ,

and by (6.13) we see that
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δ( f ◦ x, y) =
n∑

k=1

( f ◦ x(k) − y(k))2 =
n∑

k=1

( p∑

l=0

alhl ◦ x(k) − y(k)

)2

=
n∑

k=1

(
a0 +

p∑

l=1

ak x̃k,l − ỹk

)2

≥
n∑

k=1

(
â0 +

p∑

l=1

âk x̃k,l − ỹk

)2

=
n∑

k=1

( p∑

l=0

âl hl ◦ x(k) − y(k)

)2

=
n∑

k=1

(
f̂ ◦ x(k) − y(k)

)2

= δ( f̂ ◦ x, y),

where

f̂ :=
p∑

l=0

âkhk ∈ F .

Thus

f̂ ∈ Reg(F ,R)

iff Z0,p � k �→ âk ∈ R is the best choice of coefficients. This way the optimal
linear model (6.12) can be expressed by (p + 1)-dimensional regression functions
f̂ ∈ Reg(F ,R).

The next example deals in a very natural way with theoretical functional model F
supported by complex-valued functions.

Example 6.4 Assume that a point P runs along an elliptic trajectory with a constant
radial speed ω. We want to describe the trajectory by means of the location measure-
ments samples of the point P . It is quite convenient to use here the complex plane C,
because the elliptic trajectory has a simple representation

f (t) := a + beiωt + ce−iωt , t ∈ R, (6.14)

for certain a, b, c ∈ C. Consider an asynchronous regression structure of the form
R := (A, B, δ; x, y), where: A := R and B := C. As a functional model F of R we
set

F := lin({h0, h1, h2}),

where h0(t) := 1, h1(t) := eiωt and h2(t) := e−iωt for every t ∈ R. From (6.14) it
follows that the optimal trajectory is a 3-dimensional regression f ∈ Reg(F ,R). In
particular, if the deviation criterion δ is defined by the formula (2.6), then the optimal
trajectory f ∈ Reg(F ,R) is best fitted to the empirical data functions x : Z0,n → R

and y : Z0,n → C with respect to the classical square deviation. Note that a 2-
dimensional regression f ∈ Reg(F ′,R), where
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F ′ := lin({h0, h1}),

is the best chosen circular trajectory.

7 The synchronous regression structures

We have considered so far the asynchronous regression structures of the form R :=
(A, B, δ; x, y) where the empirical data functions x and y were depended on two
different parameters t1 and t2, respectively. In the other words the functions x and y
were defined asynchronously. The dependence between these functions was given by
a measure μ; see Example 6.1. In this section we define another type of regression
structures where, roughly speaking, the empirical data functions x and y depend on
one parameter t , i.e. they are defined synchronously. To be more precise, we consider
regression structures satisfying the following three conditions:

III.1 �1 = �2;

III.2 B = R or B = C;

III.3 There exist a σ -field A of subsets of the set � := �1 and a measure ν : A →
[0;+∞] such that the function δ satisfies the following equality

δ(u, v) =
∫

�

|u(t) − v(t)|2dν(t), (7.1)

provided the function |u − v| is A-measurable, and δ(u, v) = +∞, otherwise.

Then the regression problem forRmeans the extremal problem of determining all
functions f0 ∈ F minimising the functional F satisfying, according to (1.3) and (7.1),
the following equality

F( f ) =
∫

�

| f ◦ x(t) − y(t)|2dν(t), f ∈ F . (7.2)

Definition 7.1 Any regression structure R satisfying the conditions III.1, III.2 and
III.3 is said to be the synchronous regression structure; real synchronous regression
structure as B = R and complex synchronous regression structure as B = C.

Remark 7.2 The above type of regression structures corresponds to the classical
regression theory, where � := Z0,n for certain n ∈ N and the measure ν defined
on the family A of all subsets of � is such that ν({k}) = 1 for k ∈ �. Then by (7.2),

∫

�

| f ◦ x(t) − y(t)|2dν(t) =
n∑

k=0

| f (xk) − yk |2, (7.3)

where xk := x(k) and yk := y(k) for k ∈ �. Thus the deviation criterion δ coincides
with the classical quadratic deviation.
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Analyzing our considerations from the previous sections it is easy to see that we
could develop, inmuch the sameway, an adequate theory of the synchronous regression
structures. However, we will handle this case in a different, more interesting manner.
We will show that, in fact, all the properties of the regression functions with respect
to the synchronous regression structure R can be derived from those with respect
to certain asynchronous regression structure R∗ associated with R. Therefore the
regression theory for asynchronous regression structures, embraces in this sense the
one for synchronous regression structures.

In the discrete case described inRemark7.2wecan easily associate an asynchronous
regression structure considered in Example 2.2 by putting (2.5). Then (2.6) yields
(7.1). Therefore in such a case synchronous regression structures can be treated as a
special case of asynchronous regression structures where the measure μ is focused
to the diagonal of �1 × �2. Therefore this method of reduction of asynchronous
regression structure to synchronous regression structure will be called the diagonal
method. It is possible to find a variant of the diagonal method in the non-discrete
case as well, but it is more difficult task. We will handle this problem in what follows
now.

First of all we recall the following, useful in the sequel, fact; cf. e.g. [2, Thm.
1.6.12].

Lemma 7.3 For every measurable space (�,A, μ) and every function ϕ : � → �′,
the structure (�′,Aϕ, μϕ) is also a measurable space, where

Aϕ := {S ∈ 2�′ : ϕ−1(S) ∈ A} and μϕ(S) := μ(ϕ−1(S)), S ∈ Aϕ.

Moreover, for every Aϕ-measurable function h : �′ → C,

h ∈ L1(�′,Aϕ, μϕ) ⇐⇒ h ◦ ϕ ∈ L1(�,A, μ)

as well as
∫

ϕ(�)

hdμϕ =
∫

�

h ◦ ϕdμ, h ∈ L1(�′,Aϕ, μϕ). (7.4)

Consider a synchronous regression structureR = (A, B, η; x, y), where the devi-
ation criterion η satisfies the equality (7.1) instead of δ for a given measurable space
(�,A, ν). LetA⊗A be the smallest σ -field containing all setsU ×V forU, V ∈ A.
It is evident that

� � t �→ φ(t) := (t, t)

is an injective mapping of � onto the diagonal D := {(t, t) : t ∈ �}.
Lemma 7.4 The set

B := {S0 ∪ (S1 ∩ D) ∪ (S2 ∩ D′) : S0, S1, S2 ∈ A ⊗ A}, (7.5)
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where D′ := (� × �)\D, is the smallest σ -field in � × � such that

A ⊗ A ∪ {D} ⊂ B. (7.6)

Moreover,

{φ−1(S ∩ D) : S ∈ B} = A (7.7)

and for every set S ⊂ � the implication

(S × � ∈ B or � × S ∈ B) �⇒ S ∈ A (7.8)

holds.

Proof We show first that B is a σ -field in � × �. Given a sequence N � k �→ Sk ∈ B
we deduce from (7.5) that there exist sequences

N � k �→ S′
k ∈ A ⊗ A, N � k �→ S′′

k ∈ A ⊗ A

and

N � k �→ S′′′
k ∈ A ⊗ A

such that

Sk = S′
k ∪ (S′′

k ∩ D) ∪ (S′′′
k ∩ D′), k ∈ N. (7.9)

Since

S′ :=
∞⋃

k=1

S′
k ∈ A ⊗ A, S′′ :=

∞⋃

k=1

S′′
k ∈ A ⊗ A and S′′′ :=

∞⋃

k=1

S′′′
k ∈ A ⊗ A,

we can see by (7.5) that

∞⋃

k=1

Sk =
∞⋃

k=1

[S′
k ∪ (S′′

k ∩ D) ∪ (S′′′
k ∩ D′)]

=
∞⋃

k=1

S′
k ∪

(
D ∩

∞⋃

k=1

S′′
k

)
∪
(
D′ ∩

∞⋃

k=1

S′′′
k

)

= S′ ∪ (S′′ ∩ D) ∪ (S′′′ ∩ D′) ∈ B.

Fix now S ∈ B. Then

S = S′ ∪ (S′′ ∩ D) ∪ (S′′′ ∩ D′)
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for some S′, S′′, S′′′ ∈ A ⊗ A. Since

S0 := (� × �\S′) ∩ (� × �\S′′) ∩ (� × �\S′′′) ∈ A ⊗ A,

S1 := (� × �\S′) ∩ (� × �\S′′) ∈ A ⊗ A,

S2 := (� × �\S′) ∩ (� × �\S′′′) ∈ A ⊗ A,

we deduce from (7.5) that

� × �\S = � × �\[S′ ∪ (S′′ ∩ D) ∪ (S′′′ ∩ D′)]
= [� × �\S′] ∩ [� × �\(S′′ ∩ D)] ∩ [� × �\(S′′′ ∩ D′)]
= [� × �\S′] ∩ [(� × �\S′′) ∪ D′)] ∩ [(� × �\S′′′) ∪ D)]
= S0 ∪ (S1 ∩ D) ∪ (S2 ∩ D′) ∈ B.

Thus we have showed that B is a σ -field in � × �. Moreover,

∅ ∈ A ⊗ A and � × � ∈ A ⊗ A,

which shows that

D = ∅ ∪ (� × � ∩ D) ∪ (∅ ∩ D′) ∈ B

and

S = S ∪ (∅ ∩ D) ∪ (∅ ∩ D′) ∈ B,

as S ∈ A ⊗ A, and so the inclusion (7.6) holds.
Suppose now that B′ is a σ -field in � × � satisfying (7.6) with B replaced by B′.

Then D′ ∈ B′. From (7.5) we conclude that each S ∈ B satisfies the equality

S = S′ ∪ (S′′ ∩ D) ∪ (S′′′ ∩ D′)

for some S′, S′′, S′′′ ∈ A ⊗ A. Since A ⊗ A ⊂ B′, it follows that S ∈ B′, and so
B ⊂ B′. Thus B is the smallest σ -field in � × � containing the diagonal D and the
family A ⊗ A.

For the proof of the equality (7.7) we consider the family

Aφ := {S ∈ 2�×� : φ−1(S ∩ D) ∈ A}. (7.10)

Then for every sequence N � n �→ Sn ∈ Aφ ,
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φ−1

(
D ∩

∞⋃

n=1

Sn

)
=

∞⋃

n=1

φ−1(D ∩ Sn) ∈ A,

and so
⋃∞

n=1 Sn ∈ Aφ . Furthermore, for every S ∈ Aφ ,

φ−1((� × �\S) ∩ D) = φ−1(� × � ∩ D)\φ−1(S ∩ D) = �\φ−1(S ∩ D) ∈ A,

and consequently,

� × �\S ∈ Aφ.

Thus Aφ is a σ -field in � × �. Since

(U × V ) ∩ D = φ(U ∩ V ), U, V ∈ A, (7.11)

we see that for all U, V ∈ A,

φ−1((U × V ) ∩ D) = U ∩ V ∈ A,

and therefore U × V ∈ Aφ . Hence

A ⊗ A ⊂ Aφ, (7.12)

becauseA⊗A is the smallest σ -field in�×� containing the setA×A. Furthermore,

φ−1(D ∩ D) = φ−1(D) = �,

and so D ∈ Aφ . This, together with (7.12), yields the inclusion (7.6) with B replaced
byAφ . Therefore B ⊂ Aφ , because B is the smallest σ -field in � × � containing the
set A ⊗ A ∪ {D}. Then by (7.10) we obtain

{φ−1(S ∩ D) : S ∈ B} ⊂ A. (7.13)

On the other hand side, S × S ∈ B for any S ∈ A. From (7.11) it folows that

φ−1(S × S ∩ D) = φ−1(φ(S ∩ S)) = S, S ∈ A.

Therefore the inverse inclusion to that in (7.13), and consequently, the equality (7.7)
holds.

It remains to prove the implication (7.8). To this end fix a set S ⊂ �. If S×� ∈ B,
then from (7.11) and (7.7) we obtain

S = φ−1(φ(S ∩ �)) = φ−1(S × � ∩ D) ∈ A,
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which yields the implication

S × � ∈ B �⇒ S ∈ A.

In the same manner we can see that

� × S ∈ B �⇒ S ∈ A.

Both the implications lead to (7.8), which completes the proof. ��
Lemma 7.5 The function

B � S �→ μ(S) := ν(φ−1(S ∩ D)) (7.14)

is well defined, the structure (� × �,B, μ) is a measurable space and

μ(� × �\D) = 0. (7.15)

Proof Since ν is a measure on the σ -field A, we deduce from (7.7) that μ : B → R

is a well defined function. Let N � k �→ Sk ∈ B be a sequence of pairwise disjoint
sets. Then for all k, l ∈ N, k �= l, we have

(Sk ∩ D) ∩ (Sl ∩ D) = (Sk ∩ Sl) ∩ D = ∅ ∩ D = ∅.

Thus

N � k �→ Sk ∩ D

is a sequence of pairwise disjoint sets. Since ν is a measure on the σ -field A, we
deduce from (7.14) and (7.7) that

μ

( ∞⋃

k=1

Sk

)
= ν

(
φ−1

(
D ∩

∞⋃

k=1

Sk

))
= ν

( ∞⋃

k=1

φ−1(D ∩ Sk)

)

=
∞∑

k=1

ν(φ−1(D ∩ Sk)) =
∞∑

k=1

μ(Sk).

Moreover, the following properties hold

μ(S) = ν(φ−1(S ∩ D)) ≥ 0, S ∈ B;
μ(∅) = ν(φ−1(∅ ∩ D)) = ν(∅) = 0;

μ(� × �\D) = ν(φ−1((� × �\D) ∩ D)) = ν(∅) = 0.

Thus μ is a measure on the σ -field B and the equality (7.15) holds. ��
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Lemma 7.6 Given any functions h : � → B and H : � × � → B suppose that one
of the following conditions hold:

(i) H(t1, t2) = h(t1) for t1, t2 ∈ �;
(ii) H(t1, t2) = h(t2) for t1, t2 ∈ �;
(iii) H ◦ φ(t) = h(t) for t ∈ � and H is B-measurable.
Then

h ∈ L1(�,A, ν) ⇐⇒ H ∈ L1(� × �,B, μ). (7.16)

Moreover, if h ∈ L1(�,A, ν), then

∫

�

hdν =
∫

�×�

Hdμ. (7.17)

Proof We prove first this lemma in the case where h is a simple function, i.e. h is a
A-measurable functionwith finite set of values. Then there exists n ∈ N and sequences
Z1,n � k �→ λk ∈ B and Z1,n � k �→ Vk ∈ A such that

n⋃

k=1

Vk = �,

whereas

Vk ∩ Vl = ∅

provided k �= l. Moreover,

h =
n∑

k=1

λk IVk . (7.18)

Here and subsequently, IV stands for the characteristic function of a set

V ⊂ � ∪ � × �,

i.e. IV (t) := 1 for t ∈ V and IV (t) := 0 otherwise.
Assume that the condition (i) holds. Then by (7.18),

H =
n∑

k=1

λk IVk×� .

Therefore by (7.18), (7.14) and the properties of Lebesgue’s integral we deduce that
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∫

�

|h|dν =
∫

�

n∑

k=1

|λk | IVk dν =
n∑

k=1

|λk |
∫

�

IVk dν

=
n∑

k=1

|λk |ν(Vk) =
n∑

k=1

|λk |ν(φ−1(Vk × � ∩ D))

=
n∑

k=1

|λk |μ(Vk × �) =
n∑

k=1

|λk |
∫

�×�

IVk×� dμ

=
∫

�×�

n∑

k=1

|λk | IVk×� dμ =
∫

�×�

|H |dμ. (7.19)

This shows, by Lemma 7.4, that the condition (i) implies (7.16). In the much similar
way we show that the condition (ii) also implies (7.16). If h ∈ L1(�,A, ν), then

n∑

k=1

|λk |ν(Vk) < +∞,

and consequently, ν(Vk) < +∞ provided |λk | > 0 as k ∈ Z1,n . Replacing |h| by h
in (7.19) we derive the equality (7.17) in the case where h is a simple function. Using
now the standard approximation technique for integrable functions by the simple ones
we extend the implications (i) �⇒ (7.16) and (ii) �⇒ (7.16) as well as the equality
(7.17) to the general case of arbitrary functions h : � → B and H : � × � → B; for
details cf. e.g. [2, Sec. 1.6].

Assume now that the condition (iii) holds. From (7.15) it follows that

∫

�×�\D
|H |dμ = 0, (7.20)

and so H is integrable on�×� iff it is integrable on the diagonal D. Since H ◦φ = h,
we conclude from Lemma 7.3 that H is integrable on D iff h ∈ L1(�,A, ν). Thus
the condition (iii) implies (7.16). Furthermore, if h ∈ L1(�,A, ν), then from (7.7),
(7.14), (7.20) and Lemma 7.3 it follows that

∫

�

hdν =
∫

�

H ◦ φdν =
∫

D
Hdνφ

=
∫

D
Hdμ +

∫

�×�\D
Hdμ =

∫

�×�

Hdμ.

This gives (7.17), and the proof is complete. ��
We are now in a position to show the fundamental result in this section.

Theorem 7.7 Suppose that a measurable space (�,A, ν) determines a synchronous
regression structureR = (A, B, η; x, y). Then the measurable space (� × �,B, μ),
defined in Lemma 7.5, determines an asynchronous regression structure R∗ =
(A, B, δ; x, y), and the following properties hold:
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(i) L1(R
∗) = L2(A,Ax , νx ) and

〈h|g〉 = 〈h|g〉νx = 〈h ◦ x |g ◦ x〉ν , h, g ∈ L1(R
∗); (7.21)

‖h‖ = ‖h‖νx = ‖h ◦ x‖ν, h ∈ L1(R
∗); (7.22)

(ii) L2(R
∗) = L2(B,Ay, νy) and

g∗(h) = g∗
ν (h) :=

∫

�

(h ◦ x)(g ◦ y)dν, h ∈ L1(R
∗), g ∈ L2(R

∗); (7.23)

(iii) δ(u, v) = η(u, v) for all A-measurable functions u, v : � → B.

Moreover, for each g ∈ L2(R
∗) and any nonempty linear set F ⊂ L1(R

∗),

Reg(F ,Rg) = Reg(F ,R∗
g). (7.24)

Proof Applying the implication (i) �⇒ (7.16) from Lemma 7.6 with h replaced by
|h|2 we get

L1(R
∗) = L2(A,Ax , νx ).

Given h, g ∈ L2(A,Ax , νx ) we conclude from (2.10) that

hg ∈ L1(A,Ax , νx ).

Then Lemma 7.3 shows that

(hg) ◦ x ∈ L1(�,A, ν)

and

〈h ◦ x |g ◦ x〉ν =
∫

�

(hg) ◦ xdν =
∫

x(�)

hgdνx =
∫

A
hgdνx = 〈h|g〉νx . (7.25)

Setting

H(t1, t2) := (hg) ◦ x(t1) for all t1, t2 ∈ �

we see by the implication (i) �⇒ (7.16) from Lemma 7.6 that

H ∈ L1(� × �,B, μ).

From (7.17) it follows that

〈h|g〉 =
∫

�×�

h ◦ x(t1)g ◦ x(t1)dμ(t1, t2) =
∫

�×�

Hdμ =
∫

�

(hg) ◦ xdν,
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which together with (7.25) yields (7.21). By this we have

‖h‖2 = 〈h|h〉 = 〈h|h〉νx = ‖h‖2νx ,

and

〈h|h〉νx = 〈h ◦ x |h ◦ x〉ν = ‖h ◦ x‖2ν,

so (7.22) is proved.
Applying the implication (ii) �⇒ (7.16) from Lemma 7.6 with h replaced by |h|2

we get

L2(R
∗) = L2(B,Ay, νy).

Fix h ∈ L2(A,Ax , νx ) and g ∈ L2(B,Ay, νy). Then

h ◦ x, g ◦ y ∈ L2(�,A, ν),

and by (2.10) we see that

(h ◦ x)(g ◦ y) ∈ L1(�,A, ν).

Setting

H(t1, t2) := (h ◦ x(t1))(g ◦ y(t2)), t1, t2 ∈ �,

we see, by the implication (ii) �⇒ (7.16) from Lemma 7.6, that

H ∈ L1(� × �,B, μ).

Then, by the implication (iii)�⇒ (7.16) from Lemma 7.6, we see that

H ◦ φ ∈ L1(�,A, ν),

and (7.17) leads to

g∗(h) =
∫

�×�

Hdμ =
∫

�

H ◦ φdν =
∫

�

(h ◦ x)(g ◦ y)dν = g∗
ν (h),

which proves (7.23).
Fix A-measurable functions u, v : � → B. Then the function

� × � � (t1, t2) �→ H(t1, t2) := |u(t1) − v(t2)|2
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isB-measurable, and by the implication (iii)�⇒ (7.16) from Lemma 7.6, we conclude
that

H ◦ φ ∈ L1(�,A, ν)

iff H ∈ L1(� × �,B, μ). If H ∈ L1(� × �,B, μ), then (7.17) leads to

δ(u, v) =
∫

�×�

Hdμ =
∫

�

H ◦ φdν =
∫

�

|u − v|2dν = η(u, v),

and the equality δ(u, v) = η(u, v) holds. Otherwise δ(u, v) = +∞ and η(u, v) =
+∞. Thus the property (iii) is proved.

Consider nowany g ∈ L2(R
∗) and any nonempty linear setF ⊂ L1(R

∗). Applying
the property (iii) we see that for each f0 ∈ Reg(F ,R∗

g),

η( f ◦ x, g ◦ y) = δ( f ◦ x, g ◦ y) ≥ δ( f0 ◦ x, g ◦ y) = η( f0 ◦ x, g ◦ y), f ∈ F ,

and so

f0 ∈ Reg(F ,Rg).

Thus

Reg(F ,R∗
g) ⊂ Reg(F ,Rg).

In the same manner we can show that

Reg(F ,Rg) ⊂ Reg(F ,R∗
g).

Both the inclusions yield the equality (7.24), which completes the proof. ��
As an application of Theorem 7.7 we will show the following counterpart of Corol-

lary 5.3 for synchronous regression structures.

Corollary 7.8 Let R = (A, B, η; x, y) be a synchronous regression structure deter-
mined by ameasurable space (�,A, ν)and let g ∈ L2(B,Ay, νy). Given p ∈ N∪{∞}
suppose that Z1,p � k �→ hk ∈ L2(A,Ax , νx ) is a linearly independent sequence
such that 
νx ∩ F = {θ}, where F := lin({hk : k ∈ Z1,p}) and


νx := {h ∈ L2(A,Ax , νx ) : ‖h‖νx = 0}. (7.26)

Moreover, the sequence

Z1,p � k �→ h′
k ∈ L1(R)

is its orthogonalization result by virtue of the Gramm-Schmidt recursive method, i.e.
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h′
1 := h1 and h′

n := hn −
n−1∑

k=1

〈
hn|h′

k

〉
νx

‖h′
k‖2νx

h′
k, n ∈ Z2,p. (7.27)

If p ∈ N, then

Reg(F ,Rg) = (
νx ∩ F) +
p∑

k=1

g∗
ν (h′

k)

‖h′
k‖2νx

h′
k . (7.28)

If p = ∞, then

Reg(clνx (F),Rg) = 
νx +
∞∑

k=1

g∗
ν (h′

k)

‖h′
k‖2νx

h′
k, (7.29)

where clνx stands for the closure operation in the space L2(A,Ax , νx ).

Proof Given a measurable space (�,A, ν) assume that it determines a synchronous
regression structureR = (A, B, η; x, y). ThenTheorem7.7 shows that themeasurable
space (� × �,B, μ), defined in Lemma 7.5, determines an asynchronous regression
structure R∗ = (A, B, δ; x, y). From the property (i) in Theorem 7.7 and (7.26) it
follows that


νx = {h ∈ L1(R
∗) : ‖h‖ = 0} = 
 (7.30)

as well as

clνx (F) = cl(F). (7.31)

Moreover, combining (7.27) with (7.21) and (7.22) we obtain

h′
n := hn −

n−1∑

k=1

〈
hn|h′

k

〉

‖h′
k‖2

h′
k, n ∈ Z2,p,

and so the equality (5.19) holds. If p ∈ N, then by Corollary 5.3 the equality (5.20)
holds with R replaced by R∗. This together with (7.30), (7.21), (7.22), (7.23) and
(7.24) yields the equality (7.28). If p = ∞, then by Corollary 5.3 the equality (5.21)
holds with R replaced by R∗. This together with (7.30), (7.31), (7.21), (7.22), (7.23)
and (7.24) yields the equality (7.29), which completes the proof. ��
Remark 7.9 Analysing the proof of Corollary 7.8 we see that this corollary is a direct
conclusion fromCorollary 5.3 and Theorem 7.7. Applying Theorem 7.7wemay easily
derive, in much the same way as in the proof of Corollary 7.8, the other properties of
the synchronous regression structures, being the respective counterparts properties of
the asynchronous regression structures, presented in Sects. 3, 4 and 5. To this end we
need an additional fact that the orthogonality condition in the space H(R∗) coincides
with the one in the space L2(A,Ax , νx ), which is a direct consequence from (7.21).
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8 Remarks on approximation

In this section we will point out that the synchronous regression structures can be
applicable in the theory of approximation. To this end let R = (A, B, η; x, y) be a
synchronous regression structure determined by a measurable space (�,A, ν), where
A = B = � and x, y are the identity mapping on B. Then νx = νy = ν, and thereby

L2(B,Ay, νy) = L2(A,Ax , νx ) = L2(B,A, ν).

Let us consider a sequence

N � k �→ hk ∈ L2(B,A, ν)

and fix g ∈ L2(B,A, ν). From Corollary 3.5 and Theorem 7.7 it follows that

Reg(Fn,Rg) �= ∅

for every n ∈ N, where Fn := lin({hk : k ∈ Z1,n}) as n ∈ N. Therefore there exits a
sequence

N � n �→ fn ∈ Reg(Fn,Rg),

which can approximate the function g, as stated in the following theorem.

Theorem 8.1 For all f, g ∈ L2(B,A, ν) and N � n �→ fn ∈ Reg(Fn,Rg), if
f ∈ Reg(clν(F),Rg), then

‖ f − fn‖ν → 0 and ‖g − fn‖ν → ‖g − f ‖ν as n → ∞, (8.1)

where F := lin({hk : k ∈ N}). In particular, if g ∈ clν(F), then

g ∈ Reg(clν(F),Rg)

and

‖g − fn‖ν → 0 as n → ∞. (8.2)

Proof Assume that f ∈ Reg(clν(F),Rg) is arbitrarily fixed. By the definition of the
regression function,

‖h − g‖2ν = η(h, g) ≥ η( f, g) = ‖ f − g‖2ν, h ∈ clν(F),

and consequently,

‖ f − g‖ν = min({‖h − g‖ν : h ∈ clν(F)}). (8.3)
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Hence f is an orthogonal projection of g onto the linear and closed set clν(F) in the
space L2(B,A, ν), and so

〈 f − g|h〉ν = 0, h ∈ clν(F). (8.4)

Since

f ∈ Reg(clν(F),Rg)

and F = ⋃∞
n=1 Fn , we see that there exists a sequence

N � n �→ f ′
n ∈ Fn

satisfying the following property

‖ f − f ′
n‖ν → 0 as n → ∞. (8.5)

By assumption, fn ∈ Reg(Fn,Rg) for n ∈ N, and therefore

‖ f ′
n − g‖2ν = η( f ′

n, g) ≥ η( fn, g) = ‖ fn − g‖2ν, n ∈ N. (8.6)

From (8.4) it follows that

〈g − f | f − fn〉ν = 0 and
〈
g − f | f − f ′

n

〉
ν

= 0, n ∈ N. (8.7)

Combining this with (8.6) we see that for every n ∈ N,

‖g − f ‖2ν + ‖ f − fn‖2ν = ‖g − f ‖2ν + 2Re 〈g − f | f − fn〉ν + ‖ f − fn‖2ν
= ‖g − fn‖2ν ≤ ‖g − f ′

n‖2ν
= ‖g − f ‖2ν + 2Re

〈
g − f | f − f ′

n

〉
ν

+ ‖ f − f ′
n‖2ν

= ‖g − f ‖2ν + ‖ f − f ′
n‖2ν .

From this and (8.5) we conclude that

‖ f − fn‖ν ≤ ‖ f − f ′
n‖ν → 0 as n → ∞.

Hence and by (8.7) we have

‖g − fn‖2ν = ‖g − f ‖2ν + ‖ f − fn‖2ν → ‖g − f ‖2ν as n → ∞.

Both the limits yield (8.1). If now g ∈ clν(F), then by

η(h, g) ≥ 0 = η(g, g), h ∈ clν(F),

we deduce that
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g ∈ Reg(clν(F),Rg),

and (8.1) leads to (8.2), which completes the proof. ��
The following example illustrates how to apply synchronous regression structures

in the theory of approximation.

Example 8.2 Let N � k �→ hk ∈ L2(B,A, ν) be an orthogonal sequence in the space
L2(B,A, ν) such that ‖hk‖ν > 0 for k ∈ N. Then for every g ∈ L2(B,A, ν),

∥∥∥ f −
n∑

k=1

〈g|hk〉ν
‖hk‖2ν

hk
∥∥∥ → 0 as n → ∞, (8.8)

where f is an orthogonal projection of g onto clν(F) in the space L2(B,A, ν) and
F := lin({hk : k ∈ N}). Moreover, the following Bessel equality holds:

∞∑

k=1

| 〈g|hk〉ν |2
‖hk‖2ν

= ‖g‖2ν − ‖g − f ‖2ν . (8.9)

Namely, let f be an orthogonal projection of g onto clν(F) in the space L2(B,A, ν).
Then

η(h, g) = ‖h − g‖2ν ≥ ‖ f − g‖2ν = η( f, g), h ∈ clν(F),

and consequently,

f ∈ Reg(clν(F),Rg).

From Corollary 7.8 it follows that

fn :=
n∑

k=1

〈g|hk〉ν
‖hk‖2ν

hk ∈ Reg(Fn,Rg), n ∈ N. (8.10)

Then Theorem 8.1 yields (8.8). From (8.8) it follows that

|‖ f ‖2ν − ‖ fn‖2ν | = (‖ f ‖ν + ‖ fn‖ν)|‖ f ‖ν − ‖ fn‖ν |
≤ (‖ f ‖ν + ‖ fn‖ν)‖ f − fn‖ν → 0 as n → ∞. (8.11)

Since f is an orthogonal projection of g onto clν(F) in the space L2(B,A, ν), the
equality (8.4) holds, and consequently

‖g‖2ν = ‖g − f ‖2ν + 2Re 〈g − f | f 〉ν + ‖ f ‖2ν = ‖g − f ‖2ν + ‖ f ‖2ν . (8.12)
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By the orthogonality of the sequence N � k �→ hk , we deduce from (8.10) that

‖ fn‖2ν =
n∑

k=1

n∑

l=1

〈g|hk〉ν
‖hk‖2ν

〈g|hl〉ν
‖hl‖2ν

〈hk |hl〉ν =
n∑

k=1

| 〈g|hk〉ν |2
‖hk‖2ν

, n ∈ N.

Combining this with (8.11) and (8.12) we get (8.9).

9 The regression in probabilistic spaces

Regression functions are very often used in the context of the probability theory. Note
that this case corresponds to a synchronous regression structure

R = (A, B, η; x, y)

determined by a probability space (�,A, P), where ν = P , A = B and x, y : � → B
are random variables, i.e. they are A-measurable. Therefore all the facts discussed in
Sect. 7 are still valid, in particular, in the probabilistic case. In this section we rewrite
formulas (7.28) and (7.29) in terms of—specific for the probability theory—expected
values of random variables and distribution functions.

First we note that usually instead of the probability measure P the distribution
function Px,y generated by P and random variables x and y is considered. We recall
that Px,y is the unique probability measure on the σ -field B(B) ⊗ B(B) satisfying
the following condition

Px,y(U × V ) = P(x−1(U ) ∩ y−1(V )), U, V ∈ B(B). (9.1)

Here and in the sequel, B(B) denotes the σ -field of Borel sets in B. Thus our main
task is to describe regression functions by means of the probability space

(B × B,B(B) ⊗ B(B), Px,y).

Lemma 9.1 For any Borel functions g, h : B → B, (g ◦ x)(h ◦ y) ∈ L1(�,A, P) iff
the function

B × B � (t1, t2) �→ g(t1)h(t2)

is integrable with respect to the distribution function Px,y . Moreover, if

(g ◦ x)(h ◦ y) ∈ L1(�,A, P),

then

∫

�

(g ◦ x)(h ◦ y)dP =
∫

B×B
g(t1)h(t2)dPx,y(t1, t2). (9.2)
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Proof We first prove this lemma in the case where g and h are simple Borel functions,
i.e.

g =
n∑

k=1

λk IUk and h =
m∑

k=1

μk IVk

for certain n,m ∈ N and sequences

Z1,n � k �→ λk ∈ B, Z1,m � k �→ μk ∈ B,

Z1,n � k �→ Uk ∈ B(B), Z1,m � k �→ Vk ∈ B(B)

such that

n⋃

k=1

Uk = B,

m⋃

k=1

Vk = B and Uk ∩Ul = ∅ = Vk ∩ Vl

provided k �= l. Then

g ◦ x =
n∑

k=1

λk Ix−1(Uk )
and h ◦ y =

m∑

k=1

μk Iy−1(Vk ),

and consequently

∫

�

(g ◦ x)(h ◦ y)dP =
∫

�

( n∑

k=1

λk Ix−1(Uk )

m∑

l=1

μl Iy−1(Vl )

)
dP (9.3)

=
∫

�

n∑

k=1

m∑

l=1

λkμl Ix−1(Uk )
Iy−1(Vl ) dP

=
n∑

k=1

m∑

l=1

λkμl

∫

�

Ix−1(Uk )∩y−1(Vl ) dP.

From (9.1) it follows that

∫

B×B
IUk×Vl (t1, t2)dPx,y(t1, t2) = Px,y(Uk × Vl) = P(x−1(Uk) ∩ y−1(Vl))

=
∫

�

Ix−1(Uk )∩y−1(Vl ) dP.
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Combining this with (9.3) we deduce that

∫

B×B
g(t1)h(t2)dPx,y(t1, t2) =

∫

B×B

n∑

k=1

m∑

l=1

λkμl IUk (t1) IVl (t2)dPx,y(t1, t2)

=
n∑

k=1

m∑

l=1

λkμl

∫

B×B
IUk×Vl (t1, t2)dPx,y(t1, t2)

=
∫

�

(g ◦ x)(h ◦ y)dP,

and so the lemma holds for any simple Borel functions g and h.
Assume now that g, h : B → B are anyBorel functions. Then there exist sequences

N � n �→ gn and N � n �→ hn

of simple Borel functions such that

|gn(t)| ≤ |g(t)| and |hn(t)| ≤ |h(t)|, t ∈ B, n ∈ N, (9.4)

as well as for every t ∈ B,

gn(t) → g(t) and hn(t) → h(t) as n → ∞. (9.5)

By the already proved equality (9.2) for simple Borel functions we see that the equal-
ities

∫

�

(gn ◦ x)(hn ◦ y)dP =
∫

B×B
gn(t1)hn(t2)dPx,y(t1, t2) (9.6)

as well as
∫

�

|(gn ◦ x)(hn ◦ y)|dP =
∫

B×B
|gn(t1)hn(t2)|dPx,y(t1, t2) (9.7)

hold for every n ∈ N. Assume that

(g ◦ x)(h ◦ y) ∈ L1(�,A, P).

Since each function

B × B � (t1, t2) �→ |gn(t1)hn(t2)|

isB(B)⊗B(B)-measurable we conclude from (9.5) that the pointwise limit function

B × B � (t1, t2) �→ |g(t1)h(t2)|
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is also B(B) ⊗ B(B)-measurable. Applying now Fatou’s integral lemma, (9.7) and
(9.4) we have

∫

B×B
|g(t1)h(t2)|dPx,y(t1, t2) =

∫

B×B
lim inf
n→∞ |gn(t1)hn(t2)|dPx,y

≤ lim inf
n→∞

∫

B×B
|gn(t1)hn(t2)|dPx,y(t1, t2)

= lim inf
n→∞

∫

�

|(gn ◦ x)(hn ◦ y)|dP

≤
∫

�

|(g ◦ x)(h ◦ y)|dP < +∞.

This means that the function

B × B � (t1, t2) �→ g(t1)h(t2)

is integrable with respect to the distribution function Px,y , provided

(g ◦ x)(h ◦ y) ∈ L1(�,A, P).

In much the same way we can justify the inverse implication.
It remains to show the equality (9.2), provided

(g ◦ x)(h ◦ y) ∈ L1(�,A, P).

The last condition implies

∫

B×B
|g(t1)h(t2)|dPx,y(t1, t2) < +∞.

Applying now Lebesgue’s dominated limiting integral theorem we conclude from
(9.4), (9.5) and (9.6) that

∫

�

(g ◦ x)(h ◦ y)dP = lim
n→∞

∫

�

(gn ◦ x)(hn ◦ y)dP

= lim
n→∞

∫

B×B
gn(t1)hn(t2)dPx,y(t1, t2)

=
∫

B×B
g(t1)h(t2)dPx,y(t1, t2),

which is the desired conclusion. ��
Since our structure R is a synchronous regression structure we can use directly

Corollary 7.8 in order to compute the regression functions. However, from the practical
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point of view it seems to be more convenient to compute the ones in terms of the
distribution function Px,y . To this end we introduce the following two functions:

( f, h) �→ Ex,x ( f |h) := E(( f ◦ x)(h ◦ x))

E(|h ◦ x |2) (9.8)

as well as

(g, h) �→ Ey,x (g|h) := E((g ◦ y)(h ◦ x))

E(|h ◦ x |2) (9.9)

for f ∈ L2(B,Ax , Px ), g ∈ L2(B,Ay, Py) and h ∈ L2(B,Ax , Px )\
Px , where E is
the expected value operator for the probability space (�,A, P), i.e.

E( f ) :=
∫

�

f dP, f ∈ L1(�,A, P). (9.10)

By Lemma 9.1 we obtain

Ex,x ( f |h) =
∫
B×B f (t1)h(t1)dPx,y(t1, t2)∫
B×B |h(t1)|2dPx,y(t1, t2) (9.11)

and

Ey,x (g|h) =
∫
B×B g(t2)h(t1)dPx,y(t1, t2)∫
B×B |h(t1)|2dPx,y(t1, t2) (9.12)

for all f ∈ L2(B,B(B), Px ), g ∈ L2(B,B(B), Py) and h ∈ L2(B,B(B), Px )\
Px .

Corollary 9.2 Let R = (B, B, η; x, y) be a synchronous regression structure deter-
mined by a probabilistic space (�,A, P) and let g ∈ L2(B,B(B), Py). Given
p ∈ N ∪ {∞} suppose that

Z1,p � k �→ hk ∈ L2(B,B(B), Px )

is a linearly independent sequence such that


Px ∩ F = {θ},
where F := lin({hk : k ∈ Z1,p}), and the sequence

Z1,p � k �→ h′
k ∈ L1(R)

is defined as follows

h′
1 := h1 and h′

n := hn −
n−1∑

k=1

Ex,x (hn|h′
k)h

′
k, n ∈ Z2,p. (9.13)
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If p ∈ N, then

Reg(F ,Rg) = (
Px ∩ F) +
p∑

k=1

Ey,x (g|h′
k)h

′
k . (9.14)

If p = ∞, then

Reg(clPx (F),Rg) = 
Px +
∞∑

k=1

Ey,x (g|h′
k)h

′
k . (9.15)

Proof From Lemma 7.3 and (9.10) it follows that for all g, h ∈ L2(B,B(B), Px ),

〈g|h〉Px =
∫

B
ghdPx =

∫

�

(gh) ◦ xdP = E((g ◦ x)(h ◦ x)), (9.16)

and, in particular,

‖h‖2Px = 〈h|h〉Px = E(|h ◦ x |2). (9.17)

Combining (9.8) with (9.16) and (9.17) we obtain

Ex,x (g|h) = 〈g|h〉Px
‖h‖2Px

, (9.18)

as g ∈ L2(B,B(B), Px ), and h ∈ L2(B,B(B), Px )\
Px .

From (7.23) and (9.10) it may be concluded that for all g ∈ L2(B,B(B), Py) and
h ∈ L2(B,B(B), Px ),

g∗
P(h) =

∫

�

(h ◦ x)(g ◦ y)dP = E((h ◦ x)(g ◦ y)). (9.19)

Combining (9.9) with (9.19) and (9.17) we have

Ey,x (g|h) = g∗
P(h)

‖h‖2Px
, (9.20)

as g ∈ L2(B,B(B), Py), and h ∈ L2(B,B(B), Px )\
Px .
Using (9.18) and (9.19) we deduce from Corollary 7.8 that equalities (9.13), (9.14)

and (9.15) hold, which is the desired conclusion. ��
Remark 9.3 Note that if F ⊂ L(B,B(B)), then by Lemma 9.1,


Px ∩ F = {h ∈ L2(B,Ax , Px ) ∩ F : ‖h‖Px = 0}
= {h ∈ F :

∫

B×B
|h(t1)|2dPx,y(t1, t2) = 0}.
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