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Abstract

Background: Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female
Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and
concerns about the non-target effects and persistence of chemical insecticides have prompted the development of
environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a
genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in
laboratory bioassays.

Findings: There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The
ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus <
An. arabiensis < An. gambiae < An. quadriannulatus, where < indicates a statistically lower LC50. The LC50 of PCC
7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 ×
105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained
at concentrations as high as 3.20 × 107 cells/ml.

Conclusions: PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but
relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a
novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s
spectrum of activity and potential as a vector control agent.
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Background
Species within the genus Anopheles (Diptera: Culicidae)
play a major role in the transmission of malaria in Africa,
in particular mosquitoes from the An. gambiae complex
and the An. funestus group [1,2]. The An. gambiae com-
plex contains excellent and efficient vectors of malaria
(An. gambiae s.s. and An. arabiensis), as well as minor vec-
tors (An. merus) and non-vectors (An. quadriannulatus
species A and B) [1]. The An. funestus group contains an
important vector of malaria, An. funestus s.s. [2].
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Although chemical insecticides have been used suc-
cessfully in integrated vector control programs [3], many
malaria vector control programs are hampered by the
development of resistance of the vectors to chemical
insecticides [4-6]. In addition to development of resist-
ance, concerns about the non-target effects and persist-
ence of the chemical insecticides have prompted the
development of environmentally friendly control agents
and control programs [7].
Bacillus thuringiensis subsp. israelensis (Bti) is a

Gram-positive, aerobic, spore-forming, bacterium that
produces crystalline inclusions that contain crystal (Cry)
or cytolytic (Cyt) proteins that are highly toxic to
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mosquito larvae [8,9]. Although there is low risk of re-
sistance being developed to Bti [10], there are several
disadvantages to using Bti as a control agent [11,12].
These include its low persistence in the field due to in-
activation by UV, ingestion of Bti by other aquatic
organisms, and the settling of Bti from the mosquito lar-
val feeding zone [11-13]. One strategy to overcome some
of the disadvantages of Bti is to clone the cry genes of
Bti into aquatic microorganisms that: (1) are not toxic to
other organisms, (2) inhabit and persist in the larval
feeding zone, (3) are used by mosquito larvae as a food
source, (4) express Cry proteins at levels that are mos-
quito larvicidal, and (5) have cell walls that reduce in-
activation of the Cry proteins by UV [13-15].
Xiaoqiang et al. [15] inserted the Bti cry4Aa, cry11Aa,

and p20 genes under the control of two tandem promo-
ters (cyanobacterial constitutive promoter, PpsbA, and
Escherichia coli T7 early promoter, PA1) into a filament-
ous nitrogen-fixing cyanobacterium, Anabaena sp. strain
PCC 7120 (PCC 7120). The Bti genes are integrated into
the chromosome of PCC 7120, resulting in a stable re-
combinant strain [16]. Laboratory bioassays have shown
that the resultant recombinant strain, PCC 7120#11, is a
very effective larvicidal agent against Aedes aegypti
[13,15,16].
To our knowledge, no studies have examined the larvi-

cidal activity of PCC 7120#11 against several African
malaria vectors. The aim of this study was, thus, to
evaluate the larvicidal activity of PCC 7120#11 against
five African Anopheles species in order to determine if
PCC 7120#11 may have potential as a malaria vector
control agent.

Methods
Larvicidal activity of PCC 7120#11 was determined by
laboratory bioassays against four species in the An. gam-
biae complex and one species in the An. funestus group.
The An. gambiae complex species used in the study
were (origin, colony name, and colonisation date pro-
vided): An. gambiae s.s. (Ibadan, Nigeria; NAG; 2001),
An. arabiensis (Kanyemba, Zimbabwe; KGB; 1975), An.
merus (KwaZulu-Natal, South Africa; MAF; 1988), and
An. quadriannulatus species A (Sangwe, Zimbabwe;
SANGWE; 1998). The species from the An. funestus
group that was used in the study was An. funestus s.s.
(Maputo, Mozambique; FUMOZ; 2000).
The anopheline mosquito species were obtained from

colonies maintained at the National Institute of Commu-
nicable Diseases (Johannesburg, South Africa). Since the
activity of PCC 7120#11 against A. aegypti had been pre-
viously evaluated [15], we included it as a control in the
bioassays. The A. aegypti larvae were obtained from the
South African Bureau of Standards (Pretoria, South
Africa).
PCC 7120 and PCC 7120#11, were cultured in BG-11
medium [15], at 30°C under continuous illumination
(2000 lux) with constant agitation [13,16]. The PCC
7120 and PCC 7120#11 cells were harvested by differen-
tial centrifugation and the cell concentration was deter-
mined by haemocytometer counts. Two millilitres of the
appropriate dilution (covering an in-cup concentration
range of 1.00 × 104 to 3.20 × 107 cells/ml) of either PCC
7120 or PCC 7120#11 was added to 130 ml plastic cups
that contained 98 ml sterile distilled water and 20 third-
instar mosquito larvae. In the case of An. merus, a sterile
5 M saline solution was used instead of sterile distilled
water.
Larvicidal activity was determined 24 hours post-

inoculation, with larvae presumed dead if they did not
move when prodded. An untreated control (sterile dis-
tilled water) was included in the bioassays. If mortality
in the controls (PCC 7120 and untreated) exceeded
5%, the test was discarded and repeated. Each bioassay
was repeated in triplicate on different days. The lethal
concentration (LC50 and LC90) for each species was
determined by probit analysis [17]. For each species,
probit analysis was based on the mortality data
obtained from five PCC 7120#11 concentrations.

Results and discussion
The concentration-mortality data for the mosquito spe-
cies are summarised in Table 1. The heterogeneity fac-
tors for the different mosquito species evaluated were all
less than one, indicating a good fit of the concentration-
mortality data to the probit model [18].
The concentration-mortality regression slopes indicate

the variability in response to a toxin within the vector
population being examined [19]. In this study, An. ara-
biensis had a significantly steeper slope than the other
species evaluated, suggesting that An. arabiensis had
lower response variability or reduced heterogeneity in its
population compared to the other mosquito species
examined. The shallower slopes of the concentration-
mortality regression lines obtained for An. gambiae and
An. quadriannulatus mean that there are larger differ-
ences between the LC50 and LC90 values for these spe-
cies than for the other anopheline species evaluated.
Although slight variation in LC50s between studies

may be expected due to differences in experimental con-
ditions such as rearing conditions of the larvae and nat-
ural variations in the larval populations [20], the
susceptibility of A. aegypti larvae to PCC 7120#11 in this
study was comparable to that (LC50 of 0.9 × 105 cells/
ml) previously reported by Xiaoqiang et al. [15]. How-
ever, the LC50 value of PCC 7120#11 against A. aegypti
larvae was significantly lower than those of the anophel-
ine species evaluated (Table 1). The decreased suscepti-
bility of anopheline larvae compared to A. aegypti larvae



Table 1 Probit analysis of concentration-mortality data for Anabaena PCC 7120#11 against third instar mosquito
larvae

Species LC50 (10
5 cells/ml)* LC90 (10

5 cells/ml)* Slope ± SE† Heterogeneity{{

A. aegypti 1.42 (1.12-1.76)a 8.21 (6.05-12.3)a 1.70±0.15a 0.75

An. merus 3.90 (3.58-4.17)b 9.30 (8.0-11.4)a 3.37±0.31b 0.62

An. arabiensis 8.10 (7.62-8.56)c 14.3 (12.8-16.5)b 5.18±0.46c 0.19

An. gambiae 12.3 (11.4-13.3)d 35.1 (29.5-44.9)c 2.81±0.24d 0.49

An. quadriannulatus 15.7 (14.3-17.3)e 43.0 (35.9-54.9)c 2.93±0.26bd 0.92

An. funestus N.D.} N.D. N.D. N.D.

* Values in brackets show the 95% fiducial limits (FLs). Values in a column followed by the same letters are not significantly different (overlapping 95% FLs).
† Slope ± standard error. Values followed by the same letters are not significantly different (p > 0.05).
{ Heterogeneity factor = χ2 / d.f. (degrees of freedom).
} Not determined. Less than 50% mortality was obtained even at concentrations as high as 3.2 × 107 cells/ml.
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may be due to differences in feeding behaviour [21];
Anopheles larvae (surface feeders) may ingest fewer PCC
7120#11 cells than A. aegypti larvae that feed at all levels
in the water column.
The LC50 values differed significantly between the

anopheline species examined, with PCC 7120#11 being
most effective against An. merus larvae (Table 1). On the
basis of LC50 ratios, the larvae of An. quadriannulatus
were 4-fold less susceptible to PCC 7120#11 than the
larvae of An. merus. PCC 7120#11 had relatively weak
larvicidal activity against An. funestus, even at concen-
trations as high 3.2 × 107 cells/ml. The LC90 values for
An. merus and A. aegypti were significantly lower than
the LC90 values for An. arabiensis, An. quadriannulatus,
or An. gambiae (Table 1). Furthermore, the LC90 for An.
arabiensis was significantly lower than that of An. quad-
riannulatus or An. gambiae (Table 1).
The significant differences in susceptibility to PCC

7120#11 between the anopheline species may reflect
species-specific differences in one or more of the steps
in the ingestion-to-toxicity process. For example, differ-
ences in the ingestion rate or efficiency of digestion of
PCC 7120#11 cell walls by the different anopheline spe-
cies may significantly affect the concentration of Cry
proteins in the larval midgut. However, preliminary eva-
luations (unpublished data) did not show marked differ-
ences in the ingestion or digestion rates between An.
funestus and An. arabiensis.
A factor to consider in interpreting the significant dif-

ferences in susceptibility between An. funestus and spe-
cies of the An. gambiae complex is the combination of
the toxins present in PCC 7120#11. Bti, which naturally
produces crystals that contain the toxins Cry4Aa,
Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa and Cyt2Ba [9,22],
has higher larvicidal activity against mosquitoes than re-
combinant clones containing a subset of toxins [9,23,24].
In a previous study [25], Bti strain HD522 was evaluated
against the same anopheline species, with An. funestus
larvae having an LC50 that was statistically similar to the
LC50 values obtained for An. arabiensis, An. gambiae,
and An. merus larvae. The comparatively low larvicidal
activity of PCC 7120#11 against An. funestus could be
due to the absence of the other Bti Cry and Cyt proteins
in PCC 7120#11, which produces only the Cry4Aa and
Cry11Aa proteins. Since the larvicidal activity of Cry
proteins is often correlated with the high affinity binding
of the proteins to specific membrane-bound receptors in
the larval midgut [26,27], the susceptibility differences
could be due to inherent differences between the species
in the structure or density of midgut receptors for
Cry4Aa or Cry11Aa. In this context, it is noteworthy
that Cyt1A is known to synergize Cry11A toxicity by
functioning as a membrane-bound receptor [28]. Further
research is required to determine which combinations of
the Cry and Cyt proteins would result in the highest lar-
vicidal activity against An. funestus larvae.
PCC 7120#11 displayed good larvicidal activity against

key malaria vectors, including An. gambiae and An. ara-
biensis. Although PCC 7120#11 displayed comparatively
weak larvicidal activity against An. funestus at economic-
ally practical concentrations, PCC 7120#11 may have
potential as a larvicidal agent in geographic regions
where An. funestus is not the predominant vector. Alter-
natively, PCC 7120#11 could be applied as a larvicidal
agent as part of an integrated vector control program
that targets An. funestus adults and the larvae of other
malaria vectors. However, before PCC 7120#11 can used
in vector control programs, its effects on non-target
organisms and its persistence in aquatic environments
would have to be comprehensively evaluated.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived the idea: GB. Performed the experiment and analyzed the data: IK
and GB. Contributed reagents/materials/analysis tools: GB. Wrote the
manuscript: IK. Clarified the manuscript: GB. All authors read and approved
the final manuscript.

Acknowledgements
The authors thank M. Coetzee and L.L. Koekemoer (Vector Control Reference
Unit, National Institute for Communicable Diseases of the National Health



Ketseoglou and Bouwer Parasites & Vectors 2012, 5:220 Page 4 of 4
http://www.parasitesandvectors.com/content/5/1/220
Laboratory Service, Johannesburg, South Africa), for providing the Anopheles
larvae and the South African Bureau of Standards (Pretoria, South Africa) for
the A. aegypti larvae used in this study. The authors express gratitude to A.
Zaritsky (Department of Life Science, Ben Gurion University, Israel) for
providing the recombinant clone, Anabaena PCC 7120#11. This project was
partially funded by a National Research Foundation grant awarded to GB. We
thank anonymous reviewers for comments that improved this manuscript.

Received: 8 July 2012 Accepted: 27 September 2012
Published: 4 October 2012
References
1. Coetzee M, Craig M, le Sueur D: Distribution of African malaria

mosquitoes belonging to the Anopheles gambiae complex. Parasitol
Today 2000, 16:74–77.

2. Gillies MT, De Meillon B: The Anophelinae of Africa South of the Sahara.
Publication no. 54. Johannesburg: South African Institute for Medical
Research; 1968.

3. Walker K, Lynch M: Contributions of Anopheles larval control to malaria
suppression in tropical Africa: review of achievements and potential.
Med Vet Entomol 2007, 21:2–21.

4. Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H:
Evidence of multiple pyrethroid resistance mechanisms in the malaria
vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop
Med Hyg 2009, 103:1139–1145.

5. Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS,
Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to
DDT in South Africa. Med Vet Entomol 2003, 17:417–422.

6. Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M: Characterization
of DDT, pyrethroid, and carbamate resistance in Anopheles funestus from
Obuasi, Ghana. Trans R Soc Trop Med Hyg 2008, 102:591–598.

7. Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ: Recombinant
bacteria for mosquito control. J Exp Biol 2003, 206:3877–3885.

8. Goldberg LJ, Margalit J: A bacterial spore demonstrating rapid larvicidal
activity against Anopheles serengetii, Uranotaenia unguiculata, Culex
univittatus, Aedes aegypti and Culex pipiens. Mosq News 1977, 37:355–358.

9. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler
DR, Dean DH: Bacillus thuringiensis and its pesticidal crystal proteins.
Microbiol Mol Biol Rev 1998, 62:775–806.

10. Takken W, Knols B: Malaria vector control: current and future strategies.
Trends Parasitol 2008, 25:101–104.

11. Becker N, Zgomba M, Ludwig M, Petric D, Rettich F: Factors influencing the
activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq
Control Assoc 1992, 8:285–289.

12. Ohana B, Margalit J, Barak Z: Fate of Bacillus thuringiensis subsp.
israelensis under stimulated field conditions. Appl Environ Microbiol 1987,
53:828–831.

13. Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S,
Zaritsky A: Enduring toxicity of transgenic Anabaena PCC 7120
expressing mosquito larvicidal genes from Bacillus thuringiensis subsp.
israelensis. Environ Microbiol 2003, 5:997–100.

14. Armengol G, Guevara OE, Orduz S, Crickmore N: Expression of Bacillus
thuringiensis mosquitocidal toxin Cry11Aa in the aquatic bacterium
Asticcacaulis excentricus. Current Microbiol 2005, 51:430–433.

15. Xiaoqiang W, Vennison SJ, Huirong L, Ben-Dov E, Zaritsky A, Boussiba S:
Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120
expressing combinations of genes from Bacillus thuringiensis subsp.
israelensis. Appl Environ Microbiol 1997, 63:4971–4974.

16. Lluisma AO, Karmacharya N, Zarka A, Ben-Dov E, Zaritsky A, Boussiba S:
Suitability of Anabaena PCC 7120 expressing mosquitocidal toxin genes
from Bacillus thuringiensis subsp. israelensis for biotechnological
application. Appl Microbiol Biotechnol 2001, 57:161–166.

17. Finney DJ: Probit analysis. 3rd edition. London: Cambridge University Press;
1971.

18. Champ BR, Campbell-Brown MJ: Insecticide resistance in Australian
Tribolium castaneum (Herbst) - A test method for detecting insecticide
resistance. J Stored Prod Res 1970, 6:53–70.

19. Jyoti JL, Brewer GJ: Median lethal concentration and efficacy of Bacillus
thuringiensis against banded sunflower moth (Lepidoptera: Tortricidae).
J Econ Entomol 1999, 92:1289–1291.
20. Otieno-Ayaya ZN, Zaritsky A, Wirth MC, Manasherob R, Khasdan V, Cahan R,
Ben-Dov E: Variations in the mosquito larvicidal activities of toxins from
Bacillus thuringiensis ssp. israelensis. Environ Microbiol 2008, 10:2191–2199.

21. Merritt RW, Dadd RH, Walker ED: Feeding behavior, natural food, and
nutritional relationships of larval mosquitoes. Annu Rev Entomol 1992,
37:349–376.

22. Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A:
Refined, circular restriction map of the Bacillus thuringiensis subsp.
israelensis plasmid carrying the mosquito larvicidal genes. Plasmid 1999,
42:186–191.

23. Delécluse A, Poncet S, Klier A, Rapoport G: Expression of cryIVA and cryIVB
genes, independently or in combination, in a crystal-negative strain of
Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 1993,
59:3922–3927.

24. Poncet S, Delécluse A, Klier A, Rapoport G: Evaluation of synergistic
interactions among the CryIVA, Cry IVB, and CryIVD toxic components of
Bacillus thuringiensis subsp. israelensis crystals. J Inverterbr Pathol 1995,
66:131–135.

25. Ketseoglou I, Koekemoer LL, Coetzee M, Bouwer G: The larvicidal efficacy
of Bacillus thuringiensis subsp. israelensis against five African Anopheles
(Diptera: Culicidae) species. Afr Entomol 2011, 19:146–150.

26. Hofmann C, Vanderbruggen H, Hófte H, Van Rie J, Jansens S, Van Mellaert H:
Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the
presence of high-affinity binding sites in the brush border membrane of
target insect midguts. Proc Natl Acad Sci USA 1988, 85:7844–7848.

27. Van Rie J, Jansens S, Hófte H, Degheele D, Van Mellaert H: Receptors on
the brush border membrane of the insect midgut as determinants of
the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ
Microbiol 1990, 56:1378–1385.

28. Perez C, Fernandez LE, Sun JG, Folch JL, Gill SS, Soberon M, Bravo A: Bacillus
thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by
functioning as a membrane-bound receptor. Proc Natl Acad Sci USA 2005,
102:18303–18308.

doi:10.1186/1756-3305-5-220
Cite this article as: Ketseoglou and Bouwer: The susceptibility of five
African Anopheles species to Anabaena PCC 7120 expressing Bacillus
thuringiensis subsp. israelensis mosquitocidal cry genes. Parasites &
Vectors 2012 5:220.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Findings
	Conclusions

	Background
	Methods
	Results and discussion
	Competing interests
	Authors´ contributions
	Acknowledgements
	References

