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Abstract. This is an expository paper in which we present some simple observations on the
stability of some inhomogeneous functional equations. In particular, we state several stability
results for the inhomogeneous Cauchy equation

f(x + y) = f(x) + f(y) + d(x, y)

and for the inhomogeneous forms of the Jensen and linear functional equations.
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1. Introduction

In this paper N, Z, Q, R and C denote the sets of positive integers, integers,
rationals, reals and complex numbers, respectively; N0 := N ∪ {0} and R+ :=
[0,∞).

Let us recall that the problem of stability of functional equations was moti-
vated by a question of Ulam asked in 1940 and an answer to it published by
Hyers in [21]. Since then numerous papers on this subject have been published
and we refer to [4,11,22,25–27] for more details, some discussions, further
references and examples of very recent results.

One of the most classical results, concerning the stability of the Cauchy
equation

f(x + y) = f(x) + f(y), (1.1)

can be stated as follows.
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Theorem 1.1. Let E1 and E2 be normed spaces and c ≥ 0 and p �= 1 be fixed
real numbers. Assume also that f : E1 → E2 is a mapping satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ E1 \ {0}. (1.2)

If p ≥ 0 and E2 is complete, then there exists a unique solution T : E1 → E2

of (1.1) such that

‖f(x) − T (x)‖ ≤ c‖x‖p

∣
∣2p−1 − 1

∣
∣
, x ∈ E1 \ {0}. (1.3)

If p < 0, then f is additive [i.e., it is a solution to (1.1)].

It is composed of the results in [1,8,20,21,29]. Also, it is known (see [20,22])
that for p = 1 an analogous result is not valid. Moreover, it has been proved
in [5] that estimation (1.3) is optimal (for E1 = E2 = R).

There arises a natural question whether analogous results can be proved
for the inhomogenous Cauchy equation

g(x + y) = g(x) + g(y) + d(x, y). (1.4)

The equation has drawn the attention of several authors and been studied
already for various spaces and forms of d in, e.g., [3,12–17,19,23,24].

In this expository paper we present some simple remarks motivated by that
issue. We believe that they are new and can be of some interest for researchers
investigating that field and related areas.

In particular, we show that the following result is valid.

Theorem 1.2. Let E1 and E2 be normed spaces, d : E2
1 → E2 and c, p ∈ R.

Assume that (1.4) admits a solution f0 : E1 → E2. Then the following three
statements are valid.
(a) If p ≥ 0, p �= 1, and E2 is complete, then for every f : E1 → E2, satisfying

‖f(x + y) − f(x) − f(y) − d(x, y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ E1 \ {0},

(1.5)

there exists a unique solution g : E1 → E2 of (1.4) such that

‖f(x) − g(x)‖ ≤ c‖x‖p

∣
∣2p−1 − 1

∣
∣
, x ∈ E1 \ {0}. (1.6)

Moreover, that estimation is optimal when E1 = R; namely there exists
a function f : R → E2 such that

‖f(x + y) − f(x) − f(y) − d(x, y)‖ ≤ c(|x|p + |y|p), x, y ∈ R,

‖f(x) − f0(x)‖ =
c|x|p

∣
∣2p−1 − 1

∣
∣
, x ∈ R. (1.7)

(b) If p < 0, then every f : E1 → E2 satisfying (1.5) is a solution of (1.4).
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(c) If E1 = E2 = R, then for each real c0 > 0 there is f : R → R such that

|f(x + y) − f(x) − f(y) − d(x, y)| ≤ c0(|x| + |y|), x, y ∈ R, (1.8)

and

sup
x∈R\{0}

|f(x) − h(x)|
|x| = ∞ (1.9)

for each solution h : R → R of (1.4).

The statement (c) shows that, in the case p = 1, Eq. (1.4) demonstrates an
analogous lack of stability as (1.1) (cf. [20,22]).

2. General observations

We start with some general observations. In what follows S is a nonempty set,
(X,+) is a commutative group, and we define a binary operation + in XS (the
family of all functions mapping S into X) in the usual way by: (f + g)(x) :=
f(x) + g(x) for f, g ∈ XS , x ∈ S. Clearly (XS ,+) is a group.

Let us introduce the following technical definition (2X stands for the family
of all subsets of X).

Definition 2.1. Let n ∈ N, P ⊂ Sn be nonempty, Φ : P → 2X \ {∅}, B ⊂ S,
Ψ : S \ B → 2X \ {∅}, F1,F2 be functions mapping D ⊂ XS into XP , and
U ⊂ D be nonempty. We say that the conditional equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn) ∈ P, (2.1)

is (Φ,Ψ) – stable in U provided for any ϕ0 ∈ U with

F1ϕ0(x1, . . . , xn) − F2ϕ0(x1, . . . , xn) ∈ Φ(x1, . . . , xn), (2.2)
(x1, . . . , xn) ∈ P,

there exists a solution ϕ ∈ D of Eq. (2.1) such that

ϕ0(x) − ϕ(x) ∈ Ψ(x), x ∈ S \ B. (2.3)

Moreover, if for every ϕ0 ∈ U , satisfying (2.2), there is exactly one solution
ϕ ∈ D of (2.1), fulfilling (2.3), then we say that Eq. (2.1) is (Φ,Ψ) — stable in
U with uniqueness.

If U = D, then we omit the part ‘in U ’ and simply say ‘(Φ,Ψ) – stable’.

Let n ∈ N, P ⊂ Sn be nonempty, U ⊂ D be two subgroups of the group
(XS ,+) and H : D → XP be additive, i.e.,

H(f + g)(x1, . . . , xn) = Hf(x1, . . . , xn) + Hg(x1, . . . , xn),
f, g ∈ D, (x1, . . . , xn) ∈ P.

We have the following (very simple, but very useful) observation.
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Theorem 2.2. Let B ⊂ S, Φ : P → 2X \ {∅}, Ψ : S \ B → 2X \ {∅} and
μ : P → X. Suppose that the equation

Hf(x1, . . . , xn) = μ(x1, . . . , xn), (x1, . . . , xn) ∈ P, (2.4)

admits a solution f0 ∈ U . Then the equation

Hf(x1, . . . , xn) = 0, (x1, . . . , xn) ∈ P, (2.5)

is (Φ,Ψ)–stable in U (with uniqueness) if and only if Eq. (2.4) is (Φ,Ψ)–stable
in U (with uniqueness).

Proof. Assume first that Eq. (2.4) is (Φ,Ψ)-stable in U . Let g ∈ U satisfy the
condition

Hg(x1, . . . , xn) ∈ Φ(x1, . . . , xn), (x1, . . . , xn) ∈ P. (2.6)

Write g0 := g + f0. Then g0 ∈ U and

Hg0(x1, . . . , xn) − μ(x1, . . . , xn) = Hg(x1, . . . , xn) ∈ Φ(x1, . . . , xn),
(x1, . . . , xn) ∈ P.

Hence, there exists a solution h0 ∈ D of Eq. (2.4) such that

g0(x) − h0(x) ∈ Ψ(x), x ∈ S \ B.

Clearly, h := h0 − f0 ∈ D is a solution to (2.5) and

g(x) − h(x) = g0(x) − h0(x) ∈ Ψ(x), x ∈ S \ B.

The proof of the necessary condition is analogous. But for the convenience
of readers, we present it below. So, assume that Eq. (2.5) is (Φ,Ψ)–stable in
U . Let g0 ∈ U satisfy

Hg0(x1, . . . , xn) − μ(x1, . . . , xn) ∈ Φ(x1, . . . , xn)

(x1, . . . , xn) ∈ P.
(2.7)

Write g := g0 − f0. Then

Hg(x1, . . . , xn) = Hg0(x1, . . . , xn) − μ(x1, . . . , xn) ∈ Φ(x1, . . . , xn),
(x1, . . . , xn) ∈ P.

Hence, there exists a solution h ∈ D of Eq. (2.5) such that

g(x) − h(x) ∈ Ψ(x), x ∈ S \ B.

Clearly, h0 := h + f0 is a solution to (2.4) and

g0(x) − h0(x) = g(x) − h(x) ∈ Ψ(x), x ∈ S \ B.

Assume now that Eq. (2.4) is (Φ,Ψ)-stable in U with uniqueness. Let g ∈ U
satisfy condition (2.6) and h, h′ ∈ D be solutions to (2.5) such that

g(x) − h(x), g(x) − h′(x) ∈ Ψ(x), x ∈ S \ B.
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Write g0 := g + f0, h0 := h + f0 and h′
0 := h′ + f0. Then (2.7) holds, h0 and

h′
0 are solutions to (2.4) and

g0(x) − h0(x), g0(x) − h′
0(x) ∈ Ψ(x), x ∈ S \ B.

Consequently, h0 = h′
0, whence h = h′. This completes the proof of the suffi-

cient condition concerning uniqueness.
The proof of the converse implication is analogous. �

Remark 2.3. Apparently, the assumption of Theorem 2.2 that Eq. (2.4) admits
a solution f0 ∈ U is quite natural at least in the case when U = D. Otherwise,
if (2.4) does not have any solution f0 ∈ D, then it seems that we can consider
it to be not stable, provided there exist some functions g0 ∈ U satisfying (2.7);
in such a case we could speak of trivial (Φ,Ψ)–nonstability. Clearly, without
this assumption, we could deduce from Theorem 2.2 that the existence of a
function g0 ∈ U satisfying (2.7) implies the existence of a solution f ∈ D
of (2.4). The subsequent example shows that sometimes this is not the case,
which makes the necessity of the assumption more convincing.

Example. Let E1 and E2 be normed spaces, d : E2
1 → E2, c, p, r, s ∈ R, p < 0,

c > 0, s + r < 0, d(x, x) �= 0 for some x �= 0, and let one of the following two
inequalities be fulfilled:

d(x, y) ≤ c
(‖x‖p + ‖y‖p

)

=: φ1(x, y), x, y ∈ E1 \ {0},

d(x, y) ≤ c‖x‖s‖y‖r =: φ2(x, y), x, y ∈ E1 \ {0}.

Then, according to [8, Corollary 4.3] and [10, Corollary 4.2], functional Eq.
(1.4) has no solutions g : E1 → E2. But, on the other hand, each additive
h : E1 → E2 fulfils the inequality

‖h(x + y) − h(x) − h(y) − d(x, y)‖ = ‖d(x, y)‖
≤ φ(x, y), x, y ∈ E1 \ {0},

for φ := φi with suitable i ∈ {1, 2}, i.e.,

h(x + y) − h(x) − h(y) − d(x, y) ∈ Φ(x, y), x, y ∈ E1 \ {0},

with

Φ(x, y) := B(0, φi(x, y)), x, y ∈ E1 \ {0},

where B(0, r) := {x ∈ E2 : ‖x‖ ≤ r} for r ∈ R+.

3. Proof of Theorem 1.2

The proof is actually a routine in view of Theorems 1.1 and 2.2. But for the
convenience of readers we present the main steps. In particular, we need the
following simple observation.
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Lemma 3.1. If a function h : E1 → E2 fulfils the condition

h(x + y) = h(x) + h(y), x, y ∈ E1 \ {0}, (3.1)

then it is additive.

Proof. Let h : E1 → E2 satisfy (3.1). Take x ∈ E1 \ {0}. Then

h(x) = h(2x − x) = h(2x) + h(−x) = 2h(x) + h(−x),

whence h(−x) = −h(x) and next

h(0) = h(x − x) = h(x) − h(x) = 0.

Thus we have proved that h is additive. �

Now, we are ready to prove the theorem. First we show statement (a). So,
fix p ≥ 0, p �= 1. In view of Theorem 1.1 the conditional functional equation

h(x + y) = h(x) + h(y), (x, y) ∈ P := (E1 \ {0})2, (3.2)

is (Φ,Ψ)-stable with uniqueness for

Φ(x, y) := B
(

0, c(‖x‖p + ‖y‖p)
)

, Ψ(x) := B
(

0,
c‖x‖p

∣
∣2p−1 − 1

∣
∣

)

,

x, y ∈ E1 \ {0}.

Hence, according to Theorem 2.2 (β) (with n = 2, S = E1, X = E2, B = {0},
μ = d, and Hh(x, y) := h(x+ y)−h(x)−h(y) for x, y ∈ E1 and h : E1 → E2),
the conditional functional equation

g(x + y) = g(x) + g(y) + d(x, y), x, y ∈ P, (3.3)

is (Φ,Ψ)-stable with uniqueness.
Moreover, if g : E1 → E2 is a solution of Eq. (3.3), then g0 := g − f0 fulfils

g0(x + y) = g0(x) + g0(y), x, y ∈ E1 \ {0},

whence, by Lemma 3.1, it is additive, which means that g is a solution to Eq.
(1.4).

To complete the proof of (a), assume that E1 = R. Take u0 ∈ E2 with
‖u0‖ = 1 and define functions f1 : R → R and f : R → E2 by

f1(x) =
sgn(x) c|x|p
|2p−1 − 1| , f(x) = f1(x)u0 + f0(x), x ∈ R.

Then (1.7) holds and

‖f(x + y) − f(x) − f(y) − d(x, y)‖ = ‖(f1(x + y) − f1(x) − f1(y))u0‖
= |f1(x + y) − f1(x) − f1(y)|, x, y ∈ R.

This ends the proof of (a), because by [5, Theorem 2]

|f1(x + y) − f1(x) − f1(y)| ≤ c(|x|p + |y|p), x, y ∈ R.
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Statement (b) follows at once from Lemma 3.1 and Theorems 1.1 and 2.2
(β) (analogously to statement (a)), with

Φ(x, y) := B
(

0, c(‖x‖p + ‖y‖p)
)

, Ψ(x) := {0}, x, y ∈ E1 \ {0}.

Finally, we prove (c). Let E1 = E2 = R. Fix c0 > 0. According to the
results in [20], there is f1 : R → R such that

|f1(x + y) − f1(x) − f1(y)| ≤ |x| + |y|, x, y ∈ R,

and

sup
x∈R\{0}

|f1(x) − h1(x)|
|x| = ∞

for each additive h1 : R → R. Write f := c0f1 + f0. Then

|f(x + y) − f(x) − f(y) − d(x, y)| = c0|f1(x + y) − f1(x) − f1(y)|
≤ c0(|x| + |y|), x, y ∈ R.

Take a solution h : R → R of (1.4). Then h1 := h − f0 is additive and

sup
x∈R\{0}

|f(x) − h(x)|
|x| = sup

x∈R\{0}
c0

|f1(x) − c−1
0 h1(x)|

|x| = ∞.

This ends the proof.

4. Further consequences

In this part we show some further examples of applications of Theorem 2.2.
Let us start with a result which follows from [7, Corollary 12].

Theorem 4.1. Let E be a real linear topological space, F be a Banach space,
K be a subgroup of the group (F,+), C ⊂ F be nonempty, closed and convex,
C = −C, and

inf
x∈C,y∈K\{0}

‖4x − y‖ > 0. (4.1)

Suppose that g : E → F is continuous at a point x0 ∈ E and satisfies the
condition

g(x + y) − g(x) − g(y) ∈ K + C, x, y ∈ E. (4.2)

Then there exists an additive h : E → F such that

g(x) − h(x) ∈ K + C, x ∈ E.

Moreover, if C is bounded, then h is unique.

Theorems 4.1 and 2.2 yield the following.
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Corollary 4.2. Let E, F , K, C be as in Theorem 4.1, d : E2 → F and x0 ∈ E.
Suppose that Eq. (1.4) admits a solution f0 : E → F that is continuous at x0.
Then for every function g : E → F that is continuous at x0 and satisfies the
condition

g(x + y) − g(x) − g(y) − d(x, y) ∈ K + C, x, y ∈ E,

there exists a solution h : E → F of Eq. (1.4) such that

g(x) − h(x) ∈ K + C, x ∈ E.

Moreover, if C is bounded, then h is unique.

Proof. Theorem 4.1 implies that Eq. (1.4) is (Φ,Ψ)-stable in U with D = FE ,
Ψ(x) = Φ(x, y) = K + C for every x, y ∈ E and U being the family of all
functions f ∈ FE that are continuous at x0; moreover that stability is with
uniqueness when C is bounded. So, it is enough to use Theorem 2.2 with n = 2,
S = E, X = F , and B = ∅. �

Now we present several examples of hyperstability results (see [11] for fur-
ther information on this issue). Let us start with the following remark.

Remark 4.3. It is well known (see, e.g., [24] or [16,31]) that, under the assump-
tions of Theorem 1.2, Eq. (1.4) admits a solution f0 : E1 → E2 if and only
if d is symmetric (i.e., d(x, y) = d(y, x) for x, y ∈ E1) and fulfils the cocycle
equation

d(x + y, z) + d(x, y) = d(x, y + z) + d(y, z). (4.3)

Examples of very useful related results can be found in [3,12–15,17,19,23,24].

The next theorem can be easily deduced from [9, Proposition 2.2].

Theorem 4.4. Let E and Y be normed spaces, dim E > 2, g : E → Y , and
p �= 1 and L0 be positive real numbers with

‖g(x + y) − g(x) − g(y)‖ ≤ L0

∣
∣‖x + y‖2 − ‖x − y‖2

∣
∣
p
, x, y ∈ E. (4.4)

Then g is additive.

It yields the following.

Corollary 4.5. Let E and Y be normed spaces, dim E > 2, g : E → Y , p �= 1
and L0 be positive real numbers, d : E2 → Y be symmetric and fulfil the cocycle
equation (4.3), and

‖g(x + y) − g(x) − g(y) − d(x, y)‖
≤ L0

∣
∣‖x + y‖2 − ‖x − y‖2

∣
∣
p
, x, y ∈ E. (4.5)

Then g is a solution to (1.4).
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Proof. Equation (1.4) admits a solution f0 : E → Y in view of Remark 4.3. So,
it is enough to use Theorem 2.2 analogously as in the proof of Corollary 4.2
with U = D = FE , Φ(x, y) = B(0, L0

∣
∣‖x + y‖2 − ‖x − y‖2

∣
∣
p) and Ψ(x) = {0}

for every x, y ∈ E. �

The next result was proved in [28, Theorem 2] and concerns the linear
functional equation (in two variables).

Theorem 4.6. Assume that E is a normed space over F ∈ {R, C}, Y is a
Banach space over K ∈ {R, C}, a, b ∈ F \ {0}, A,B ∈ K, θ, p ∈ R, p < 0,
θ ≥ 0, and f : E → Y satisfies the inequality

‖f(ax + by) − Af(x) − Bf(y)‖ ≤ θ(‖x‖p + ‖y‖p), x, y ∈ E \ {0}.(4.6)

Then

f(ax + by) = Af(x) + Bf(y), x, y ∈ E \ {0}. (4.7)

We will derive from it a hyperstability result for the inhomogeneous version
of the linear equation. To this end we need yet the following.

Lemma 4.7. Assume that E is a linear space over F ∈ {R, C}, Y is a linear
space over K ∈ {R, C}, a, b ∈ F\{0}, A,B ∈ K, and f : E → Y satisfies (4.7).
Then f satisfies the equation

f(ax + by) = Af(x) + Bf(y) (4.8)

for every x, y ∈ E.

Proof. Let e := f(0). Then, in view of (4.7), we get

e = f(0) = f(abx − bax) = Af(bx) + Bf(−ax), x ∈ E \ {0}.

This implies that

Bf(−b−1z) = e − Af(a−1z), z ∈ E \ {0}. (4.9)

Consequently, by (4.7) and (4.9), for every x, y ∈ E \ {0}
f(x) = f(y + x − y) = f(aa−1y + bb−1(x − y))

= Af(a−1y) + Bf(b−1(x − y))

= Af(a−1y) + Bf(ab−1a−1x − bb−2y)

= Af(a−1y) + BAf(b−1a−1x) + B2f(−b−2y)

= Af(a−1y) + BAf(b−1a−1x) + B(e − Af(a−1b−1y)),

whence

f(x) − BAf(b−1a−1x) − Be = A(f(a−1y) − Bf(a−1b−1y)), (4.10)

which means that there is d ∈ Y such that

f(z) − Bf(b−1z) = d, z ∈ E \ {0}. (4.11)
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Analogously, for every x, y ∈ E \ {0}, we get

f(x) = f(bb−1y + aa−1(x − y))

= Bf(b−1y) + BAf(b−1a−1x) + A(e − Bf(a−1b−1y))

and next

f(x) − BAf(b−1a−1x) − Ae = B(f(b−1y) − Af(a−1b−1y)), (4.12)

which means that there is c ∈ Y such that

f(z) − Af(a−1z) = c, z ∈ E \ {0}. (4.13)

Clearly, (4.11) and (4.13) can be rewritten in the form

f(az) = Af(z) + c, f(bz) = Bf(z) + d, z ∈ E \ {0}. (4.14)

Consequently, from (4.7) we obtain

f(ax + by) = Af(x) + Bf(y) = f(ax) − c + f(by) − d, x, y ∈ E \ {0},

whence the function f0 := f − c − d satisfies

f0(x + y) = f0(x) + f0(y), x, y ∈ E \ {0}. (4.15)

Analogously as in the proof of Lemma 3.1 we show that f0 must be additive,
which means that f0(0) = 0 and consequently

e = f(0) = f0(0) + c + d = c + d. (4.16)

Note that (4.10), (4.11) and (4.13) yield

c + Ad = f(x) − Af(a−1x) + A(f(a−1x) − Bf(b−1a−1x))
= f(x) − BAf(b−1a−1x) = Ad + Be (4.17)

with any fixed x �= 0. Analogously, from (4.12) we deduce that d + Bc =
Bc + Ae, whence and from (4.17) we get

d = Ae, c = Be. (4.18)

This and (4.14) imply that

f(ax) = Af(x) + Bf(0), f(bx) = Af(0) + Bf(x), x ∈ E \ {0}.

Finally, by (4.16) and (4.18),

f(0) = e = c + d = Ae + Be = Af(0) + Bf(0). (4.19)

Thus we have proved that (4.8) holds also when x = 0 or y = 0. �

Now, we are in a position to prove the following.
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Corollary 4.8. Assume that E is a normed space over F ∈ {R, C}, Y is a
normed space over K ∈ {R, C}, a, b ∈ F \ {0}, A,B ∈ K, θ, p ∈ R, p < 0,
θ ≥ 0, d : E2 → Y , and g : E → Y satisfies the inequality

‖g(ax + by) − Ag(x) − Bg(y) − d(x, y)‖
≤ θ(‖x‖p + ‖y‖p), x, y ∈ E \ {0}. (4.20)

Assume that the functional equation

f(ax + by) = Af(x) + Bf(y) + d(x, y), x, y ∈ E, (4.21)

has a solution f0 : E → Y . Then g is a solution to (4.21).

Proof. Clearly, if Y is not complete, then without loss of generality we can
replace it by its completion. Thus, by Theorem 2.2 and Theorem 4.6,

g(ax + by) = Ag(x) + Bg(y) + d(x, y), x, y ∈ E \ {0}. (4.22)

Hence condition (4.7) holds for f := g − f0. Consequently, Lemma 4.7 implies
that f is a solution to (4.21), which means that g is a solution to (4.21). �

Remark 4.9. It is easily seen that (under the assumptions of Corollary 4.8)
in the case where A + B �= 1 and d is a constant function, d(x, y) ≡ c, (4.21)
admits a constant solution of the form

f0(x) =
c

1 − A − B
, x ∈ E.

Therefore Corollary 4.8 also generalizes [28, Corollary 3].
Other examples of solutions to (4.21), with some particular form of d, can

be found in [6].

From [2, Theorem 5] we obtain the following hyperstability result for the
Jensen equation.

Theorem 4.10. Assume that E and Y are normed spaces, U ⊂ E, 0 ∈ U ,
2U = U , γ, p, q ∈ (0,∞), p + q �= 1, and f : U → Y satisfies the inequality

∥
∥
∥f

(1
2
(x + y)

)

− 1
2
(f(x) + f(y))

∥
∥
∥ ≤ γ‖x‖p‖y‖q,

x, y ∈ U,
1
2
(x + y) ∈ U.

(4.23)

Then

f
(1

2
(x + y)

)

=
1
2
(f(x) + f(y)), x, y ∈ U,

1
2
(x + y) ∈ U. (4.24)

The subsequent corollary can be easily derived from this.
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Corollary 4.11. Assume that E and Y are normed spaces, U ⊂ E, 0 ∈ U ,
2U = U , γ, p, q ∈ (0,∞), p + q �= 1, and f : U → Y and d : U2 → Y satisfy
the inequality

∥
∥
∥f

(1
2
(x + y)

)

− 1
2
(f(x) + f(y)) − d(x, y)

∥
∥
∥ ≤ γ‖x‖p‖y‖q, (4.25)

x, y ∈ U,
1
2
(x + y) ∈ U.

Suppose that the functional equation

f
(1

2
(x + y)

)

=
1
2
(f(x) + f(y)) + d(x, y), x, y ∈ U,

1
2
(x + y) ∈ U,

(4.26)

admits a solution f0 : U → Y . Then f is a solution to (4.26).

Proof. We deduce the conclusion from Theorem 2.2 (with S = U and P =
{(x, y) ∈ U2 : x + y ∈ 2U}) and Theorem 4.10, analogously as in the proofs of
previous results. �

We end the paper with an example concerning orthogonally additive map-
pings. In the remaining part of the paper, (E, 〈·, ·〉) is an inner product space.
As usual, given x, y ∈ E, we write x ⊥ y provided 〈x, y〉 = 0. The next theorem
can be easily deduced from the main result in [18].

Theorem 4.12. Let Y be a Banach space, ε ∈ R+, and f : E → Y satisfy the
inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ε, x ⊥ y. (4.27)

Then there exists a unique solution g : E → Y of the conditional equation

g(x + y) = g(x) + g(y), x ⊥ y, (4.28)

such that

‖f(x) − g(x)‖ ≤ 5ε, x ∈ E. (4.29)

Theorem 4.12 enables us to prove the following.

Corollary 4.13. Let Y be a Banach space, ε ∈ R+, d : E2 → Y be symmetric
and fulfil the cocycle equation (4.3), and f : E → Y satisfy the inequality

∥
∥
∥f(x + y) − f(x) − f(y) − d(x, y)‖ ≤ ε, x ⊥ y. (4.30)

Then there exists a unique solution g : E → Y of the conditional equation

g(x + y) = g(x) + g(y) + d(x, y), x ⊥ y, (4.31)

such that

‖f(x) − g(x)‖ ≤ 5ε, x ∈ E. (4.32)
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Proof. Since d : E2 → Y is a solution of the cocycle equation (4.3), there exists
a solution g0 : E → Y of (1.4) (see Remark 4.3), which clearly is a solution to
(4.31), as well. So, it is enough to use Theorem 2.2 (with P = {(x, y) ∈ E2 :
x ⊥ y}) and Theorem 4.12. �

We can find in [4,11,22,25–27] numerous further examples of stability
results for various equations that can be extended to their inhomogeneous
versions, in a similar way as in this paper (by applying Theorem 2.2). In gen-
eral, it is very easy to find suitable reasonings.

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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[5] Brzdęk, J. : A note on stability of additive mappings. In: Rassias, Th.M., Tabor,
J. (eds.) Stability of mappings of Hyers-Ulam Type., pp. 19–22. Hadronic Press, Palm
Harbor, FL (1994)
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Variables. Birkhäuser, Boston, Basel, Berlin (1998)
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