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Abstract

Resource allocation for secondary users is an important issue in cognitive radio networks. In our article, we introduce a
resource allocation scheme for secondary users to share spectrum in a cognitive radio network. Secondary users can
exploit the spectrum owned by primary links when the interference level does not exceed certain requirements.
Uncertainties of channel gains pose a great impact on the allocation scheme. Since there are uncertainties about the
channel states, we apply chance constraints to represent the interference level requirements with uncertainties.
Secondary users can exceed the interference level with a predefined small probability level. Since chance constraints
are generally difficult to solve and full information about the uncertain variables is not available due to the fading
effects of wireless channels, we reformulate the constraints into stochastic expectation constraints. With sample
average approximation method, we propose stochastic distributed learning algorithms to help secondary users satisfy
the constraints with the feedback information from primary links when maximizing the utilities.

Keywords: Power control, Cognitive radio networks, Probabilistic constraints, Sample average approximation

1 Introduction
Today’s wireless networks are faced with an increase in
spectrum demand while radio spectrum is a limited and
valuable resource [1,2]. On the contrary, some licensed
frequency bands are unoccupied for most of the time and
some other bands are just partially used while unlicensed
users have needs to get access to the spectrum [3]. Spec-
trum utilization can be improved significantly by allowing
secondary users to exploit the spectrum unoccupied by
primary users [4]. Cognitive radio has been proposed as
themethod to promote the efficient utilization of the spec-
trum by allowing secondary users to access the spectrum
when it is unoccupied [4,5]. In cognitive radio networks,
primary users may get some encouragements to provide
some feedback information such that their own transmis-
sion would not be severely affected by secondary users
once they want to share the spectrum [6]. Some moni-
toring nodes in the networks may also assume the tasks
to provide feedback information in some practical scenar-
ios [6,7]. The spectrum then can be better utilized while
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primary users’ transmissions would not be affected, which
is one main motivations for cognitive radio networks.
Moreover, resource allocation with time varying channels
is an interesting research area in wireless communication.
Uncertainties of the channel states trigger many impor-
tant research issues since the uncertainties would pose an
impact on the resource allocation decisions [3,4].
Power control with spectrum sharing is an important

topic in cognitive radio networks. Some researchers pro-
pose a framework for dynamic spectrum sharing in cog-
nitive radio networks to facilitate the usage of bandwidth
only under certain channel states [8,9]. Spectrum shar-
ing for unlicensed bands is also taken into consideration
and optimal spectrum allocation is given under the con-
dition that all channel information is available to all users
[10]. Moreover, perfect channel state information (CSI) is
assumed to be known by secondary users when they have
access to the spectrum [11,12]. However, in most practical
scenarios, there is an uncertainty in obtaining the chan-
nel information. Uncertainties of channel gains would
affect the power allocation decisions of secondary users
when they try to exploit the spectrum owned by primary
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users [13]. Secondary users want to maximize their own
utilities while not impairing primary users’ transmission
quality even under the cases with imperfect CSI [13].
In some scenarios, secondary users can exceed the

required interference level with some small probability
instead of staying strictly below the required level. Chance
constraints are widely applied in tackling uncertainties
[6,14]. Some researchers analyze the chance constraint
with known distribution by reformulating into a deter-
ministic form with some knowledge of distributions of
random variables [14,15]. Others approximate the chance
constraint with convex approximation, which still requires
the knowledge of the distribution even for Monte Carlo
simulation [16]. Chance constraints are generally diffi-
cult to solve especially when we do not have the full
information about the distributions of the random vari-
ables due to the fading effects of wireless channels [17,18].
Furthermore, it is difficult to obtain the exact informa-
tion about the distributions in general. Sample average
approximation method can be applied to help the sec-
ondary users learn the uncertain channel information
[18,19]. However, direct measurements of channel gains
are difficult and transmission of such large amount of
information would occupy a lot of resources. Some apply
the average approximation methods in a robust way [20].
Some consider subgradient learning method while trans-
forming chance constraints into stochastic programming
problems [21-23]. Some researchers also consider the
long term ergodic optimization problems with learning
processes [24,25].
In our article, we introduce a resource allocation scheme

for secondary users to share spectrum in a cognitive
radio network. Secondary users can exploit the spectrum
owned by primary links while their interference levels
can exceed the given requirements with a small prede-
fined probability. To tackle the chance constraints, we
demonstrate a stochastic approach with sample average
approximation method for secondary users to obtain the
feedback information from primary links when channel
gains are uncertain. Secondary users do not need to have
the full information about the channel gains and they just
need to know the outage information from the primary
links. We propose two stochastic distributed learning
algorithms (SDLA) to optimize the utilities with given
feedback information.
The rest of this article is organized as follows: Section 2

introduces the system model. Section 3 illustrates deter-
ministic approaches with chance constraints when full
information about the distributions is available. Section
4 illustrates our stochastic approaches with chance con-
straints when full information is not available and
demonstrates our SDLAs. Section 5 gives our numerical
results and discussion. The last section contains our
conclusions.

2 Systemmodel
We consider a cognitive radio network with N primary
links and M secondary users. We define the sets M =
{1, 2, . . .M} andN = {1, 2, . . .N}. Secondary users would
like to transmit to the secondary base station when access-
ing the spectrum. We assume that every primary link
represents a channel which is orthogonal to each other. To
make the notation simple, we assume that the ith primary
link denotes the ith channel. Secondary users can exploit
the channels when the interference caused by them would
not exceed a certain level to pose a great threat for the pri-
mary link transmission.We consider the channel gains are
time varying such that there are some uncertainties.
Without loss of generality, we consider the kth sec-

ondary user. We use uk(Pk) to represent the utility
function for the kth secondary user. We define Pk =
[P1k P2k . . . Pik . . .PNk ] to represent the power vector for
the kth secondary user. Pik is the allocated power of the
kth secondary user for the ith channel. In our article, we
assume that uk(Pk) is a concave and monotonic increas-
ing function with respect to every element Pik . Utility
functions with such properties are widely applied, e.g,

uk = ∑N
i=1 log

(
1 + PikG

i
k

N0+∑M
j=1,j �=k P

i
jG

i
j

)
, where Gi

k is the

channel gain between the kth secondary user and the sec-
ondary base station at the ith channel. The choice of utility
functions is open and there are other examples of utility
functions [26,27].
The total power that can be allocated to the kth sec-

ondary user serves as a constraint and we have

N∑
i=1

Pik ≤ PT (1)

PT is the total power the secondary user can use. For sim-
plicity, we assume that all secondary users have the same
total power constraint.
We define the feasible set for power allocation as

X =
{
Pk :

N∑
i=1

Pik ≤ PT , Pik ≥ 0, ∀i ∈ N
}

(2)

Moreover, secondary users cannot exceed certain inter-
ference level when exploiting the channel. In some practi-
cal scenarios, the primary links may allow secondary users
exceed the interference constraint with a certain probabil-
ity α instead of staying strictly below it. In this case, we
have the chance constraints as follows:

Pr
{
PikG

i
k,p − V > 0

}
≤ α, ∀i ∈ N , (3)

where V represents the predefined interference level. Gi
k,p

denotes the channel gain between the kth secondary user
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and the primary receiver with respect to the ith channel.
To make the analysis simple, we assume all primary links
have the same level requirement.
In some practical scenarios, α represents the quality

of service (QoS) that the primary links demand facing
interference from secondary users, e.g., when α = 0, the
primary links cannot tolerate any exceeded interference;
when α = 0.2, the primary links allow some exceeded
interference with a small probability.
The interference constraints on a single secondary user

may also be used in the area of admission control. In some
cases, when secondary users exceed the required inter-
ference level, the primary link may block the secondary
user out. Due to the uncertainty of channel gain Gi

k,p, sec-
ondary users need to satisfy the constraints to share the
spectrum. Secondary users also want to maximize their
utilities while satisfying the constraints (3).

3 Power allocation with complete information
about probabilistic constraints

In order to maintain the interference level below the
requirement, the kth secondary user needs to adjust his
or her power allocation under the uncertainties of chan-
nel gains. The kth secondary user wants to maximize his
or her utility and the optimization problem is formulated
as follows

max
Pik

uk

s.t Pk ∈ X

Pr
{
PikG

i
k,p − V > 0

}
≤ α, ∀i ∈ N (4)

We can see that there are probabilistic constraints in the
optimization problem. To obtain an optimal solution, the
chance constraints themselves need to be reformulated
into some deterministic forms.
Chance constraints are generally non-convex. However,

in our system model, since the dimension in every chance
constraint is one with respect to Pik and Gi

k,p, it can be
shown that the constraints represent convex sets when
full information about the distribution is available. Given
full information about the distribution, (4) is a convex
optimization problem.

Lemma 1. Suppose that channel gain Gi
k,p ∀i are

bounded and we have the cumulative density functions
(CDF) Fi

k(.), respectively. The optimization problem is a
convex optimization problem.

Proof. Based on the assumptions in our system model,
the objective function is concave for every Pik . Thus it is to

maximize a concave function. For the constraint set, the
probabilistic constraint is equivalent to the following

Fi
k

(
V
Pik

)
≥ 1 − α,

where we define V
Pik

= +∞ when Pik = 0. Moreover, since

Fi
k(.) is monotonic non-decreasing, the above constraint is

equivalent to
V
Pik

≥ Qi
k

where we have

Qi
k = min

{
qik : F

i
k
(
qik
) = 1 − α

}
Therefore, we can reformulate the constraint set as

follows

0 ≤ Pik ≤ V
Qi
k
, ∀i ∈ N

N∑
i=1

Pik ≤ PT

The constraint set is clearly convex. Thus we are maxi-
mizing a concave function with the convex set. Our opti-
mization problem is a convex optimization problem.

Given the complete information about the distribution,
we define the feasible set for the kth secondary user as
follows

Xk,com =
{
Pk :

N∑
i=1

Pik ≤ PT ,Pik,max ≥ Pik ≥ 0, ∀i ∈ N
}
(5)

where Pik,max is the maximum power for the kth secondary
user at the ith channel. It can be calculated based on the
CDF of the respective distribution. We also define the set
Xcom = X1,com × X2,com × · · · × Xk,com × · · · × XM,com.
The optimization problem can be rewritten as follows

max
Pik

uk

s.t Pk ∈ Xk,com (6)

As an example, when uk=∑N
i=1 log

(
1+ PikG

i
k

N0+∑M
j=1,j �=k P

i
jG

i
j

)
,

the optimal solution can be obtained as follows

Pik =
[
ηk − N0 +∑M

j=1,j �=k PijG
i
j

Gi
k

]Pik,max

0
(7)

where [ .]
Pik,max
0 is the projection into the interval [ 0,Pik,max]

and ηk is a Lagrangian variable.
Under this example, secondary users can optimize

power allocation with others’ choices. It can be shown
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that a game G =[M,uk(.),Pk] is formed. It can also be
shown that with feasible set Xcom for all secondary users,
the game is a potential game. Thus a Nash equilibrium
(NE) exists in our game.

Proposition 1. With full information and for the game
G =[M,uk(.),Pk], there exists a NE in our game model.

Proof. It is obvious that the set Xcom is a convex,
nonempty and compact set for all k ∈ M. Noting that
uk is concave with respect to Pik , the existence of NE thus
follows the standard results in game theory in [28,29].

Proposition 2. With full information and for the game
G =[M,uk(.),Pk], it is a potential game.

Proof. We define a function as follows:

�(Pk) =
N∑
i=1

log
(
N0 +

M∑
k=1

PikG
i
k

)
(8)

It can be easily verified that

�(Pk ,P−k) − �
(
P′
k ,P−k

) = uk(Pk ,P−k) − uk
(
P′
k ,P−k

)
(9)

for any feasible solution Pk and P′
k and fixed P−k

where P−k represents all other secondary users’ strategies.
Therefore, �(Pk) is a potential function for the game G =
[M,uk(.),Pk]. Due to the properties of potential game, we
know that our game is a potential game [30].

We propose an algorithm to help secondary users
update the choices of power allocation (Algorithm1).

3.1 Algorithm 1: Updating choice of power consumption
for each user (complete information)

1: for k = 1 to M do
2: Given other users’ information
3: The kth secondary user updates power

allocation according to the result in (7)
4: end for
5: Until all secondary users meet the NE.

Remark 1. We can see that with full information
about the distribution of Gi

k,p,∀k, ∀i, the result for
a single secondary user is a typical water-filling solu-
tion. The algorithm is similar to iterative water fill-
ing algorithm (IWFA). The solutions and algorithms
are commonly found in multiple access channels and
potential games [31,32]. Therefore, with complete infor-
mation, the chance constraints in our model can be
formulated into convex ones and the problem can be
solved readily.

4 A stochastic approximation approach based on
the outage event

The reformulation of probabilistic constraints into deter-
ministic convex sets requires the full knowledge of the
distributions of the channel gains. Even without exact
information about the distributions, we still need to mea-
sure the channel such that approximations can be applied
to reformulate the probabilistic constraints. However,
measurement is difficult in some scenarios.
To reduce the complexity of measurement, instead of

approximating the information of the distribution for the
specified random variable, we can consider an outage
event as follows

Definition 1. When PikG
i
k,p > V , we define that an

outage occurs for the kth user at the ith channel. When
PikG

i
k,p ≤ V , no outage occurs.

We then have the following

ζ i
k = χ

{
PikG

i
k,p > V

}
∀i ∈ N (10)

where we have

χ{A} =
{
0 if A is false
1 if A is true

ζ i
k represents the random variable such that it would be
one when an outage occurs and zero when there is no
outage.
It can be seen that the probability constraints are also

equivalent to the stochastic constraints.

E
(
ζ i
k
) ≤ α, ∀i ∈ N (11)

Mathematically, the chance constraints are reformu-
lated as expectation constraints. Since we do not have the
full information about the exact distribution of the outage
event ζ i

k , we would use the sample average to approximate
the expectation. Given L samples of the events, we have

ζ̂ i
k = 1

L

L∑
j=1

χ

{
Pik
(
Gi
k,p

)
j
> V

}
(12)

where (Gi
k,p)j denotes the jth sample of the channel gains.

Equivalent, the event (ζ̂ i
k)j = χ{Pik(Gi

k,p)j > V } denotes
the jth sample of the outage event based on the jth sam-
ple of the channel gain. We assume that every sample of
(Gi

k,p)j obtained is independent and identically distributed
(iid).
We also have

E
[
ζ̂ i
k

]
= E

[
ζ i
k
]

(13)

The expectation of the approximate equals that of the
original.
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4.1 Feasibility of the stochastic approximation method
When L is sufficiently large, the sample average value is
used to approximate the expectation value. We have the
following lemma.

Lemma 2. Given the value of Pik and V , when every
sample of Gi

k,p obtained is iid, let any σ > 0, we have

Pr
{∣∣∣E (ζ i

k
)− ζ̂ i

k

∣∣∣ > σ
}

≤ 2exp(−2σ 2L)

Proof. By Hoeffding Inequality, we can have

Pr
{∣∣∣E (ζ i

k
)− ζ̂ i

k

∣∣∣ > σ
}

≤ 2exp
(

− 2σ 2L2∑L
j=1(bj − aj)2

)

where aj and bj represents the lower bound and upper
bound of the random variable (ζ̂ i

k)j respectively with prob-
ability one. Since ζ i

k can only take value of 0 or 1, we assign
aj = 0, ∀j and bj = 1, ∀j. We finally have

Pr
{∣∣∣E (ζ i

k
)− ζ̂ i

k

∣∣∣ > σ
}

≤ 2exp(−2σ 2L)

This lemma says that if we take the average of L random
variables to be our estimate of the expected value, then the
probability of being far away from the true value is small
so long as L is large.
Moreover, since all parameters are nonnegative, we can

reformulate the probability constraint as follows

Pr
{
V
Pik

< Gi
k,p

}
≤ α,

where when Pik = 0, we denote V
Pik

= +∞. We also define
the feasible set for the original problem with respect to i
as follows

Xi
α =

{
Pk ∈ X : Pr

{
V
Pik

≥ Gi
k,p

}
≥ 1 − α

}
(14)

Thus the whole feasible set is defined as Xα = ⋂N
i=1 Xi

α .
The feasible region of the sample average approximation
problem for γ ∈[ 0, 1) is

X̂i
γ =

⎧⎨⎩Pk ∈ X :
1
L

L∑
j=1

χ

(
V
Pik

≥
(
Gi
k,p

)
j

)
≥ 1 − γ

⎫⎬⎭
(15)

Similarly, the whole feasible set for the sample average
approximation is defined as X̂γ =⋂N

i=1 X̂i
γ .

In particular, when taking the sample average approxi-
mation, the secondary users would like to be more conser-
vative. Given τ > 0, we define

X̂i
γ ,τ =

⎧⎨⎩Pk ∈ X :
1
L

L∑
j=1

χ

(
Pik
(
Gi
k,p

)
j
− V + τ ≤ 0

)

≥ 1 − γ

⎫⎬⎭ (16)

and X̂γ ,τ =⋂N
i=1 X̂i

γ ,τ .
Since PikG

i
k,p − V is Lipschitz Continuous, when the

channel gain Gi
k,p is bounded, we have∣∣∣ (PikGi

k,p − V
)

−
((
Pik
)′ Gi

k,p − V
) ∣∣∣ ≤ cik

∣∣Pik − (Pik)′ ∣∣
≤ cik

∣∣∣∣Pk − (Pk)
′∣∣∣∣,

∀ Pk , (Pk)
′ ∈ X

(17)

where, we define the Lipschitz constant as cik > 0. It can
be shown that this constant cik can represent the bounded
constant for the channel gain Gi

k,p. P
i
k and (Pik)

′ are the ith
element of the vector Pk and (Pk)

′ . It can be shown that
the strategy set X is bounded and let D be the diameter of
X. Then we have the following lemma.

Lemma 3. Let γ ∈[ 0,α), β ∈ (0,α − γ ) and τ > 0, we
have

Pr
{
X̂γ ,τ ⊆ Xα

} ≥ 1 − N
⌈
1
β

⌉⌈
2ck,maxD

τ

⌉m
× exp(−2L(α − γ − β)2)

where m is a finite constant and ck,max represents the
largest Lipschitz constant of cik , ∀i.

Proof. See Appendix.

The number of primary links N is finite in all practical
scenarios. We can see that by adding τ > 0 and apply-
ing the sample average approximation method, the new
strategy set is still feasible with large probability when the
sample number L is sufficiently large.

Remark 2. In some practical scenarios, secondary users
want to guarantee that the constraints are satisfied even
with the approximation. Thus they would have γ < α and
introduce the variable τ > 0 to make the requirements
tighter than the original ones. With these guard measures,
the new strategy set is feasible with a large probability as
Lemma 3 states.
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4.2 SDLA-I
To solve the optimization problem with sample aver-
age approximation, we can apply the general stochastic
Arrow–Hurwciz algorithm [33]. First of all, we apply the
Lagrangian with probabilistic constraints as follows

Fk = uk +
N∑
i=1

λik
(
α − E

(
ζ i
k
))

and we define �k(Pk) = ∑N
i=1(α − E(ζ i

k)). We have the
update of Pik and λik in vector form as follows

Pk(n + 1) = X
[
Pk(n) + β(n)(∇uk(n)

+ λk(n) � ∇�k(n))
]

λk(n + 1) =
[
λk(n) − β(n)

(
α − E

(
ζ i
k

)) ]+
(18)

where [ x]+ = max(x, 0) and � denotes the multiplication
of two elements in the two vectors, respectively. X[ .]
represents the Euclidean projection to the set X. β(n) is
the step size for the nth iteration. However, in our case, it
is very difficult to obtain the gradient of E(ζ i

k)with respect
to Pik , that is, it is difficult to obtain the exact ∇�k . To
apply this algorithm, we need to approximate the gradient
for this indicator function. From [33], we can choose the
following result as the approximate gradient.

∇�k =
[
g1k g2k . . . gik . . . gNk

]
,

where we have

gik
(
Pik ,G

i
k,p

)
= −1

r
h
(
PikG

i
k,p − V
r

)
Gi
k,p,

where r > 0 and the function h(.) has the following
properties

∀x, h(x) ≥ 0, h(x) = h(−x),
∫ +∞

−∞
h(x)dx = 1

and h(x) has a unique maximum at x = 0.
There are many choices about h(x) [33]. From [33], we

choose the following function

h(x) = 3
4
(1 − x2)B(x),

where we define

B(x) =
{
1 if −1 ≤ x ≤ 1
0 otherwise

Remark 3. We can see that since r is a small positive
constant as defined in [33], when PikG

i
k,p is much smaller

than V , the approximate gradient is zero such that the
power would increase through updating because ∇uk is
positive. When PikG

i
k,p is very close to V , the approximate

gradient represents a negative large constant such that
power may decrease. Therefore, the update scheme can
help power increase while the level of PikG

i
k,p is not close

to V and help power decrease when the level of PikG
i
k,p

would be higher than V .

Remark 4. Moreover, since the approximate gradient is
not the exact value, the initial values of power vector Pk
for the algorithm should be small. These kind of initial
values are common in gradient update schemes and are
widely applied in gradient or sub-gradient methods [34].

It can be shown that this approximate gradient just
represents an indicator for whether subtracting λk in
the power update equations. When the expectation con-
straint is satisfied, the approximate gradient is zero such
that power is increased through updating. Otherwise
the approximate gradient is negative such that power is
decreased through updating. In some practical scenar-
ios, it can be further simplified as we will show in our
simulation results.
We can see that to update the power level, secondary

users need to have the feedback information about λ and
the approximate gradient. The secondary user updates
power levels as primal update scheme while primary
links would observe the outage events and feedback the
respective information through λ as dual update scheme.
The result is a primal-dual update scheme in a stochastic
setting.
Moreover, we also need to apply the sample average

method to tackle the value of α − E(ζ i
k). The algorithm

scheme can be summarized as follows and we denote it as
SDLA-I:

• Power level would be adjusted based on a
gradient-like algorithm.

• Step 1: Between the nth iteration and the (n + 1)th
iteration, the k th secondary user obtains the feedback
information of the outage event regarding the power
allocation Pk(n).

• Step 2: The primary links calculate the outage with
regard to all past history. When an outage can occur
given the channel information of the j th iteration,
∀j ≤ n, we denote Oi

k(j) = 1. Otherwise it is zero. We

obtain an outage probability as Ni
k(n)

n for the nth
iteration. Ni

k(n) =∑n
j=1Oi

k(j) represents the sum
value for the outages that can happen during all
previous iterations where we have 0 ≤ Ni

k(n) ≤ n.
• Step 3: Based on the observed outage probability, the

primary link would update the respective λ based on
the dual update scheme and calculate the
approximate gradient. The primary link would feed
back such information to the kth secondary user.
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• Step 4: The kth secondary user would then update
the power level for the (n + 1)th iteration based on
the primal update scheme.

• Step 5: The power level and the respective dual
variable λ would be updated iteratively.

The update of our algorithm is as follows

Pk(n + 1) = X
[
Pk(n) + β(n)(∇uk(n)

+ λk(n) � ∇�k(n))
]

λk(n + 1) =
[
λk(n) − β(n)(α − Ni

k(n)

n
)

]+
. (19)

We apply learning algorithm to learn the event ζ i
k such

that the constraint is satisfied in the long term. The
secondary users can obtain some feedbacks to update
the choices of power. Moreover, in the learning process,
the secondary users just need to know something
about the instantaneous outage events and do not need
to know the distributions of specific channel gains. Also,
secondary users do not need to handle the measurements.
Thus the kth secondary users would just focus on the ran-
domness of the term ζ i

k instead of the specified channel
gains.

Remark 5. Chance constraints are generally difficult to
tackle even when they are reformulated into expectation
constraints, let alone we do not have the information
about distributions. The reformulated expectation con-
straints are also different from general expectation con-
straints as discussed in stochastic programming areas,
which pose great difficulties for the exact proof of con-
vergence of the algorithms. In [35] and [36], researchers
discuss the complexity of stochastic programming with
chance constraints and illustrate that few analytical results
can be provided even under sample average approxima-
tions, since there are some severe difficulties when facing
chance constraints.

Remark 6. In our system model, for SDLA-I, E(ζ i
k) is

close to ζ̂ i
k with large probability from Lemma 2 given

a large L. Suppose that there exists a large number n0
and for L ≥ n0, we can treat E(ζ i

k) = ζ̂ i
k for relaxation.

Then, in this case, for n ≥ n0, our SDLA-I can be written
as follows

Pk(n + 1) = X
[
Pk(n) + β(n)(∇uk(n)

+ λk(n) � ∇�k(n))
]

λk(n + 1) =
[
λk(n) − β(n)

(
α − E

(
ζ i
k

)) ]+
(20)

where E(ζ i
k) = ζ̂ i

k can be obtained from previous iterations
with approximations. Given a close deterministic approx-
imations of gradient �k(n), the above SDLA-I can be

treated as a deterministic primal-dual update algorithms.
Such primal-dual algorithms have been discussed in some
areas [25,37].

4.3 SDLA-II
In SDLA-I, though secondary users do not need to mea-
sure the channel gain Gi

k,p, the calculation of λk and the
approximate gradient are still required in the primary
links. We can further reduce the burden of such calcula-
tion such that just simple calculation and feedback infor-
mation is needed for both primary links and secondary
users, which is desirable in practical scenarios.
We propose another scheme to adjust power levels with

observed outage probability. Instead of updating power
level with information about λ and the approximate gra-
dient, the secondary user can update the power level just
with the feedback information about the observed out-
age probability. In this case, only primal update is realized
without dual variables.
We denote it as SDLA-II. The algorithm scheme is

similar to that in SDLA-I but we change some steps as
follows.

• Changes of Step 3: No feedback of dual variables
from primary links. Secondary users check the
feasibility of the constraints with the observed outage
probability to see whether α >

Ni
k(n)

n .
• Change Step 4 as: If α >

Ni
k(n)

n , secondary users
regard that the constraint is satisfied and would
increase the power level for the next iteration.
Otherwise they regard the power is so high that it
needs to be reduced to satisfy the constraint.

• Changes of Step 5: There is no update of dual
variables and approximate gradients. Secondary users
only update the power levels iteratively.

Though the observe outage probability is not the exact
true value of the expectation, it can approximate to the
true value when n is sufficient large by the law of large
numbers, that is, when the number of iterations is large
enough.
We define

Vi
k(n) = α − Ni

k(n)

n
and we define the vector form Vk(n) = [V 1

k (n)V 2
k (n)

. . .Vi
k(n) . . .VN

k (n)].
We have the gradient method as follows

Pik(n + 1) = X

[
Pik(n) + β(n)

(
α − Ni

k(n)

n

)
duk(n)

dPik(n)

]
We can see that when the calculated outage level is

smaller than α, Pik would increase according to the gen-
eral gradient algorithm. When the calculated outage level



Zhou and Lok EURASIP Journal onWireless Communications and Networking 2012, 2012:346 Page 8 of 13
http://jwcn.eurasipjournals.com/content/2012/1/346

is larger than α, we regard that Pik is so large that it should
be decreased.
In vector form, we have

Pk(n + 1) = X
[
Pk(n) + β(n)(Vk(n) � ∇uk(n))

]
(21)

The secondary users update the power allocation based
on the feedback of outage events such that in the long
term, the probability constraints can be satisfied and the
utility is maximized.

Remark 7. For SDLA-II, similar to the remark discus-
sion above about SDLA-II, suppose that when n ≥ n0, the
constraint α − ζ̂ i

k is satisfied with large probability such
that we can treat α ≥ ζ̂ i

k for future iterations. Our SDLA-II
for the kth secondary user can be written as follows

Pk(n + 1) = X[Pk(n) + β(n)(∇uk(n))] (22)

we can see that it is a deterministic gradient update
algorithm and such algorithms has been discussed in
[34,38,39].

5 Numerical results and discussion
5.1 Examples of uk(.) for simulation
For simulation, first, we illustrate some examples about
the objective function uk(Pk). We have one as the
following

uk(Pk) =
N∑
i=1

EGi
(
Ri
k
)
,

where we have

Ri
k = log

(
1 + PikG

i
k

N0 +∑M
j=1,j �=k PijG

i
j

)

Gi =[Gi
1 Gi

2 . . .Gi
k . . .Gi

M]. Since Gi
k also changes every

time slot, we want to maximize the expected value.
EGi(Ri

k) denotes the expected value with respect to Gi.
We shall in the sequel drop the subscript to write E(Ri

k)

instead of EGi(Ri
k) when not leading to confusion. It can

be shown that this uk(Pk) is concave and monotonic
increasing with respect to every element Pik .
In particular, when Gi

k would not change much dur-
ing the learning process of Gi

k,p, that is, the channel gain
Gi
k remains more or less the same as constant during the

algorithm, we take the following example

uk(Pk) =
N∑
i=1

Ri
k

There are some practical scenarios in which the chan-
nel gain Gi

k would not change much. We regard that it
would be a constant in the objective function. This kind

of approximation is used in the stochastic modeling and
algorithm in [6].

5.2 Simulation model
We consider a micro-cell area for wireless transmissions.
We set that there are two secondary users allocated with
N = 20 channels. Due to the environment setting, shad-
owing effects play an important role in the uncertainties
of channel gains. We set that the channel gain Gi

k is
generated according to the following

Gi
k = κ i

k − 10ω log(dk) + εik(dB),

where we set ω = 3.3. κ i
k is generated uniformly from

[ 20, 25]. dk is generated uniformly from [ 1, 20]m, which
represents that transmissions of secondary users occur
in small area. εik , which represents the shadowing effect,
is generated from a gaussian distribution N(0, (σ i

k)
2). We

set σ i
k generated uniformly from the interval [ 0.1, 2] in

our simulation. The value of σ i
k can be varied in an inter-

val and what we choose here represents some common
environment conditions of micro-cell with shadowing
effects [40,41].
Similarly, to model the uncertainty ofGi

k,p, for the chan-
nel gain between the primary links and secondary users,
we consider that Gi

k,p is generated as follows

Gi
k,p = κk,p − 10αp log(dk,p) + εik,p(dB),

where αp is set to be 3.1. dk,p is generated uniformly from
[ 1, 15]m. κk,p = 20 and εik,p is generated from a gaus-
sian distribution N(0, (σ i

k,p)
2). σ i

k,p is generated uniformly
from the interval [ 1, 8] for each i and k. The large inter-
val for σ i

k,p represents uncertainties in these channel gains
since secondary users may not be able to obtain the exact
statistical knowledge of the channel gains based on the
transmission environment.
We also set α = γ in our simulation. The choice of

distribution of Gi
k,p remains open and we just use this dis-

tribution to show some examples under a micro-cell with
shadowing effects. For the step-size β(n) in the algorithm,
when β(n) = 1

n , the result may finally converge to a stable
point. However, in our simulation model, to speed up the
gradient-like SDLA algorithms, we set β(n) equal to one.
The choice of step-size is also open. In our simulation, we
just want to show some examples and try to speed up the
learning process.

5.3 Simulation results and discussions
In Figure 1, we consider the example when uk =∑N

i=1 E(Ri
k). For the data rates with full information, we

obtain the results by averaging the optimization results for
each iteration with full information about Gi

k,p. For data
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Figure 1 Data rates for secondary users under different resource allocation schemes (uk = ∑N
i=1 E(Ri

k), α = 0.2, V = 100).

rates under SDLA, we obtain the final power allocations
through iterations and apply the results to calculate the
average value. To make the simulation simple, we set the
approximate gradient with respect to power as minus one
in our simulation.

It can be seen that in Figure 1, data rates generated by
SLDA-I and SLDA-II are very close to those with full
information aboutGi

k,p. For both users, when the data rate
is 0.6 bps/Hz, the algorithm with full information has only
0.7 dB gain over SDLA. When the data rate is 0.8 bps/Hz,
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Figure 2 Power Allocated under SDLA over Iterations (uk = ∑N
i=1 E(Ri

k), α = 0.2, V = 100).
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Figure 3 Data rates for secondary users under different resource allocation schemes (uk = ∑N
i=1 E(Ri

k), α = 0.2, V = 1).

the gain is just about 0.8 dB. When the total power ranges
from 1 to 20 dB, the data rates under SDLA-I are very close
to those under SDLA-II. When the data rate is 1 bps/Hz,
for both users, SDLA-I has only 0.02 dB gain over SDLA-
II. Notice that, for the algorithm with full information,

optimization needs to be done every time while our SDLA
can learn the result with finite iterations and do not
require optimization every time.
In Figure 2, we consider the allocated power over itera-

tions. It can be seen that the power allocated for different
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i=1 Ri

k , α = 0.2, V = 100).



Zhou and Lok EURASIP Journal onWireless Communications and Networking 2012, 2012:346 Page 11 of 13
http://jwcn.eurasipjournals.com/content/2012/1/346

channels remains almost constant after about 400 itera-
tions. For user one, the value for channel one remains
about 0.5 and that for channel three remains about 1.4.
It can be seen that in Figure 3, when V = 1, data rates

generated by SLDA-I and SLDA-II are very close to those
with full information. For user one, when the data rate is
0.8 bps/Hz, the algorithm with full information has only
0.8 dB gain over SDLA. When the data rate is 1 bps/Hz,
the gain is just about 0.7 dB. When the total power ranges
from 1 to 20 dB, the data rates under SDLA-I are very close
to those under SDLA-II. When the data rate is 1 bps/Hz,
for user one, SDLA-I has only 0.02 dB gain over SDLA-II.
In Figure 4, we set uk =∑N

i=1 Ri
k . It can be seen that the

data rates generated by both SDLA-I and SDLA-II are very
close to those with full information about Gi

k,p. For user
one, when the data rate is 0.6 bps/Hz, the algorithm with
full information has only 0.1 dB gain over SDLA-I and
SDLA-II. For user two, when the data rate is 0.4 bps/Hz,
the algorithm with full information has only 0.5 dB gain
over SDLA-I and SDLA-II. Moreover, the data rates under
SDLA-I are very close to those under SDLA-II when the
total power ranges from 1 to 20 dB. For both users, when
the data rate is 0.8 bps/Hz, SDLA-I has about 0.03 dB gain
over SDLA-II.
In Figure 5, when α = 0.02 and V = 1, it can be

seen that the data rates generated by both SDLA-I and
SDLA-II are very close to those with complete informa-
tion. For both users, when the data rate is 0.2 bps/Hz, the
algorithm with full information has only 0.3 dB gain over

SDLA-I and SDLA-II. Also, the data rates under SDLA-
I are very close to those under SDLA-II when the total
power ranges from 1 to 20 dB. Moreover, for both users,
when total power is larger than 20 dB, the data rates would
not improve due to maximum power constraints. Results
under SDLA-I and SDLA-II are still close to those with
complete information.
Moreover, comparing Figure 1 with Figure 4, our SDLA

algorithm can give good performance especially when the
variation of Gi

k is small over iterations. In Figure 4, the
channel gains in the utility functions remain the same over
the learning processes. The small variation of Gi

k over the
learning process is reasonable in some practical scenarios.
For example, when the standard deviation of the shad-
owing effects of the channel gain is small, the distance
between the transmitter and the receiver becomes the key
factor such that the value of the channel gains would not
change very much.

6 Conclusion
Resource allocation for secondary users with uncertain-
ties is an important issue in cognitive radio networks. In
our article, we introduce a resource allocation scheme for
secondary users to share spectrum in a cognitive radio
network. Secondary users can exceed the interference
level with a predefined small probability level to share
the spectrum. There is an uncertainty about the channel
states between secondary users and primary links. We
apply chance constraints to represent the interference
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k , α = 0.02, V = 1).
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level requirements with the uncertainties. Since chance
constraints are generally difficult to solve and full infor-
mation about the uncertain variable is not available, we
reformulate them into stochastic expectation constraints.
The secondary users can learn the outage feedback infor-
mation instead of measuring certain channel gains to
satisfy the constraints. We propose two SDLAs to help
secondary users adjust the power to maximize the util-
ity with only feedback information from primary links.
Our simulation results show that the algorithms can give
performance close to that with complete information.

Appendix
Proof of Lemma 3
According to the proof of Theorem 10 in [36], for β ∈
(0,α − γ ), there exist finite sets Zτ

i ⊆ X with

∣∣Zτ
i
∣∣ ≤ ⌈ 1

β

⌉⌈2cikD
τ

⌉m

(23)

where �. denotes the upper integer part, and for any Pk ∈
X̂γ ,τ and any i there exists z ∈ Zτ

i such that ||z−Pk|| ≤ τ

cik
.

Using the finite set Zτ
i we can define

Zτ ,i
γ =

⎧⎨⎩Pk ∈ Zτ
i :

1
L

L∑
j=1

χ(Pik
(
Gi
k,p

)
j
− V ) ≥ 1 − γ

⎫⎬⎭
(24)

Zτ ,i
α−β =

{
Pk ∈ Zτ

i : Pr
{
PikG

i
k,p − V ≤ 0

}
≥ 1 − (α − β)

}
(25)

Zτ
γ =

N⋂
i=1

Zτ ,i
γ (26)

Zτ
α−β =

N⋂
i=1

Zτ ,i
α−β (27)

Moreover, from the proof of Theorem 10 in [36], for all
i it holds that Zτ ,i

γ ⊆ Zτ ,i
α−β implies X̂i

γ ,τ ⊆ Xi
α . From the

proof in Section 3.2.2 in [42], for the finite set, we have

1 − Pr
{
Zτ

γ ⊆ Zτ
α−β

}
≤ N

⌈
1
β

⌉⌈
2ck,maxD

τ

⌉m
exp(−2L(α − γ − β)2), (28)

where we apply the the Bonferroni inequality as follows

Pr
{ N⋂
i=1

Ai

}
≥ 1 −

N∑
i=1

(1 − Pr{Ai}),

where Ai is an event.

From the proof in Section 3.2.2 in [42], since Zτ
γ ⊆ Zτ

α−β

implies X̂γ ,τ ⊆ Xα , we can obtain the result as follows

Pr
{
X̂γ ,τ ⊆ Xα

} ≥ Pr
{
Zτ

γ ⊆ Zτ
α−β

}
≥ 1 − N

⌈
1
β

⌉⌈
2ck,maxD

τ

⌉m
exp(−2L(α − γ − β)2) (29)
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