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1 Introduction

Recently, there has been much attention to Lifshitz black holes [1–5], because they may give

rise to a new perspective on a condensed matter physics via the Lif/CFT correspondence

which is one of the extension of the AdS/CFT correspondence [6–10]. Besides various appli-

cations in the dual field theory context, this type of black holes draw some renewed interests

in traditional approaches to black hole physics, partly because Lifshitz black holes have the

anisotropic scaling behavior between time and space. In this regard, one may recall that the

AdS/CFT correspondence or holography has shed new light on the traditional approach to

a gravity theory. Concretely, conserved charges of black holes, which are identified with cor-

responding physical quantities of the dual field theory, can be addressed in the context of the

holographic renormalization [11–14]. In the light of the power of the AdS/CFT correspon-

dence, it is strongly anticipated that the holographic approach should give us essentially the

same results on conserved charges of black holes as the traditional approach. Since there

exist some apparent differences in the formulations, there were some studies on the relation

between the holographic and the traditional approaches to conserved charges [15–18].

Among the traditional approaches to conserved charges, the Abbott-Deser-Tekin

(ADT) method, which is covariant, has been known to produce the completely consis-

tent results with the AdS/CFT correspondence in various cases. According to the general

arguments given in [17], any consistent covariant method for charges should give us es-

sentially the same results with the holographic approach known as boundary stress tensor

method [11, 14]. Therefore, it is very intriguing if there would be an inconsistency between

results from the ADT method and the boundary stress tensor method, since the argument

in ref. [17] depends on the general structure of a gravity theory. If one could find an ex-

ample which reveals an inconsistency between those formalisms, one needs to reconsider
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which steps or which methods break down in such a case. In fact, in a specific higher cur-

vature theory of gravity, it has been known that there is a conflict between the traditional

ADT method [19] and the boundary stress tensor one [20–22]. More specifically, the mass

expression of Lifshitz black holes in new massive gravity from the traditional ADT method

is claimed to be given by MDS = 7r4H/(8Gℓ4) where rH = ℓ
√
m [19], while the one from

other methods is calculated as M = r4H/(4Gℓ4) [21, 23, 24].

However, it has not yet been known that the above conflict is essential or just superfi-

cial, since identifying conserved charges of black holes becomes rather involved in the case

of Lifshitz black holes in a higher curvature gravity. One may guess that the consistency

of the boundary stress tensor method with the Euclidean action approach [24] and dila-

ton gravity approach [23] indicates the mass expression from the boundary stress tensor

method is correct one in this specific case. Furthermore, the claimed expression for the

mass of the Lifshitz black hole from the traditional ADT method [19] does not satisfy the

first law of black hole thermodynamics while the others respect the first law. In this pa-

per we would like to address this issue and resolve the conflict between the ADT method

and the holographic method by using the appropriate adaptation of the traditional ADT

method developed in [25].

In the original ADT method [26–30], which is a covariant generalization of the Arnowit-

Deser-Misner(ADM) method [31], the metric is linearized as gµν = ḡµν +hµν at the asymp-

totic infinity where ḡµν denotes a background metric and hµν does the fast vanishing per-

turbed metric. This fast falloff condition of the perturbed metric allows us to obtain the

finite conserved charges by this linearization. However, in the three-dimensional Lifshitz

black hole, it is not so clear that the above fast falloff condition on the perturbed metric hµν
is satisfied. More explicitly, the metric of the Lifshitz black hole may be taken in the form of

ds2 = −gttdt
2+grrdr

2+r2dφ2 with gtt = r6/ℓ6−mr4/ℓ4 and grr = (r2/ℓ2−m)−1. By taking

the background geometry as the case of m = 0 in this metric, one can see that, in the metric

component grr, the background metric ḡrr = ℓ2/r2 becomes exclusively dominant term at

the asymptotic infinity, while the perturbed metric hrr vanishes sufficiently fast there. On

the other hand, though the dominant term of the metric component gtt at the asymptotic

infinity seems to be the background metric ḡtt = r6/ℓ6, the perturbed metric component

htt = mr4/ℓ4 is also divergent there. So, it is a little bit subtle to regard htt as the perturbed

part at the asymptotic infinity even though their ratio asymptotically vanishes. Conse-

quently, the falloff boundary condition of Lifshitz black holes violates the original assump-

tion in the ADT method. That is to say, the htt component in this case falls off too slowly

to ensure the validity of the linearized ADT formalism even at the asymptotic infinity.

There is a quasilocal generalization of the ADT formalism to obtain conserved charges

of black holes [32], which can be used even with slow falloff conditions. Furthermore, this

formulation allows us to identify conserved charges in the interior region of black holes

not just at the asymptotic infinity in the sense of quasilocal charges. Though the off-

shell ADT potential as an extension of the original ADT method was used in the higher

derivative theory of gravity for computational convenience [33, 34], it was shown to have

more interesting aspects: the off-shell ADT potential is equivalent to the linearized off-shell

Noether potential up to the surface term [32]. This means that the off-shell ADT method
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can be related directly to the covariant phase space formalism [35–39] at the off-shell level.

By integrating the ADT potential along the one-parameter path in the solution space (i.e.

the on-shell space) [39–43], quasilocal conserved charges can be calculated [32]. These

charges are consistent with the traditional ADT method at the linearized level and provide

us the consistent non-linear completion of the linearized ADT method. As a matter of fact,

there is a more practical advantage in this formulation: the quasilocal conserved charges

corresponding to Killing vectors can be obtained from the Lagrangian without resorting

to the complicated equations of motion even for a higher curvature gravity. By using

this formulation or adaptation of the original ADT method, which may be called as the

quasilocal ADT method, we would like to address the above issue on the conserved charges.

There exists another method presented by Padmanabhan in order to derive conserved

charges of black holes directly from the relationship between gravitational field equations

and thermodynamics [44]. The essential ingredient in this method is to rearrange the equa-

tion of motion in order to obtain the form of thermodynamic first law of black holes. Since

this approach uses the local equation of motion not the integration of a certain potential on

the asymptotic space, conserved charges obtained in this approach can be regarded as the

quasilocal quantities. In the simplest model of static spherically symmetric black holes in

the presence of matters, the equation of motion is decomposed into three parts; the first one

corresponds to the mass, the second one does the entropy, and the last one does the pres-

sure. These eventually yield the mass, entropy, and pressure of black holes when one can

identify the black hole temperature appropriately. In this approach, one may note that the

pressure may have classical or quantum-mechanical origins. Particularly in the latter case,

the quantum effects can be incorporated into equations of motion through the metric func-

tion by yielding the semi-classical equations of motion. At first glance, this approach seems

to be different from the standard first law of black hole thermodynamics. However, one may

notice that after the pressure term is eliminated appropriately the mass and entropy can be

matched to the conventional ones so that they are coincident with the ADM mass and the

Wald entropy [45, 46]. In association with thermodynamic phase transition, this pressure

term might be relevant. In this context one may note that there are some attempts on

including pressure-volume type terms in the first law of black hole thermodynamics [47–50].

In this work, we would like to obtain the quasilocal mass and entropy for the three- and

five-dimensional Lifshitz black holes by using the quasilocal ADT method. The mass ex-

pressions of those black holes turn out to be invariant along the radial direction. As a check

of our mass expression which is valid even near the horizon, we rederive the identical expres-

sion by using the Padmanabhan’s quaislocal method. In the end we can show that the first

law of black hole thermodynamics or/and boundary stress tensor method are completely

consistent with the quasilocal ADT method. In section 2, we recapitulate the quasilocal

formulation of conserved charges in ref. [32], which provides a very convenient way to de-

termine quasilocal conserved charges of black hole. By applying this formula to the Lifshitz

black holes in section 3, we find the quaislocal mass and entropy of the black hole, and check

that the ADT method is consistent with the first law of black hole thermodynamics and

eventually with boundary stress tensor method [21]. In section 4, the mass and entropy of

the Lifshitz black hole are obtained by the Padmanabhan method and the results turn out

to be the same with those in section 3. Finally, some discussion will be given in section 5.
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2 Quasilocal formulation of conserved charges

In this section we would like to encapsulate the formulation of quasilocal conserved charges

developed in ref. [32], which may be regarded as the quasilocal adaption of the traditional

ADT method. Let us consider a variation of action with respect to gµν for a generally

covariant theory of gravity in D-dimensional spacetime, which is given as

δI[g] =
1

κ

∫

dDx[
√−gGµνδg

µν + ∂µΘ
µ(g; δg)], (2.1)

where Gµν = 0 is the equation of motion for the metric and Θµ denotes the surface term.

The transformation of the metric, under the diffeomorphism ζ, is δζgµν = ∇µζν+∇νζµ, and

the corresponding transformation of the Lagrangian density, L is given by δζ(L
√−g) =

∂µ(ζ
µ√−gL). By using the Bianchi identity ∇µGµν = 0, one can derive the identically

conserved off-shell Noether current J µ from eq. (2.1) as

Jµ(g; ζ) ≡ ∂νK
µν = 2

√−gGµν(g)ζν + ζµ
√−gL(g)−Θµ(g; ζ), (2.2)

where Kµν is called as the off-shell Noether potential. On the other hand, the on-shell

ADT current is defined by Jµ = δGµνξν [26–30], where ξν is a Killing vector and δGµν

denotes the generic variation of the generalized Einstein tensor. This ADT current can be

elevated to the off-shell current [32–34] in the form of

Jµ
ADT ≡ ∇νQ

µν
ADT = δGµνξν + Gµαδgανξ

ν − 1

2
ξµGαβδgαβ +

1

2
gαβδgαβGµ

ν ξ
ν , (2.3)

where Qµν
ADT is coined as the off-shell ADT potential.

Now, it can be shown that the off-shell ADT potential is related to the off-shell Noether

potential. To this purpose, the diffeomorphism ζ is taken as a Killing vector ξ in the

Noether potential. Assuming that the Killing vector is preserved as δξµ = 0, one can use

the following relation on the surface term [35, 37],

LξΘ
µ(g; δg)− δΘµ(g; ξ) = 0, (2.4)

where Lξ represents a Lie derivative along the Killing vector ξ and the second term denotes

the generic variation of the surface term with respect to the metric gµν . This relation com-

bined with the off-shell ADT and Noether potentials yields a key relation for the potentials,

√−gQµν
ADT(g; δg) =

1

2
δKµν(g; ξ)− ξ[µΘν](g; δg). (2.5)

Then, one can calculate the linearized quasilocal ADT charge by using the ADT potential as

δQ(ξ) =
2

κ

∫

B

dD−2xµν
√−gQµν

ADT, (2.6)

where the integration domain B does not need to be located at the asymptotic infinity.

Since we have adopted the off-shell potential, one may take a more generic linearization in

this formulation than the one in the conventional on-shell ADT method. In the traditional
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ADT method used in ref. [19], the linearization is taken only at the asymptotic infinity

under the fast falloff boundary condition which is not satisfied in this case. On the

contrary, our linearization is taken along the one-parameter path in the solution space

and then the integration is performed along that path as Q(ξ) =
∫ 1
0 ds δQ(ξ|sM), where

the free parameter M is parametrized by the variable s such as 0 ≤ sM ≤ M. This

linearization is also advocated in other quasilocal formulations [39, 39–43]. By using the

relation (2.5) and the formula (2.6) with the one-parameter path integral, the quasilocal

conserved charge can be finally written as [32]

Q(ξ) =
1

κ

∫

B

dD−2xµν

(

∆Kµν(ξ)− 2ξ[µ
∫ 1

0
ds Θν](ξ | sM)

)

, (2.7)

where ∆Kµν(ξ) denotes the finite difference Kµν
s=1(ξ)−Kµν

s=0(ξ) between the Noether poten-

tial of the black hole solution, Kµν
s=1(ξ) and the one of the vacuum Kµν

s=0(ξ). The symmetry

given in terms of the Killing vector ξ will determine the corresponding charge from eq. (2.7).

This formulation can cover the black hole entropy since the entropy is a kind of conserved

charge as was shown by Wald [36], which is extended to the case of a theory of gravity with a

gravitational Chern-Simons term [25] and to the case of the asymptotic Killing vectors [51].

3 Thermodynamic first law in the quasilocal method

We are now in a position to present the explicit mass expression of the three- and five-

dimensional Lifshitz black holes by employing the quasilocal formulation introduced in the

previous section. The action for a generic quadratic curvature gravity theory is given by

I=

∫

dDx
√−g

[

1

κ
(R+ 2Λ) + αR2 + βRµνR

µν + γ(RµνσρR
µνσρ − 4RµνR

µν +R2)

]

. (3.1)

The equations of motion for the above action are given by [19]

Gµν ≡ 1

κ
Gµν + αAµν + βBµν + γCµν , (3.2)

where

Gµν =Rµν −
1

2
gµνR− Λgµν ,

Aµν = 2RRµν − 2∇µ∇νR+ gµν

(

2∇σ∇σR− 1

2
R2

)

,

Bµν = 2RµρνσR
ρσ −∇µ∇νR+∇σ∇σRµν +

1

2
gµν(∇σ∇σR−RρσR

ρσ),

Cµν = 2RRµν−4RµρνσR
ρσ+2RµλρσR

λρσ
ν −4RµρR

ρ
ν − 1

2
gµν(RλδρσR

λδρσ−4RρσR
ρσ+R2) .

In what follows, the gravitational constant κ, the cosmological constant Λ, and the other

coupling constants α, β, γ will be chosen appropriately according to the specific models

taken into consideration.
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3.1 Three-dimensional Lifshitz black hole

In the three-dimensional case, various parameters are chosen as Λ = 13/(2ℓ2), α =

−3ℓ2/4κ, β = 2ℓ2/κ, γ = 0, and κ = 16πG. The Lifshitz black hole solution to the

equations of motion (3.2) is given by [4]

ds2 = −
(

r2

ℓ2

)z (

1− mℓ2

r2

)

dt2 +
1

r2

ℓ2

(

1− mℓ2

r2

)dr2 + r2dφ2, (3.3)

where m is a certain integration constant and the dynamical exponent is fixed as z = 3 in

order to satisfy the equations of motion. In this case, the location of the horizon is given

by rH = ℓ
√
m. Using the generic formulas for higher curvature terms given in ref.s [32, 52],

Θµ(δg) = 2
√−g[Pµ(αβ)γ∇γδgαβ − δgαβ∇γP

µ(αβ)γ ] , Pµνρσ ≡ ∂L

∂Rµνρσ
, (3.4)

Kµν =
√−g[2Pµνρσ∇ρξσ − 4ξσ∇ρP

µνρσ], (3.5)

and taking the one-parameter path along the integration constantm, it is straightforward to

obtain the mass of the Lifshitz black hole. Some detailed steps are as follows. By expanding

gµν with respect to an infinitesimal parametrization m+ dm, one can obtain δgµν and Θµ

in terms of m and dm. Let us take the time-like Killing vector as ξt = (−1, 0, 0) with

the appropriate overall sign to avoid the negative mass and the negative entropy. Now,

it is straightforward to compute the Noether potential and the surface term. After the

integration along the one-parameter path along dm, one can obtain

∆Ktr =
8mr2

ℓ2
,

∫ m

0
dm Θr = −2m2 +

8mr2

ℓ2
. (3.6)

Note that the Noether potential for the vacuum solution vanishes, i.e., Ktr
s=0 = 0. Finally,

it can be shown that the mass M of the Lifshitz black hole is given by

M ≡ Q(ξt) =
1

16πG

∫ 2π

0
dφ

√
h

[

2ǫtr∆Ktr − 2ǫtrξ
t

∫ 1

0
dsΘr

]

=
r4H
4Gℓ4

, (3.7)

where h denotes determinant of the induced metric. We would like to emphasize that this

mass expression is valid even in the interior region of the black hole space time not only at

the asymptotic infinity. In fact, our mass expression is invariant along the radial coordinate

r, which reveals the quasilocal nature of our construction of the ADT charges.

The expression in eq. (3.7) at the asymptotic infinity is coincident with the result which

has been obtained from the other methods [21, 23, 24] but it is different from the claimed

expression MDS = 7r4H/(8Gℓ4) in ref. [19].

Note that in our approach we have employed the linearization of parameters in the black

hole solutions instead of the vacuum solution and integrated such linearized expression

along the one-parameter path in the solution space in order to evaluate finite physical

– 6 –
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quantities. This approach has been advocated in refs. [25, 39, 40, 42] and different from the

prescription adopted in ref. [19]. As was mentioned in the introduction, it is not sufficient,

in the case of Lifshitz black holes, to take the linearization around the vacuum solution

for obtaining the finite mass expression of Lifshitz black holes, since the falloff boundary

condition in this case violates the validity of the traditional linearized ADT method.

As a side remark, we would like to mention that the entropy from our formulation by

using eq. (2.7) can be obtained as

S =
2πrH
G

, (3.8)

which is identical with the Wald formula [36, 38]. In fact, this entropy in our quasilocal

formulation should be identical with the Wald formula, because it is shown to be equivalent

to the covariant phase space formalism generically [25, 32]. The above entropy computation

is just the check of our quasilocal construction in this specific Lifshitz black hole case. By

noting that the Hawking temperature is determined as TH = r3H/(2πℓ4) from the definition

of the surface gravity, the black hole mass (3.7) and entropy (3.8) satisfy the first law of

black hole thermodynamics as dM = THdS.

3.2 Five-dimensional Lifshitz black hole

For our convenience in the five-dimensional black hole, the parameters in the action (3.1)

are chosen as Λ = 2197/(551ℓ2), α = −16ℓ2/725, β = 1584ℓ2/13775, γ = 2211ℓ2/11020,

and κ = 1. The metric solution was obtained as [5]

ds2 = −
(

r2

ℓ2

)z
(

1− mℓ5/2

r5/2

)

dt2 +
1

r2

ℓ2

(

1− mℓ5/2

r5/2

)dr2 + r2dΩ2
3, (3.9)

where Ω3 is the three-dimensional angular part, z = 2 for the five-dimensional Lifshitz

black hole, and rH = ℓm2/5 denotes the horizon location. In this example, the time-like

Killing vector is taken as ξt = (1, 0, 0, 0, 0). By using eqs. (3.4) and (3.5) for higher

curvature terms, the surface term and Nother potential are calculated respectively as
∫ m

0
dm Θr =

33m

2755ℓ
(382mℓ3 − 933ℓ

1

2 r
5

2 ), (3.10)

∆Ktr =
33

5510ℓ3
(1072r5 + 719m2ℓ5 − 1866mr

5

2 ℓ
5

2 ). (3.11)

Since the steps are similar to the three-dimensional case, we just present the final mass

expression for the five-dimensional Lifshitz black hole

M =
297r5H
1102ℓ3

Ω3, (3.12)

which is different from the mass expression MDS = 536r5HΩ3/(2755ℓ
6) given in ref. [19].

The entropy can also be read off from our quasilocal formulation as

S =
396πr3H
551

Ω3 . (3.13)
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The Hawking temperature is given by TH = 5r2H/(8πℓ3). It can be easily shown that

the mass (3.12) respects the first law of thermodynamics with the entropy (3.13) such as

dM = THdS.

4 Thermodynamic first law in Padmanabhan method

In this section, we will derive the conserved charges of Lifshitz black holes and study the

first law of thermodynamics by the use of relation between the thermodynamic first law and

equations of motion based on the Padmanabhan method [44]. This computation confirms

our claim that our quasilocal mass expression of Lifshitz black hole is valid even near the

black hole horizon. In the original work, the mass, entropy, and pressure can be read off

from the equation of motion, in particular, the entropy is written as the well-known area

law and the pressure depends on classical or quantum-mechanical matter. Note that the

action (3.1) consists of two parts; one is the Einstein-Hilbert action with the cosmological

constant and the other is composed of the higher-curvature terms. So, there are largely

two options whether these two pieces of action should be treated as a whole, otherwise the

higher-curvature terms should be treated as the independent source which is of relevance

to the pressure term. Now, we will choose the first option because in the absence of the

pressure term it was shown that the mass and entropy were written as the ADM mass and

the Wald entropy in Einstein gravity [45].

4.1 Three-dimensional Lifshitz black hole

Let us rewrite the metric (3.3) for z = 3 for convenience as

ds2 = −r4

ℓ4
f(r)dt2 +

1

f(r)
dr2 + r2dθ2, (4.1)

using the function defined by f(r) ≡ r2/ℓ2 − m. The Hawking temperature of the black

hole (4.1) is written as

TH =
r2Hf ′(rH)

4πℓ2
. (4.2)

Let us consider the equation of motion of Gr
r = 0, then it is written at the horizon rH as

Gr
r =

1

8r2Hℓ2
[−52r2H + 4aℓ2f ′(rH) + 12ℓ4f ′(rH)2

− 2aℓ4f ′(rH)f ′′(rH)− 2a2ℓ4f ′(rH)f ′′′(rH) + a2ℓ4f ′′′(rH)2]

= 0. (4.3)

Note that f ′′(rH) = 2/ℓ2 and f ′′′(rH) = 0, so that the equation of motion (4.3) can be

factorized as

Gr
r =

8ℓ2

r2H

(

f ′(rH)

2
+

rH
ℓ2

)(

f ′(rH)

2
− rH

ℓ2

)

= 0. (4.4)

The factors such as 8ℓ2/r2H and (f ′(rH)/2+rH/ℓ2) are always positive, what it means is that

f ′(rH)

2
drH − rH

ℓ2
drH = 0, (4.5)

– 8 –
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after multiplying drH . We want to rewrite this equation in the form of the first law of

black hole thermodynamics. By taking into account a proper factor, we can get

0 =
r2Hf ′(rH)

4πℓ2
d

(

2πrH
G

)

− d

(

r4H
4Gℓ4

)

. (4.6)

For a given Hawking temperature (4.2), it can be shown that eq. (4.6) is manifestly written

in the form of the first law of black hole thermodynamics as 0 = THdS − dM . Then, it is

natural to identify the mass and entropy of the three-dimensional Lifshitz black hole with

M = r4H/(4Gℓ4), S = 2πrH/G, respectively, where they are exactly coincident with those

in section 3.

4.2 Five-dimensional Lifshitz black hole

Let us consider the metic (3.9) for z = 2 as

ds2 = −r2

ℓ2
g(r)dt2 +

1

g(r)
dr2 + r2dΩ2

3, (4.7)

where the function is defined as g(r) ≡ r2/ℓ2 −m(ℓ/r)1/2, and the Hawking temperature

is given by

TH =
rHg′(rH)

4πℓ
. (4.8)

In a similar way to the three-dimensional case, using g′′(rH) = 2/ℓ2 −
3mℓ1/2/(4r

5/2
H ), g′′′(rH) = 15mℓ1/2/(7r

1/2
H ), the equation of motion Gr

r = 0 is written as

Gr
r = − 3

11020m4/5ℓ2
(2909m2/5 + 208ℓg′(rH))(5m2/5 − 2ℓg′(rH))

= 0. (4.9)

By multiplying drH with some constants to the latter part of equation of motion

5m2/5 − 2ℓg′(rH) = 0, one can get

0 =
rHg′(rH)

4πℓ
d

(

396π

551
r3HΩ3

)

− d

(

297

1102ℓ3
r5HΩ3

)

. (4.10)

Using the temperature (4.8), the above equation is written in the form of the first law of

thermodynamics of 0 = THdS − dM , and the mass and entropy are easily identified with

M = 297r5HΩ3/(1102ℓ
3), S = 396πr3HΩ3/551. As expected, they are compatible with the

expressions in the previous section 3.

5 Discussion

In this work, we have calculated the mass of the three- and five-dimensional Lifshitz black

holes by using the quasilocal formulation of the conserved charges and obtained the quasilo-

cal mass consistent with the first law of thermodynamics, which has also been confirmed

by the Padmanabhan method which uses the relation between the equations of motion

and the first law of black hole thermodynamics. The advantage for these two methods
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resides in the fact that those do not resort to the background vacuum metric, so that the

result is naturally independent of the vacuum metric. We have resolved the discrepancy

in the mass expression of Lifshitz black holes between the naive ADT method [19] and

the other ones by showing that the correct way to incorporate the ADT method is to use

one-parameter path in the solution space or in other words to use the nonlinear completion

of the linearization. This resolution is completely parallel to the case of warped AdS black

holes which also requires such a nonlinear completion of the naive ADT method [25, 33].

One may say that the first law of black hole thermodynamics should always hold in

our quasilocal formulation of the ADT method, because it is shown to be equivalent to the

covariant phase space formalism [25, 32] and the first law of black hole thermodynamics is

proved to hold in that formalism by Wald [36]. However, one needs to be cautious about

this statement since there are some assumptions in this proof of the first law of black hole

thermodynamics. For instance, we have assumed the smoothness or continuity of one-

parameter path in the solution space in order to perform the integration along that path,

and we have also assumed the validity of Stokes’ theorem in this formal proof. In addition,

there is issue on what kind form of the first law of thermodynamics should be used especially

in higher derivative theory of gravity. One of such modification of the simplest form of the

first law of black hole thermodynamics was studied by allowing some chemical potentials in

the context of new massive gravity [53]. In the next paragraph, another possibility of such

modification will be commented by allowing a pressure term. Therefore, it may have some

meaning to check the first law of black hole thermodynamics explicitly because there was

a claim that the ADT method is inconsistent with the first law of thermodynamics [19].

Though we have resolved the discrepancy in the mass expression of Lifshitz black holes,

it might be intriguing to discuss the interpretation of the result in [19] in the framework

done by Padmanabhan method [44] by which the relationship between gravitational field

equations and thermodynamics can be found in the simplest context. The Lagrangian

is assumed to be two parts; one is the Einstein tensor with the cosmological constant

and the other consists of the higher curvature terms, for instance, L = L0 + L1, where

L0 = R+ 13/ℓ2 and L1 = 3ℓ2R2/4 + 2ℓ2RµνR
µν especially in three dimensions. Then, the

first law of thermodynamics corresponding to the equation of motion can be written by

reshuffling eq. (4.3) as −dM̃ + THdS̃ = P̃ dV , where M̃ = 13r4H/(48Gℓ4), S̃ = πrH/(3G),

P̃ = −5rHf ′(rH)/(24πGℓ2) − r2H/(24πGℓ4) and V = πr2H . The right hand side of the

pressure term P̃ comes from the two higher curvature terms in L1 which play a role of source

term in gravitational equations based on the original procedure in ref. [44]. Note that the

mass and entropy are not familiar with the conventional ones. To overcome this problem,

the pressure term can be eliminated so that it can be split into two parts and eventually

they are absorbed into the mass and entropy, respectively. Then, the resulting equation

becomes the desired expressions as dM = THdS where M = r4H/(4Gℓ4) and S = 2πrH/G,

so that the mass and entropy are the same with eqs. (3.7) and (3.8), respectively. In

other words, it means that if we allow the pressure term, then the mass and entropy can be

changed according to the way to separate the action. Conversely speaking, the form of mass

can be written in a different way if the pressure term is allowed in the first law. So, one

may ask it is possible to accommodate MDS if we allow the pressure term. Supposing that

– 10 –



J
H
E
P
0
7
(
2
0
1
4
)
0
0
2

a certain pressure term exists in the first law of black hole thermodynamics and combining

the claimed MDS with the Wald entropy, we obtain the pressure as P = −5r2H/(4πGℓ4)

which is unfortunately incompatible with the above pressure P̃ . This means that it is very

hard to accommodate the mass MDS as a conserved charge in these frameworks
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