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Abstract
The main goal of this paper is to investigate the blow-up phenomena of solutions to
a weakly dissipative generalized Camassa-Holm equation, which contains higher
power nonlinear dispersion terms and a convection term. We give a sufficient
condition on the initial data such that the strong solution blows up at a finite time,
and then we establish an estimate of the blow-up time. Finally, we give a global
existence result of the strong solution.
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1 Introduction
In recent years, following the research of the Burgers equation, the KdV equation, and the
BBM equation [], the generalized Camassa-Holm equation

ut – uxxt + (k + )ukux – (k + )uk–uxuxx – ukuxxx =  (.)

has attracted much attention in the study of mathematical physics, where k ≥ , k ∈N .
For k = , (.) is reduced to the classical Camassa-Holm equation

ut – uxxt + uux – uxuxx – uuxxx = , (.)

which describes the unidirectional propagation of waves at the free surface of shallow
water. u(t,x) stands for the fluid velocity at time t in the spatial direction x. The Camassa-
Holm equation (.) is bi-Hamiltonian and admits an infinite number of conservation laws
[]. The Camassa-Holm equation (.) has been extensively studied by Constantin and Es-
cher [–], Lai andWu [], and so on. The well-posedness of the Camassa-Holm shallow
water equation has been established, and some blow-up scenarios were derived by Con-
stantin and Escher [], Wu and Yin [, ], Lai andWu [], Zhou [], Xin and Zhang [,
].
For k = , (.) becomes the Novikov equation

ut – uxxt + uux – uuxuxx – uuxxx = , (.)
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which was recently discovered by Novikov []. Since the Novikov equation possesses a
matrix Lax pair and has a bi-Hamiltonian structure as the Camassa-Holm equation, this
equation has been studied by many researchers in the past few years, the well-posedness
and persistence properties were studied by Lai et al. [], Ni and Zhou [], Zhao et al. [].
Jiang andNi [] considered the blow-up phenomena for the integrable Novikov equation,
Yan et al. [] gave the global existence and blow-up phenomena for the weakly dissipative
Novikov equation.
In this paper, we investigate the Cauchy problem for a generalized weakly dissipative

Camassa-Holm equation

{
ut – uxxt + (k + )ukux – (k + )uk–uxuxx – ukuxxx + λ(u – uxx) = ,
u(,x) = u(x), x ∈ R,

(.)

where λ > , k ≥  is a positive integer. Equations (.) and (.) have similar properties
as regards the local well-posedness and blow-up phenomena, but they are different as
regards the long time behavior. For example, when k = , (.) is completely integrable and
has an infinite number of conservation laws, but for the corresponding equation (.),∫
(u + ux)dx is not conservative.
Zhao et al. [] studied the existence of global weak solutions to the Cauchy problem

of the generalized Novikov equation (.). Liu and Yin [] investigated the blow-up phe-
nomena for the Degasperis-Procesi equation

ut – utxx + uux = uxuxx + uuxxx, t > ,x ∈ R, (.)

it is very similar with (.), but (.) contains the higher power nonlinear dispersion terms
(k + )uk–uxuxx, ukuxxx, and the nonlinear convection term (k + )ukux.
Compared to [], the main difficulty in this paper comes from the nonlinear effect of

higher power nonlinear dispersion terms (k + )uk–uxuxx, ukuxxx, and the nonlinear con-
vection term (k + )ukux. On the other hand, in the proof of the blow-up property of the
solution to (.), we need the sign of the term uk–(t,x), but u(t,x) changes the sign for
x ∈ R. Compared to the classical Camassa-Holm equation (k = ) and the classical Novikov
equation (k = ), the term uk–(t,x) disappears, accordingly. Therefore, we generalized the
blow-up property of solutions to the Cauchy problem (.).
We first give a sufficient condition on the initial data such that the strong solution of (.)

blows up at a finite time, and then we establish an estimate of the blow-up time. Finally,
we give a global existence result of the strong solution of (.).
The paper is organized as follows. In Section , we give some preliminaries used in our

investigation. In Section , we give in ourmain conclusion the blow-up scenario and global
existence result.

2 Preliminaries
We first review some notations. The convolution between two functions f (x) and g(x):

(f ∗ g)(x) =
∫
R
f (x – y)g(y)dy, ∀f , g ∈ S ,

where S is the Schwartz class. For any f (x) ∈ S , the Fourier transform of f (x) is defined
by F (f (x)) = f̂ (ξ ), the inverse Fourier transform of f̂ (ξ ) denoted by F–(f̂ (ξ )). If f (x) ∈Hs,

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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s ∈ R, then the norm of f (x) is

‖f ‖Hs =
(∫

R

(
 + |ξ |)s∣∣f̂ (ξ )∣∣ dξ

) 

.

Set y = u – uxx, the Cauchy problem (.) becomes

{
yt + ukyx + (k + )uk–uxy + λy = , x ∈ R, t > ,
u(,x) = u(x), x ∈ R.

(.)

Since G(x) = 
e

–|x| is the Green’s function of the differential equation u– uxx = δ(x), for all
f (x) ∈ L(R),G∗ f (x) = (–∂

x )–f (x), andG∗ y = u(t,x), and thus the Cauchy problem (.)
can be rewritten as

{
ut + ukux +G ∗ [k(k – )uk–ux + (k – )uk–uxuxx + (k + )ukux] + λu = ,
u(,x) = u(x).

(.)

Zhao et al. [, ] gave the local and global existence of solutions to the Cauchy problem
(.), it is crucial in our discussion.

Lemma . [] Given u(x) ∈ Hs(R), s > 
 , then there exist a constant T = T(u) >  and

a unique solution u(t,x) to (.) such that

u(t,x) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)
.

Moreover, the mapping u → u(·,u) : Hs(R) → C([,T);Hs(R)) ∩ C([,T);Hs–(R)) is
Hölder continuous.

We now describe some properties of solutions of the following initial value problem:

{
∂q
∂t (t,x) = uk(t,q(t,x)), t > ,x ∈ R,
q(,x) = x, x ∈ R,

(.)

where u(t,x) is a solution to the Cauchy problem (.). The following important properties
are immediate consequence of the classical results in the theory of ordinary differential
equations.

Lemma . Let u(x) ∈ Hs(R), s > 
 , and T = T(u) >  be the maximal existence time

of the corresponding solution u(t,x) to (.), then the problem (.) has a unique solution
q ∈ C([,T)× R;R).Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t,x) = exp

(
k
∫ t


uk–ux(s,x)ds

)
, (t,x) ∈ [,T)× R. (.)

Lemma . Let u(x) ∈ Hs(R), s > 
 , and T = T(u) >  be the maximal existence time of

the corresponding solution u(t,x) to (.). For y(t,x) = u – uxx, we have

y
(
t,q(t,x)

)
q

k+
k

x (t,x) = y(x)e–λt , (t,x) ∈ [,T)× R. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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Proof Let P(t) = y(t,q(t,x))q
k+
k

x (t,x). Thanks to (.) and (.), we have

dP
dt

= yt
(
t,q(t,x)

)
q

k+
k

x (t,x) + yx
(
t,q(t,x)

)
qt(t,x)q

k+
k

x (t,x)

+
k + 
k

y
(
t,q(t,x)

)
q


k
x (t,x)qxt(t,x)

= q
k+
k

x (t,x)
[
yt

(
t,q(t,x)

)
+ (k + )uk–uxy

(
t,q(t,x)

)
+ yx

(
t,q(t,x)

)
uk

]
= –λy

(
t,q(t,x)

)
q

k+
k

x (t,x)

= –λP(t),

the solution of ordinary differential equation is P(t) = P()e–λt . Since q(,x) = x, qx(,x) =
, we have

y
(
t,q(t,x)

)
q

k+
k

x (t,x) = y(x)e–λt .

This concludes the proof. �

Lemma . Let u(t,x) be the solution to (.). Then we have

∫
R

(
u + ux

)
dx = e–λt

∫
R

(
u + ux

)
dx. (.)

Proof When λ = , Lemma . is a case of Lemma . in Zhao et al. []. The proof carries
over with a slight modification and we present it here for the reader’s convenience.
Thanks to y = u – uxx and integrating by parts, we have

∫
R
yudx =

∫
R

(
u + ux

)
dx,

thus,

d
dt

∫
R

(
u + ux

)
dx + λ

∫
R

(
u + ux

)
dx

=
d
dt

∫
R
yudx + λ

∫
R
yudx

=
∫
R
(yut + uyt)dx + λ

∫
R
yudx.

Together with (.) and (.), on integration by parts we have

∫
R
(yut + uyt)dx + λ

∫
R
yudx

= –
∫
R

[
uk+yx + (k + )ukuxy

]
dx –

∫
R
ukuxy

–
∫
R
yG ∗ [

k(k – )uk–ux + (k – )uk–uxuxx + (k + )ukux
]
dx

= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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Therefore,

d
dt

∫
R

(
u + ux

)
dx + λ

∫
R

(
u + ux

)
dx = .

Integrating with respect to t from  to t, we get the desired conclusion. �

Following the proof of Lemma . given by Zhao et al. in [], we can obtain a similar
blow-up result of the solution to the Cauchy problem (.).

Theorem . Let u(x) ∈ Hs(R), s > 
 , and T = T(u) >  be the maximal existence time

of the corresponding solution u(t,x) to (.), then u(t,x) blows up if and only if

lim sup
t→T

∥∥ux(t,x)∥∥L∞ = +∞. (.)

3 Blow-up and global existence
Following the local existence Theorem ., we will give our main result on the blow-up
property of solution to (.). We first give a sufficient condition to guarantee that the so-
lution blows up at a finite time.

Theorem . Let u(x) ∈ Hs(R), s > 
 , and T = T(u) >  be the maximal existence time

of the corresponding solution u(t,x) to (.). Assume k =  or k = n, n is a positive integer,
if there exists an x ∈ R such that y(x) = ( – ∂

x )u(x) satisfies

y(x)≥  for (–∞,x) and y(x)≤  for (x, +∞), (.)

and

uk– (x)ux(x) < –kλ –
√


k

‖u‖kH + kλ. (.)

Then the corresponding solution to (.) with initial data u(x) blows up at finite time T
with

T ≤min

{
–

( – δ)m()
,

A
ln

m() –A
m() +A

}
,

where  < δ < , such that

–
√

δm() =
√


k

‖u‖kH + kλ,

and

A =
√


k

‖u‖kH + kλ, m() = uk– (x)ux(x) + kλ.

Proof For k = , the result can be found in Wu and Yin []. We just show that the results
hold for k = n, n ∈N , and the initial data u ∈H(R), for the general case we can use the
smooth approximate technique and denseness.

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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Let T >  be the maximal existence time of the solution u(t,x) to (.) with initial data
u(x). Thanks to (.), (.), and (.), we have y(t,q(t,x)) = , and, for all t > , we have

y
(
t,q(t,x)

) ≥ , for x ∈ (–∞,x),

y
(
t,q(t,x)

) ≤ , for x ∈ (x, +∞).
(.)

With the help of u(·,x) =G ∗ y(·,x), x ∈ R, we have

u(t,x) =


e–x

∫ x

–∞
eξy(t, ξ )dξ +



ex

∫ +∞

x
e–ξy(t, ξ )dξ (.)

and

ux(t,x) = –


e–x

∫ x

–∞
eξy(t, ξ )dξ +



ex

∫ +∞

x
e–ξy(t, ξ )dξ . (.)

After direct calculations we get

u(t,x) + ux(t,x) = ex
∫ ∞

x
e–ξy(ξ , t)dξ , (.)

u(t,x) – ux(t,x) = e–x
∫ x

–∞
eξy(ξ , t)dξ , (.)

and

u(t,x)ux(t,x) = –


e–x

(∫ x

–∞
eξy(t, ξ )dξ

)

+


ex

(∫ +∞

x
e–ξy(t, ξ )dξ

)

. (.)

Thanks to Lemma ., u(x) ∈H(R) implies that

u(t,x) ∈ C
(
[,T);H(R)

) ∩C([,T);H(R)
)
,

then u(t, ·) ∈ C(R), ut(t,x) ∈ C([,T);H(R)), and uxt(t,x) ∈ C([,T);H(R)).
From (.) to (.) we have

d
dt

[(
kuk–ux

)(
t,q(t,x)

)]
= k(k – )uk–uxut + kuk–

d
dt

(uux)

= k(k – )uk–uxut + kuk–
d
dt

[
–


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)

+


eq(t,x)

(∫ +∞

q(t,x)
e–ξy(ξ , t)dξ

)]

= k(k – )uk–uxut + kuk–
[


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)

qt(t,x)

–


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)
y
(
t,q(t,x)

)
qt(t,x)

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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–


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)(∫ q(t,x)

–∞
eξyt(ξ , t)dξ

)

+


eq(t,x)

(∫ +∞

q(t,x)
e–ξy(ξ , t)dξ

)

qt(t,x)

+


eq(t,x)

(∫ ∞

q(t,x)
e–ξy(ξ , t)dξ

)
y
(
t,q(t,x)

)
qt(t,x)

+


eq(t,x)

(∫ +∞

q(t,x)
e–ξy(ξ , t)dξ

)(∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ

)]
. (.)

Notice y(t,q(t,x)) = , using (.), (.), and (.) we have

d
dt

[(
kuk–ux

)(
t,q(t,x)

)]

= k(k – )uk–uxut + kuk–
[


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)

qt(t,x)

–


e–q(t,x)

(∫ q(t,x)

–∞
eξy(ξ , t)dξ

)(∫ q(t,x)

–∞
eξyt(ξ , t)dξ

)

+


eq(t,x)

(∫ +∞

q(t,x)
e–ξy(ξ , t)dξ

)

qt(t,x)

+


eq(t,x)

(∫ +∞

q(t,x)
e–ξy(ξ , t)dξ

)(∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ

)]

= k(k – )uk–uxut +
k

uk–(u – ux) +

k

uk–(u + ux)

–
k

uk–(u – ux)e–q(t,x)

∫ q(t,x)

–∞
eξyt(ξ , t)dξ

+
k

uk–(u + ux)eq(t,x)

∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ . (.)

Now we calculate the first term on the right hand side of (.). From (.), (.), and
y(t,q(t,x)) = , we obtain

k(k – )
(
uk–uxut

)(
t,q(t,x)

)
= k(k – )uk–ux

[
–


e–q(t,x)qt(t,x)

∫ q(t,x)

–∞
eξy(ξ , t)dξ

+


y
(
t,q(t,x)

)
qt(t,x) +



e–q(t,x)

∫ q(t,x)

–∞
eξyt(ξ , t)dξ

+


eq(t,x)qt(t,x)

∫ +∞

q(t,x)
e–ξy(ξ , t)dξ –



y
(
t,q(t,x)

)
qt(t,x)

+


eq(t,x)

∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ

]

= k(k – )uk–ux + k(k – )uk–ux
[


e–q(t,x)

∫ q(t,x)

–∞
eξyt(ξ , t)dξ

+


eq(t,x)

∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ

]
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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Substituting (.) into (.) yields

d
dt

[(
kuk–ux

)(
t,q(t,x)

)]
= k(k – )uk–ux +

k

uk–(u – ux) +

k

uk–(u + ux)

–
k

uk–

[
u – (k – )ux

]
e–q(t,x)

∫ q(t,x)

–∞
eξyt(ξ , t)dξ

+
k

uk–

[
u + (k – )ux

]
eq(t,x)

∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ . (.)

By (.), integration by parts gives

e–q(t,x)
∫ q(t,x)

–∞
eξyt(ξ , t)dξ

= –e–q(t,x)
[∫ q(t,x)

–∞
eξ

(
yuk

)
ξ
dξ +

∫ q(t,x)

–∞
eξ dyuk–uξ ξ + λ

∫ q(t,x)

–∞
eξydξ

]

= e–q(t,x)
∫ q(t,x)

–∞
eξyuk–(u – uξ )dξ – λe–q(t,x)

∫ q(t,x)

–∞
eξydξ .

Thanks to y = u – uxx and (.), we get

e–q(t,x)
∫ q(t,x)

–∞
eξyt(ξ , t)dξ

= e–q(t,x)
∫ q(t,x)

–∞
eξ (u – uξξ )uk–(u – uξ )dξ – λe–q(t,x)

∫ q(t,x)

–∞
eξydξ

= e–q(t,x)
∫ q(t,x)

–∞
eξuk–

(
u – uuξξ – uuξ + uξuξξ

)
dξ – λe–q(t,x)

∫ q(t,x)

–∞
eξydξ

= e–q(t,x)
∫ q(t,x)

–∞
eξ

(
uk–uξuξξ – ukuξξ – ukuξ + uk+

)
dξ – λe–q(t,x)

∫ q(t,x)

–∞
eξydξ .

Since

(
ukux

)
x = kuk–ux + ukuxx,(

uk–ux
)
x = (k – )uk–ux + uk–uxuxx,

we have

e–q(t,x)
∫ q(t,x)

–∞
eξuk–uξuξξ dξ

=


e–q(t,x)

∫ q(t,x)

–∞
eξ

[(
uk–uξ

)
ξ
– (k – )uk–uξ

]
dξ

=


(
uk–ux

)(
t,q(t,x)

)
–


e–q(t,x)

∫ q(t,x)

–∞
eξ

[
uk–uξ + (k – )uk–uξ

]
dξ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/514
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and

–e–q(t,x)
∫ q(t,x)

–∞
eξukuξξ dξ

= –e–q(t,x)
∫ q(t,x)

–∞
eξ

[(
ukuξ

)
ξ
– kuk–uξ

]
dξ

= –
(
ukux

)(
t,q(t,x)

)
+ e–q(t,x)

∫ q(t,x)

–∞
eξ

(
ukuξ + kuk–uξ

)
dξ ,

therefore,

e–q(t,x)
∫ q(t,x)

–∞
eξyt(ξ , t)dξ

= –
(
ukux

)(
t,q(t,x)

)
+


(
uk–ux

)(
t,q(t,x)

)

+ e–q(t,x)
∫ q(t,x)

–∞
eξ

(
uk+ +

k – 


uk–uξ –
k – 


uk–uξ

)
dξ

– λ(u – ux)
(
t,q(t,x)

)
= –

(
ukux

)(
t,q(t,x)

)
+


(
uk–ux

)(
t,q(t,x)

)
– λ(u – ux)

(
t,q(t,x)

)

+ e–q(t,x)
∫ q(t,x)

–∞
eξ


[
uk+ + uk–(u – uξ )

(
u – (k – )uξ

)
+ (k + )ukuξ

]
dξ

= –
(
ukux

)(
t,q(t,x)

)
+


(
uk–ux

)(
t,q(t,x)

)
– λ(u – ux)

(
t,q(t,x)

)

+


uk+

(
t,q(t,x)

)
+ e–q(t,x)

∫ q(t,x)

–∞
eξ


uk–(u – uξ )

[
u – (k – )uξ

]
dξ . (.)

Thanks to (.),

y
(
t,q(t,x)

) ≥ , for x ∈ (–∞,x), t ≥ ,

y
(
t,q(t,x)

) ≤ , for x ∈ (x, +∞), t ≥ ,

together with (.) and (.),

u
(
t,q(t,x)

)
+ ux

(
t,q(t,x)

)
= eq(t,x)

∫ ∞

q(t,x)
e–ξy(ξ , t)dξ ≤ ,

u
(
t,q(t,x)

)
– ux

(
t,q(t,x)

)
= e–q(t,x)

∫ q(t,x)

–∞
eξy(ξ , t)dξ ≥ ,

we have ux(t,q(t,x))≤ .
Noticing k = n, n is a positive integer, we have

u – (k – )ux ≥ u – ux ≥ , ∀x ∈ (
–∞,q(t,x)

)
,

hence
∫ q(x,t)

–∞
eξ


uk–(u – uξ )

[
u – (k – )uξ

]
dξ ≥ . (.)
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This implies

e–q(t,x)
∫ q(t,x)

–∞
eξyt(ξ , t)dξ ≥ –

(
ukux

)(
t,q(t,x)

)
+


(
uk–ux

)(
t,q(t,x)

)

+


uk+

(
t,q(t,x)

)
– λ(u – ux)

(
t,q(t,x)

)
. (.)

Similarly, we repeat the above calculations and obtain

eq(t,x)
∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ

= –
(
ukux

)(
t,q(t,x)

)
–


(
uk–ux

)(
t,q(t,x)

)
– λ(u + ux)

(
t,q(t,x)

)
–


uk+

(
t,q(t,x)

)

– e–q(t,x)
∫ +∞

q(t,x)

eξ


uk–(u + uξ )

[
u + (k – )uξ

]
dξ . (.)

Since ux(t,q(t,x))≤ , then

u + (k – )ux ≤ u + ux ≤ , ∀x ∈ (
q(t,x), +∞)

,

we have

eq(t,x)
∫ +∞

q(t,x)
e–ξyt(ξ , t)dξ ≥ –

(
ukux

)(
t,q(t,x)

)
–


(
uk–ux

)(
t,q(t,x)

)

–


uk+

(
t,q(t,x)

)
– λ(u + ux)

(
t,q(t,x)

)
. (.)

Inserting (.) and (.) into (.), we get

d
dt

[(
uk–ux

)(
t,q(t,x)

)]
≤ (k – )uk–ux +



uk–(u – ux) +



uk–(u + ux)

–


uk–

[
u – (k – )ux

][
–ukux +



uk–ux +



uk+ – λ(u – ux)

]

+


uk–

[
u + (k – )ux

][
–ukux –



uk–ux –



uk+ – λ(u + ux)

]

=


uk

(
t,q(t,x)

)
–


(
uk–ux

)(
t,q(t,x)

)
– λk

(
uk–ux

)(
t,q(t,x)

)
. (.)

Thanks to the Cauchy-Schwartz inequality,

u(x, t) = 
(∫ x

–∞
uux dx –

∫ +∞

x
uux dx

)

≤
∫ x

–∞

(
u + ux

)
dx +

∫ +∞

x

(
u + ux

)
dx

=
∥∥u(x, t)∥∥

H ,
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from Lemma ., we have

u(t,x)≤ ∥∥u(t,x)∥∥
H = e–λt‖u‖H ≤ ‖u‖H , (.)

then

∥∥u(t,x)∥∥L∞ ≤
√



‖u‖H . (.)

Combining (.) with (.), we have

d
dt

[(
uk–ux

)(
t,q(t,x)

)]
≤ 

k+
‖u‖kH –



(
uk–ux

)(
t,q(t,x)

)
– λk

(
uk–ux

)(
t,q(t,x)

)
. (.)

We now define a function

m(t) =
(
uk–ux

)(
t,q(t,x)

)
+ λk,

since (uk–ux)(t,q(t,x)) is continuously differentiable on [,T), m(t) is continuously dif-
ferentiable on [,T), from (.), we obtain

dm(t)
dt

≤ 
k+

‖u‖kH –


(
m(t) – λk

) – λk
(
m(t) – λk

)

= –


m(t) +


k+

‖u‖kH +
λk


. (.)

By the assumption

m() = uk– (x)ux(x) + kλ < –
√


k

‖u‖kH + kλ,

we havem() > 
k ‖u‖kH + kλ.

We claim that

m(t) < –
√


k

‖u‖kH + kλ, ∀t ∈ [,T). (.)

Otherwise, if (.) is not true, by the continuity of m(t), there exists a t ∈ (,T) such
that, for all t ∈ [, t),

m(t) >

k

‖u‖kH + kλ, (.)

and

m(t) =

k

‖u‖kH + kλ. (.)

Combining (.) and (.), we have, for all t ∈ [, t],

dm(t)
dt

≤ , (.)
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sincem(t) is continuously differentiable on [, t], integrating (.) with respect to t from
 to t, we have

m(t) ≤m() = uk– (x)ux(x) + kλ < –
√


k

‖u‖kH + kλ. (.)

Recalling (.), we get the desired contradiction, which concludes the proof of the claim.
Sincem(t) is continuously differentiable and strictly decreasing on [,T), we can choose

δ ∈ (, ) such that

–
√

δm() =
√


k

‖u‖kH + kλ, (.)

thanks to (.) and (.), we have, for all t ∈ [,T),

dm(t)
dt

≤ –
 – δ


m(t). (.)

Since m(t) is continuously differentiable and strictly negative on [,T), hence 
m(t) is con-

tinuously differentiable on [,T), and

d
dt

(


m(t)

)
= –


m(t)

dm(t)
dt

>
 – δ


, ∀t ∈ [,T). (.)

Integrating with respect to t over [,T] on both sides of (.) yields


m(t)

–


m()
>
 – δ


t, ∀t ∈ [,T). (.)

Sincem(t) <  on [,T), we know that the maximal existence time is

T∗ = –


( – δ)m()
< +∞, (.)

such that

lim
t↑T∗ m(t) ≤ lim

t↑T∗


( – δ)(t – T∗)
= –∞.

Since

inf
x∈R

(
uk–ux

)
(t,x)≤ (

uk–ux
)(
t,q(t,x)

)
=m(t) – λk, (.)

this implies

lim
t↑T∗ infx∈R

(
uk–ux

)
(x, t)≤ lim

t↑T∗

[


( – δ)(t – T∗)
– λk

]
= –∞.

For A =
√


k ‖u‖kH + kλ > , from (.), we have


A

(


m(t) –A
–


m(t) +A

)
dm(t) =

dm(t)
m(t) –A ≤ –



dt,
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that is,

(


m(t) –A
–


m(t) +A

)
dm(t)≤ –Adt, (.)

integrating with respect to t over [, t] yields

ln
m(t) –A
m(t) +A

– ln
m() –A
m() +A

≤ –At.

Asm(t) < –A < , ln m(t)–A
m(t)+A > , we have

t ≤ 
A
ln

m() –A
m() +A

, (.)

due tom() < –A, ln m()–A
m()+A > , from (.) and (.), we can choose

T ≤min

{
–


( – δ)m()

,

A
ln

m() –A
m() +A

}
.

This completes the proof. �

Remark . The result in Theorem . contains the cases for k = : the weakly dissipative
Camassa-Holm equation and k = : the weakly dissipative Novikov equation.We used the
method developed by Liu and Yin [] to deal with the Degasperis-Procesi equation (.):
ut – utxx + uux = uxuxx + uuxxx, but (.) contains higher power nonlinear dispersion
terms (k + )uk–uxuxx, ukuxxx, and the nonlinear convection term (k + )ukux. When the
local solution u(t,x) of (.) exists, in the proof of its blow-up property we need the sign
of uk–(t,x); see the last term in (.). In general, u(t,x) changes the sign for x ∈ R so we
give the condition on the power of nonlinear term k = n, n ∈ N in (.). For k = , the
last term in (.) disappears; for k = , the last term in (.) does not contain uk–(t,x).
Therefore, we generalized the blow-up property of the solutions to the Cauchy problem
(.).

Finally we give a global existence result, thanks to Theorem ., this will be done if we
can estimate ‖ux(x, t)‖L∞ is finite.

Theorem . Let u(x) ∈ Hs(R), s > 
 . If y(x) = ( – ∂

x )u(x) does not change sign on R,
then the problem (.) has a strong solution

u(x, t) ∈ C
(
[, +∞);Hs(R)

) ∩C([, +∞);Hs–(R)
)
.

Proof We just consider s = , otherwise we can use the smooth approximate technique
and denseness. When y(x) = ( – ∂

x )u(x)≥ , then from Lemma . and Lemma ., we
can derive that y(t,x) ≥ , for all [,T).
Due to the positivity of the Green’s function G(x) and u(t,x) = G(x) ∗ y(t,x), we obtain

u(t,x)≥ , for all t ≥ , u(t,x) +ux(t,x)≥ , and u(t,x) –ux(t,x)≥ , and these imply that,
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for all (t,x) ∈ [,T)× R,

∣∣ux(t,x)∣∣ ≤ u(t,x)≤ ∥∥u(t,x)∥∥L∞

≤
√



∥∥u(t,x)∥∥H =
√



e–λt∥∥u(x)∥∥H

≤ ∥∥u(x)∥∥H ,

we obtain u(t,x) ∈ C([, +∞);Hs(R))∩C([, +∞);Hs–(R)) by Theorem ..
When y(x) = (–∂

x )u(x)≤ , thanks to Lemma . and Lemma ., we obtain y(t,x) ≤
, for all [,T). Since u(t,x) = G(x) ∗ y(t,x) and due to the positivity of G(x), we obtain
u(t,x)≤ , for all t ≥ , u(t,x) +ux(t,x)≤ , and u(t,x) –ux(t,x)≤ , and these imply that,
for all (t,x) ∈ [,T)× R,

∥∥ux(t,x)∥∥L∞ ≤ –u(t,x)≤ ∥∥u(t,x)∥∥L∞

≤
√



∥∥u(t,x)∥∥H =
√



e–λt∥∥u(x)∥∥H

≤ ∥∥u(x)∥∥H ,

we obtain u(t,x) ∈ C([, +∞);Hs(R))∩C([, +∞);Hs–(R)) by Theorem ..
Therefore, we find that the solution exists globally in time. �
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