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Circulating Extracellular Vesicles Contain miRNAs
and are Released as Early Biomarkers for Cardiac Injury
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Abstract Plasma-circulating microRNAs have been impli-
cated as novel early biomarkers for myocardial infarction
(MI) due to their high specificity for cardiac injury. For swift
clinical translation of this potential biomarker, it is important
to understand their temporal and spatial characteristics upon
MI. Therefore, we studied the temporal release, potential
source, and transportation of circulating miRNAs in different
models of ischemia reperfusion (I/R) injury. We demonstrated
that extracellular vesicles are released from the ischemic myo-
cardium upon I/R injury. Moreover, we provided evidence
that cardiac and muscle-specific miRNAs are transported by
extracellular vesicles and are rapidly detectable in plasma.
Since these vesicles are enriched for the released miRNAs
and their detection precedes traditional damage markers, they
hold great potential as specific early biomarkers for MI.
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CVD Cardiovascular disease
CK-MB Creatine kinase MB
cTn Cardiac troponin
EV Extracellular vesicles
hFC High-resolution flow cytometry
I/R Ischemia/reperfusion
LAD Left anterior-descending coronary artery
LDH Lactate dehydrogenase
MI Myocardial infarction
miRNA MicroRNA

Introduction

Upon myocardial infarction (MI), the heart releases different
enzymes, growth factors, and cytokines, which can serve as
markers of cardiac injury. Cardiac troponin (cTn) and creatine
kinase MB (CK-MB) are the most commonly used bio-
markers for MI [1, 2]. Although high-sensitive cTn assays
can detect cTn 2–3 h after onset of complaints, guidelines still
advise to do serial measurements after 6–9 h for correct diag-
nosis of MI [1]. Due to the relative late rise of these bio-
markers, 10 to 15 % of patients presenting with a MI have a
negative blood test upon arrival in the hospital [3, 4]. Delayed
confirmation of MI results in increased morbidity and mortal-
ity. On the contrary, delayed ruling out of MI prolongs the
time spent in the hospital and increases healthcare costs [5].
To guide immediate treatment in the emergency department
and to minimize healthcare costs, there is an ongoing need for
novel early biomarkers for MI [6].
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Increasing evidence suggests that circulating microRNAs
(miRNA) can be potential biomarker candidates due to their
highly specific elevation in blood upon stress, including MI
[3, 7, 8]. MiRNAs are short (∼22 nucleotides) non-coding
RNAs [9] that regulate gene expression at a post-
transcriptional level [10, 11]. Besides their regulatory intracel-
lular function, they can be released into the extracellular en-
vironment where they can contribute to intercellular signaling
mechanisms. Circulating miRNAs are closely associated with
proteins, lipids, and extracellular vesicles (EV) [12–15].

In a large cohort of patients with suspected acute coronary
syndrome (ACS) [3], we found that several miRNAs
(miRNA-1, -21, -146a, -208, and -499) are increased in plas-
ma upon injury and have a good diagnostic value to predict
MI. However, important detailed information regarding the
temporal release profile and potential source and transporta-
tion of these miRNAs in the circulation is largely lacking.

EV are the most investigated entities of extracellular
miRNA transport and include vesicles derived from the plas-
ma membrane and exosomes, which originate from the
endosomal pathway [16]. Exosomes are small lipid bilayer
vesicles (30–100 nm) with a density of approximately 1.10–
1.17 g/ml [17, 18]. They are enriched with membrane proteins
(e.g., CD9 and flotillin-1 [19]) and contain (specific) cellular
cargo [17, 20].

Interestingly, high numbers of microparticles and EV are
associated with the presence of cardiovascular disease (CVD)
[21]. It is demonstrated that the release of EV correlates with
the severity of cardiac injury [22]. In addition, plasma EV-
packed protein and miRNAs showed potential benefit as bio-
markers in the diagnosis of CVD [23, 24]. The combination of
both the amount and content of EV in CVD consequently
holds great potential for EVas biomarker of MI [21].

Since EV represent major transport vehicles for circulating
miRNAs, we assessed the temporal release of extracellular
vesicles by the injured myocardium. Moreover, we investigat-
ed the potential of EV-linked miRNAs as early biomarkers for
MI.

Methods

Animal experiments were approved by the Animal Ethical
Experimentation Committee of Utrecht University and carried
out in accordance with the Guide for Care and Use of
Laboratory Animals.

Mouse Model

Myocardial Ischemia Reperfusion

To assess EV release after myocardial infarction in vivo, male
C57BL/6 mice (aged 10–12 weeks) were anesthetized

intraperitoneally with fentanyl 0.05 mg/kg, midazolam
5 mg/kg, and medetomidine 0.5 mg/kg. Myocardial infarction
was induced by ligation of the left anterior descending coro-
nary artery (LAD) as previously described [25]. After 30 min
of occlusion, the ligature was removed to allow reperfusion of
the myocardium for another 2 h (see Fig. 1a) [26]. For control
experiments, plasma was obtained from healthy or sham-
operated mice. The sham operations included all of the proce-
dures used for I/R, including length of operation procedure,
except the occlusion and successive reperfusion of the LAD.
Blood was collected via cardiac puncture of the left ventricle
and twice centrifuged at 2000×g for 20 min to isolate the
plasma fraction.

Operations were performed in three different experiments.
The total number of mice included in the study is n = 8
(healthy), n = 7 (sham), and n = 9 (I/R). As the amount of
obtained plasma per mice was low and the amount needed
for analysis high, pooling of samples was performed for
FACS and Western blot analyses.

To assess the extent of cardiac injury, individual plasma
levels of total lactate dehydrogenase (LDH) were determined
by LDH based toxicology assay kit (Sigma; TOX7), accord-
ing to manufactures protocol.

Langendorff

C57BL/6 mice were injected with heparin 100 IU/kg via the
tail vein to prepare for Langendorff retrograde perfusion
(n = 4) [27]. In short, mice were anesthetized as described
above and hearts were quickly excised and placed in ice-
cold tyrode buffer solution (NaCl 124 mM; KCl 4.7 mM;
MgCl2 1.0 mM; NaHCO3 24 mM; CaCl2 1.3 mM; glucose
11.0; pyruvic acid 5.0 mM, pH = 7.4). Explanted mouse hearts
were cannulated through the aortic opening and connected to
the Langendorff perfusion system to allow for 2–3 h of retro-
grade perfusion. The perfusion buffer was kept at 37 °C and
was gassed with carbogen (85%O2 + 15%CO2) at a constant
pressure of 73 mmHg. For induction of myocardial ischemia,
the LAD was ligated. During perfusion, the heart flow-
through was collected for isolation of EV.

Porcine Model of Myocardial Infarction

Female Dutch Landrace pigs (approx. 70 kg, n = 6) were anes-
thetized in the supine position and intubated with an endotra-
cheal tube. The animals were mechanically ventilated by pos-
itive pressure ventilation with a mixture of oxygen and air
(FiO2 0.5). General anesthesia and analgesia was maintained
with midazolam (0.5 mg/kg/h; Roche), sufentanil bromide
(2 μg/kg/h; Janssen-Cilag), and pancuronium bromide
(0.1 mg/kg/h; Organon) as previously described [28]. During
the entire procedure, the electrocardiogram, arterial pressure,
and capnogram were continuously monitored. After
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administration of heparin, MI was created by percutaneous
balloon inflation of the LAD below the second bifurcation
[29]. Ischemia lasted for 90 min upon which deflation of the
angioplasty balloon caused restoration of the blood flow and
reperfusion of the tissue. During the procedure, blood samples
(citrate) were drawn from the arteria femoralis at several time
points: (1) pre-ischemia, (2) 60min after occlusion, (3) 90min
after occlusion, (4) 1 h after reperfusion, and (5) 2 h after
reperfusion (see Fig. 3a).

Citrate blood was centrifuged twice at 2000×g for 20 min
to isolate plasma, which was stored at −80 °C and used for
further analysis. Troponin I levels were analyzed using a clin-
ical chemistry analyzer (AU5811) with a cut-off value of
40 ng/l.

Extracellular Microvesicles

Isolation of Extracellular Microvesicles

To isolate EV, which sediment at ≥10,000×g, mouse plasma
samples were diluted with PBS (1:1) and centrifuged for
30 min at 2000×g, followed by 1 h at 100,000×g
(Beckmann Coulter LE-80 K Optima, SW60). Pellets with
EV were resuspended in PBS and stored for flow cytometric
analysis. EV, including exosomes, frommouse and pig plasma
and Langendorff perfused hearts were isolated by differential
centrifugation, as described before [30, 31]. In short, diluted
plasma or flow-through was successively centrifuged at 2000,
10,000, and 100,000×g. The resulting 100,000×g pellet was
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Fig. 1 Release of extracellular
microvesicles after cardiac
ischemia/reperfusion injury in
mice. a Overview of I/R injury
model in C57BL/6 mice. b
Lactate dehydrogenase (LDH)
levels in plasma of healthy control
mice (n = 5, reference value),
sham-operated (n = 7), and I/R-
injured (n = 7) mice at
t = 150 min. c Representative
images of high-resolution flow
cytometric analysis of isolated
PKH67-labeled extracellular
microvesicles (EV) from healthy
control mice (middle panels) and
I/R-injured mice (bottom panels)
in different sucrose gradient
fractions. Density scatterplots
show reduced wide-angle forward
scatter (FSC) plotted against
PKH67 fluorescence. d Relative
time-based quantification of EV
from mouse plasma after I/R
injury (n = 3) and sham operation
(n = 1) demonstrated a significant
increase in vesicle density upon
I/R injury, compared to healthy
control mice (n = 3, reference
value) at t = 150 min. Bars
represent mean fold differences,
compared to healthy control:
*p < 0.05 and $p < 0.01
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resuspended in PBS and centrifuged again at 100,000×g. The
washed EV pellet was resuspended in a small volume of PBS
and the EV protein concentration was determined with the
BCA protein assay kit (ThermoScientific). EV were stored
at 4 °C until used for electron microscopy and Western blot
analysis.

Isolation of pig plasma-derived EV (n = 4), to be used for
miRNA analysis, was performed by Exoquick isolation, ac-
cording to the manufacturers protocol (System Biosciences).
In short, plasma was centrifuged for 30 min at 10,000×g to
remove larger vesicles, and 250 μl of the supernatant was
added to 63 μl Exoquick. The final pellet was resuspended
in diethylpyrocarbonate (DEPC) water and stored in Trizol at
−80 °C.

Electron Microscopy

Isolated EV were resuspended in phosphate buffer containing
1 % glutaraldehyde (Polyscience; 00216) and subsequently
loaded onto formvar/carbon-coated electron microscopy
grids. Contrast of the samples was enhanced with uranyl ace-
tate (SPI; 02624-AB). Images were captured using a transmis-
sion electron microscope JEOL 1200EX [32, 33].

PKH-67 Labeling and Flow Cytometric Analysis

Mouse plasma-derived EV were stained with PKH-67
(Sigma; PKH67GL) to allow for particle detection by flow
cytometric analysis [34]. Briefly, EVor an equivalent volume
of PBS (control) were dissolved in Diluent C and stained with
7.5μMPKH-67. After 3min, PKH-67 labelingwas abrogated
using 50 μl of vesicle-depleted fetal bovine serum (FBS, cen-
trifuged O/N at 150,000×g). To separate PKH-67 labeled EV
from unincorporated PKH-67 label, the mixtures were sub-
jected to sucrose density gradient centrifugation, as previously
described [30]. Briefly, EV were resuspended in 2.5 M su-
crose and layered with decreasing molarities of sucrose before
centrifugation for 15 h at 200,000×g. After centrifugation, 12
fractions of consecutive densities were collected and diluted
ten times in double filtered PBS. As the lower three fractions
possibly contain unbound PKH-26, these fractions were ex-
cluded from further analysis. EV were analyzed by high-
resolution flow cytometry (hFC) using fluorescence threshold
triggering as previously described [34, 35]. By means of the
low plasma volume of mice, the samples for flow cytometry
contained plasma of 2–4 mice in order to obtain measurable
numbers of EV.

SDS-PAGE and Western Blots

Isolated and sucrose gradient-purified EV were resuspended
in 4× laemmli buffer and subjected to SDS-PAGE using pre-
casted gels (Novex; NP0335BOX). To compare different

experimental conditions (healthy control, sham, I/R injury),
samples were corrected for initial plasma volume and loaded
in separate lanes. Proteins were transferred to methanol-
activated PVDF membranes (Millipore; IPVH00010) to as-
sess the expression of microvesicle-enriched proteins.
Membranes were blocked in 5 % milk (Bio-Rad; 170-6404),
dissolved in PBS-T20 (0.1%), and incubated with appropriate
antibodies, diluted in 5 % milk-PBS-T20, flotillin-1 (0.4 μg/
ml; Santa-Cruz Biotechnology; SC25506), CD9 (0.5 μg/ml,
Santa-Cruz Biotechnology; SC53679), and CD63 (1.0 μg/ml,
BD; 556019). The proteins were detected with chemilumines-
cent peroxidase substrate using a Chemi Doc™XRS+ system
(Bio-Rad) and Image Lab™ software.

Assessment of Circulating miRNAs

RNA Isolation and Real Time-PCR (RT-PCR)

RNA from total pig plasma (n = 6) and plasma-derived EV
(n = 4) was extracted using the miRNeasy kit for plasma
(Qiagen) and Trizol LS, respectively. Both protocols were
performed according to the manufacturer’s descriptions. To
correct for isolation variability and to enable comparative
analysis of total plasma and plasma EV, C. Elegans miRNA-
39 (Quanta Biosciences) was added to the lysis buffer equal-
ized to the starting amount of plasma. RNA quantity and qual-
ity were measured with the Nanodrop (NanoDrop Products)
and the 2100 Small RNAAssay Bioanalyzer (Agilent). cDNA
was synthesized with qScript™ microRNA cDNA Synthesis
Kit (Quanta BioSciences), following the manufacturer’s pro-
tocol. Quantitative RT-PCR (qRT-PCR) was performed in
12.5 μl duplicate reactions with PerfeCTa SYBR Green
SuperMix (BioSciences), the PerfeCTa Universal PCR
Primer (Quanta Biosciences), and primers specific for
miRNA-1, miRNA-21, miRNA-133b, miRNA-146a,
miRNA-208b, and miRNA-499a.

The cycle number that exceeds the fluorescence threshold
is the threshold cycle (Ct value). Ct values that exceeded
40 cycles were treated as Ct 42. At missing time points, the
average of the other pigs in that specific group was used as the
cycle number for that time point. Ct values were normalized
by using the average Ct value of the spike-in miRNA.

Statistical Analysis

Statistical analyses were carried out using GraphPad Prism 6.0
software (GraphPad Software, La Jolla, USA). Differences in
miRNA levels were analyzed using a one-way or two-way
ANOVA test with a Dunnett’s test for multiple testing correc-
tions. P values <0.05 were considered statistically significant.
Error bars indicated standard error of the mean (SEM), unless
otherwise defined.

294 J. of Cardiovasc. Trans. Res. (2016) 9:291–301



Results

Ischemia Reperfusion Injury in Mice Leads to the Release
of Extracellular Microvesicles into the Circulation

To examine the release of extracellular microvesicles upon
extensive cardiac injury, we studied plasma from C57BL/6
mice after 30 min of ischemia followed by 2 h of reperfusion
(Fig. 1a). To demonstrate the extent of ischemia/reperfusion
(I/R) injury, the level of LDH was measured and showed a
15.5 ± 3.0-fold increase compared to sham-operated and con-
trol animals (Fig. 1a). As expected, LDH was also slightly
elevated in sham-operated animals (3.9 ± 0.4-fold) compared
to healthy controls.

At the same time, EV from plasma of these C57BL/6 mice
were isolated and analyzed by hFC [35]. Based on fluorescent
labeling with PKH67, individual vesicles were measured by
relative time-based quantification. The number of isolated EV
from plasma after I/R was increased in all density fractions
(Fig. 1c, d) with EV in the fractions with density ranges from
1.11–1.13 g/ml showing the highest increase (5.5 ± 0.4- and
6.4 ± 0.3-fold, respectively; Fig. 1d) in vesicle number
(p < 0.01). The effect of thoracic surgery is shown by an in-
crease in vesicle number after sham operation, however, to a
lesser extent compared to I/R injury (Fig. 1d).

The Ischemic Myocardium Contributes to the Release
of Extracellular Microvesicles after Cardiac Injury

To shed light on the vesicle distribution after injury, we
analyzed sucrose gradient-purified EV by Western blot-
ting and electron microscopy (EM). We observed the
presence of the EV-enriched proteins flotillin-1, CD9,
and CD63 in these vesicles (Fig. 2a, Online Resource
1a and b for CD9 and CD63, respectively). Flotillin-1
(and CD9) were mainly present in the EV fraction of
the sucrose gradient with a density of 1.08–1.18 g/ml.
The amount of flotillin-1, as a measure of EV number,
was 5.3 (±2.5)-fold increased after I/R compared to
healthy controls (Fig. 2b). In addition, isolated vesicles
were approximately 100 nm in size and had a lipid bi-
layer (Fig. 2c).

Next, we aimed at identifying whether the myocardi-
um could be a source of vesicle release upon I/R injury.
We harvested EV from healthy and LAD ligation-
induced ischemic hearts upon Langendorff perfusion
and by that excluded circulating cells as a source of
EV. Upon ischemia, by ligation of the LAD ex vivo,
the EV protein concentration was increased after
120 min (Fig. 2d), suggestive of increased vesicle re-
lease. Lipid bilayer vesicles were observed in the
Langendorff flow-through and although these appeared
smaller in size than plasma EV (50 nm) (Fig. 2e), they

also contained flotillin-1 (Online Resource 1c). These
results indicate that the myocardium itself is also able
to release EV, including exosomes, which can potentially
serve as endogenous carriers for novel biomarkers that
are released upon myocardial stress.

Although the release of vesicles could be determined in
individual mice for each condition (i.e., control, sham, or I/R
injury), their yield was too small to perform miRNA expres-
sion analysis. To compensate for the low yield of mouse plas-
ma and to enable temporal analysis, next experiments were
performed in a porcine model of myocardial reperfusion
injury.

Plasma-Derived Extracellular Vesicles from a Porcine
Model of Ischemia Reperfusion Transport miRNAs
Released upon Cardiac Injury

To examine the role of EV as transporters of circulating
miRNAs, blood samples were collected at different time
points after I/R injury in a porcine model (Fig. 3a, n = 6).
Successful induction of MI was confirmed by the levels of
cTnI in the plasma, which were significantly increased at
t = 2.5 h, p < 0.001 (Fig. 3b). Likewise, levels of well-
known circulating miRNAs after I/R injury were analyzed
and were significantly upregulated at t = 2.5 h (Fig. 3c).
The levels of muscle-specific extracellular miRNAs
(miRNA-1, -133b, -208b, and -499) in plasma (n = 6) were
increased up to 750-fold (p < 0.0001), thereby demonstrat-
ing that miRNA-499 is the most abundantly present
miRNA in plasma upon MI. Additionally, the individual
levels of miRNA-1, 133b, 208b, and -499 significantly cor-
related to the levels of cTnI (R2 = 0.66, 0.61, 0.72, and 0.71,
respectively). In contrast to our clinical observations [3],
the increase of the inflammatory-related miRNA-21 and
miRNA-146 was not statistically significant.

As in the previous described murine model, protein levels
in the EV fraction increased up to 2.2-fold (±0.6, p < 0.05)
60 min after reperfusion (t = 2.5 h). Moreover, even after
60 min of ischemia, the amount of EV-derived protein ap-
peared to be increased (1.4 ± 0.4-fold; Fig. 4a).

Since both miRNAs and EV are released in plasma
upon cardiac injury, we sought to identify if EV can
transport these circulating miRNAs (miRNA-1, -21, -
133b, -146, -208b, and -499).

For that reason, the EV fraction was isolated from plasma
after I/R injury and the miRNA content was analyzed
(Fig. 4b). The plasma vesicles were isolated by Exoquick
precipitation after an initial centrifugation step at 10,000×g
and were termed EV, similar to the vesicles isolated with ul-
tracentrifugation. Parallel to the increase in miRNAs in total
plasma after I/R injury, a significant (p < 0.01) upregulation of
the muscle-specific miRNAs in EVwas observed 60min after
reperfusion (t = 2.5 h). Levels of miRNA-208b and miRNA-
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499 were upregulated with the highest amplitude, where
miRNA-21 and miRNA-146a showed no significant differ-
ence compared to baseline.

To gain insight in the temporal characteristics of miRNA
release after I/R injury, a time dependent analysis was per-
formed for both total circulating miRNAs and miRNAs in
the EV fraction (Fig. 4c–f, Online Resource 2a, b). Results
showed that for both fractions miRNA levels are significantly
different at 2.5 and 3.5 h after induction of cardiac injury
(p < 0.01, compared to baseline). Interestingly, all miRNA
curves stabilized after 2.5 h and miRNA-1 levels already de-
creased at t = 3.5 h. This in contrast to the levels of cTnI,
which kept increasing between t = 2.5 h and t = 3.5 h
(p = 0.03; Online Resource 2c). Finally, results indicated that
the miRNA expression levels in plasma-derived EVare higher
than total levels in plasma, especially after I/R injury. miRNA
expression levels of EV were significant higher than plasma
levels at t = 1.5 h (miRNA-208b, -133b, -499) and t = 2.5 h
(miRNA-499) suggestive for (selective) enrichment of
miRNAs in plasma EV.

Discussion

In CVD, an increase in the amount of EV is observed and their
content is changed dependent on the severity of disease [21].
Here, we demonstrated that EV are released upon cardiac I/R
injury with a substantial contribution of the ischemic myocar-
dium. In addition, serial plasma collection in a porcine model
of MI demonstrated a significant increase in both EV and
circulating miRNAs upon injury. Cardiac- and muscle-
specific miRNAs rapidly increased in plasma 2.5 h after the
onset of ischemia while the amount of EV was already in-
creased after 1 h. Interestingly, plasma-derived EV were se-
lectively enriched for miRNA-133b, -208b, and -499, but not
for miRNA-1.

Although the release of microparticles by endothelial cells
and activated platelets upon MI has been studied before [22,
36, 37], the role of the myocardium in vesicle release is less
known. EV release is most commonly analyzed by measuring
the protein concentration and expression of exosomal markers
of the EV fraction. However, these parameters do not
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extracellular microvesicles
transport miRNAs after cardiac
injury. a Release of EV
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necessarily reflect the number of vesicles [38, 39]. Methods
described for individual vesicle quantification are based on
nanoparticle tracking analysis [40], tunable resistive pulse
sensing [41], or hFC [34, 35]. Using hFC, we quantified EV
and provided a detailed analysis of vesicles release upon car-
diac injury. Our results confirm the previously described find-
ings of increased EV release upon injury [22] and even aug-
ment the data with evidence for myocardial contribution to
this process.

To get a clear impression of the characteristics of the EV
fraction upon MI, we purified EV by ultracentrifugation and
density gradient centrifugation. Based on the observed float-
ing density and membrane markers of plasma EV, it can be
suggested that upon cardiac injury, exosome-like vesicles are
released [17–19]. Unfortunately, the currently available
knowledge and isolation methods are not sufficient to make
a clear distinction between the different vesicle sources [42].
However, these findings provide insight in the pathophysio-
logical background and origin of released vesicles, which is
crucial for the development of biology-based markers of dis-
ease. In addition, profiling the content of EV upon cardiac
injury might reveal even more sensitive and specific bio-
markers since vesicles can be purified and selective vesicle
isolation is possible.

As we described previously [6], EV have an important role
in the transport of circulating miRNAs. Several reports show
the potential use of miRNAs in the diagnosis and prognosis of
cardiac injury [3, 7, 8, 43–47]. Yet, the temporal release profile
of miRNAs upon cardiac injury is largely unexplored. Clinical
data shows that muscle-specific miRNAs are elevated within
3 h and return back to normal in 3 to 5 days after the onset of
MI [6, 48, 49]. Interestingly, in small animal models, the initial
increase can already be observed after 1 h [46, 50]. However,
sham-operated animals show comparable patterns of which
miRNA-499 is only significantly increased. Gidlof et al. [51]
described the dynamics of miRNA-1, -133a, -208b, and -499
in a large animal model of I/R injury with a rapid increase in
miRNA levels after the occlusion period of 40 min. Although
in line with our data, they observed a faster miRNA release
and elimination after MI, which can be explained by the dif-
ference in occlusion time, extent of cardiac injury, and body
weight of the animals.

In contrast with our previous findings in humans [3], no
difference in miRNA-21 [52] or miRNA-146a [53] was ob-
served in this study. These miRNAs are differently regulated
after MI [52] and are considered to be associated with the
inflammatory response [54, 55]. Opposed to patients present-
ing with a MI, animals used for experiments do not yet suffer
from cardiovascular disease prior to the onset of MI and there-
fore lack any comorbidities. It appears reasonable to speculate
that the model we used is not sufficient regarding the levels of
the inflammation related miRNA-21 and miRNA-146a and
their differential expression is delayed compared to described

clinical studies. Parallel to the early rise in cardiac in muscle-
enriched miRNAs upon MI, recent evidence suggest that
miRNAs can be selectively enriched in EV [24, 56].
Importantly, Jansen et al. [24] demonstrated that miRNA-
126 and miRNA-199a were predictive for cardiovascular
events only when measured in EV. Additionally, specific
transport to the extracellular environment via EV has been
shown for miRNA-133 [57]. In accordance with these find-
ings, we have identified that miRNA-133b, -208b, and -499
are enriched in plasma-derived EV. Interestingly, no additional
rise in EV-bound miRNA-1 was observed, which is sugges-
tive for selective loading of EV.

The strengths of the present study include that we incorpo-
rated several advanced methods to characterize the release of
extracellular vesicles. With hFC, we were able to analyze in-
dividual vesicles based on membrane staining. Additionally,
the experiments with the Langendorff setup enabled us to
study the contribution of the ischemic myocardium in vesicle
release upon I/R injury. Moreover, we used a large animal
model with high clinical relevance to provide novel insights
in the temporal and spatial characteristics of circulating
miRNAs. By doing so, we could adequately compare the ex-
pression levels of miRNAs in total plasma and the EV
fraction.

Nevertheless, this study has several limitations. The sham-
operated animals were included only once in the hFC analysis
(n = 1). Although the effect of I/R injury on the release of EV
was more pronounced, the thoracic surgery on itself resulted
in a low degree of tissue injury, which reinforce the impor-
tance of a sham-control group [58]. For this reason, we
complemented the data by Western blot-based EV quantifica-
tion and showed that the majority of EV release is caused by
the I/R injury and not the sham procedure. Furthermore, the
performed vesicle characterization in the murine I/R model
could not be extended with analysis of EV-packed miRNAs.
Therefore, we complemented the data in a large animal model,
which translates better to the clinic. One should realize the
effect heparin has on PCR-based miRNA detection in blood
samples and that standardization between samples is therefore
essential. However, here we did not observe an effect in time
on different miRNAs that were used for normalization [59,
60]. Additionally, only a selected number of miRNAs, based
on previously performed studies and their association with
MI, were analyzed. Since these selected miRNAs do not fully
cover all differentially expressed miRNAs upon MI, conclu-
sions concerning differential packaging of EV are limited.
Finally, EV for miRNA analysis were isolated using
Exoquick precipitation solution. Although this method is
faster than gradient purification, it possibly resulted in co-
isolation of RNA of non-EV origin [61]. Identification of
miRNAs in EV isolated with different purification methods
would therefore be of interest. Furthermore, exploration of
miRNAs in other specific plasma fractions, e.g., lipids and
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proteins, would be of interest to better understand their tem-
poral spatial distribution and their biological context.

In conclusion, we found that the number of EV is increased
in different models of I/R injury, faster than cTnI, and are at
least partly derived from the ischemic myocardium. We pro-
vided evidence that cardiac- and muscle-specific miRNAs are
transported by EVand are rapidly detectable in plasma, which
suggest that their release is stress-induced. Since EVare selec-
tively enriched for released miRNAs, they hold great potential
as specific early biomarkers for MI.
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