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Abstract For given graphs G1 and G2, the Ramsey number R(G1, G2) is the least
integer n such that every 2-coloring of the edges of Kn contains a subgraph isomorphic
to G1 in the first color or a subgraph isomorphic to G2 in the second color. Surahmat et
al. proved that the Ramsey number R(C4, Wn) ≤ n+�(n−1)/3�. By using asymptotic
methods one can obtain the following property: R(C4, Wn) ≤ n + √

n + o(1). In this
paper we show that in fact R(C4, Wn) ≤ n+√

n − 2+1 for n ≥ 11.Moreover, by mod-
ification of the Erdős-Rényi graph we obtain an exact value R(C4, Wq2+1) = q2+q+1
with q ≥ 4 being a prime power. In addition, we provide exact values for Ramsey
numbers R(C4, Wn) for 14 ≤ n ≤ 17.
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1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops
nor multiple edges. Let G be such a graph. The vertex set of G is denoted by V (G),

the edge set of G by E(G), and the number of edges in G by e(G). Let d(v) be the
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degree of vertex v, and let d1(v) and d2(v) denote the number of the edges incident
to v colored with the first and the second color, respectively. By δi (G) we denote
the minimum degree of G in color i. The open neighborhood in color i of vertex v

in graph G is Ni (v) = {u ∈ V (G)|{u, v} ∈ E(G)and{u, v} is colored with colori}.
Define G[S] to be the subgraph of G induced by the set of vertices S ⊂ V (G). Let Pn

(resp. Cn) be the path (resp. cycle) on n vertices. A wheel Wn is a graph on n vertices
obtained from a Cn−1 by adding one vertex w and making w adjacent to all vertices
of the Cn−1.

For given graphs G1, G2, the Ramsey number R(G1, G2) is the smallest integer
n such that if we arbitrarily color the edges of the complete graph of order n with
2 colors, then it always contains a monochromatic copy of G1 colored with the first
color or a monochromatic copy of G2 colored with the second color. A coloring of
the edges of n-vertex complete graph with 2 colors is called a (G1, G2; n)-coloring
if it does not contain a subgraph isomorphic to G1 colored with the first color nor a
subgraph isomorphic to G2 colored with the second color.

The Turán number t (n, G) is the maximum number of edges in any n-vertex graph
which does not contain a subgraph isomorphic to G. A graph on n vertices is said to
be extremal with respect to G if it does not contain a subgraph isomorphic to G and
has exactly t (n, G) edges.

Some well known theorems will be used to prove the main result of this paper.

Theorem 1 (Ore [3]) Let G be a graph on n (n ≥ 3) vertices. If d(v) + d(w) ≥ n
for every pair of non-adjacent vertices v and w of G, then G is Hamiltonian.

Theorem 2 (Rosta [7], Faudree and Schelp [2]) For all integers n ≥ 5

R(C4, Cn) = max{n + 1, 7}.

Theorem 3 (Reiman [6]) For all integers n ≥ 4

t (n, C4) <
1

4
n(1 + √

4n − 3).

Several results have been obtained for wheels and quadrilaterals. Surahmat et al. [8]
showed that R(C4, Wm) = 9, 10 and 9 for m = 4, 5 and 6 respectively. Independently,
Kung-Kuen Tse [10] showed that R(C4, Wm) = 10, 9, 10, 9, 11, 12, 13, 14, 16 and
17 for m = 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, respectively. In 2005, Surahmat et al.
[9] obtained property that R(C4, Wn) ≤ n + �(n − 1)/3�. Suppose that we have an
admissible coloring of Km without C4 in color 1 and without Wn in color 2. Asymptot-

ically we have a well-known property that t (n, C4) ≈ 1
2 n

3
2 . Since R(C4, Cn−1) = n

for n ≥ 7, we obtain 1
2 m(m − n) ≈ 1

2 m
3
2 , which implies that m − n ≈ √

m and
R(C4, Wn) = n + √

n + o(1). The main result of this work is the following.

Theorem 4 For all integers n ≥ 11

R(C4, Wn) ≤ n +
⌊√

n − 2
⌋

+ 1.
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2 Main Theorem

Proof (Theorem 4) For simplicity of notation, we set k = 
√n − 2�. Let us consider
a graph G = Kn+k+1 and its decomposition G = G1 ∪ G2, where V (G) = V (G1) =
V (G2) and E(Gi ) consists of all edges of G in i th color. Suppose that for graph G
there is a (C4, Wn; n + k + 1)-coloring and let us consider such coloring.

First let us assume that there is a vertex v ∈ V (G) such that d1(v) ≤ k. Then
d2(v) ≥ n and by R(C4, Cn−1) = n we immediately obtain a Wn in the second color.

Now, suppose that δ1(G) ≥ k + 2. Let us consider integer p such that n ∈ {(p −
1)2 + 2, · · · , p2 + 1}. Then k = p − 1. Let s = n − (p − 1)2, one can see that
2 ≤ s ≤ 2p. In this case the minimum possible number of edges in color 1 in G is

�1

2
(n + k + 1)δ1(G)� ≥ 1

4
(n + k + 1)(2p + 2) ≥

≥ 1

4
(n + k + 1)

(
1 +

√
4(p2 + p + 1) − 3

)
≥

≥ 1

4

(
n + k + 1)(1 +

√
4(p2 − p + 1 + s) − 3

)
≥

≥ 1

4

(
n + k + 1)(1 + √

4(n + k + 1) − 3
)

> t (n + k + 1, C4),

a contradiction.
The last case to consider is δ1(G) = k + 1. In this case G1 has at most t (n + k +

1, C4) = � (n+k+1)δ1(G)
2 � + A edges. Similarly to the previous case let us consider

integer p such that n ∈ {(p − 1)2 + 2, · · · , p2 + 1}. Then k + 1 = p. Let us take
vertex v ∈ V (G) such that d1(v) = k +1, subgraph G ′ = G2[N2(v)] and two vertices
v1, v2 ∈ V (G ′), where the edge {v1, v2} ∈ E(G1). Then |V (G ′)| = n − 1 and in
subgraph G ′ we have d2(v1) + d2(v2) = 2(n − 2) − (d1(v1) + d1(v2)). We have the
following

Claim d1(v1)+d1(v2) ≤ 2δ1(G)+ A or d1(v1)+d1(v2) ≤ 2δ1(G)+ A+1 depending
on the parity of δ1(G) and (n + k + 1).

Proof If δ1(G) and |V (G)| = (n + k + 1) are odd, then it is impossible that for all
vertices w ∈ V (G) we have d1(w) = δ1(G). In the worst situation, when all A edges
are adjacent to v1 or v2, we have that d1(v1) + d1(v2) ≤ 2δ1(G) + A + 1. ��

We will prove that d2(v1)+d2(v2) ≥ n−1 for all vertices v1, v2 ∈ V (G ′) such that
{v1, v2} ∈ E(G1). In this case we obtain a contradiction because by Ore’s Theorem
subgraph G ′ contains a Cn−1 and G contains a Wn in the second color.

The remaining part of the proof is divided into three parts.
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Table 1 Values needed to prove that d2(v1) + d2(v2) ≥ n − 1 for 11 ≤ n ≤ 17

n 11 12 13 14 15 16 17

|V (G)| = n + k + 1 15 16 17 18 19 20 21
n − 1 10 11 12 13 14 15 16
t (|V (G)|, C4) 30 33 36 39 42 46 50
A 0 1 2 3 4 6 8
d2(v1) + d2(v2) ≥ 10 11 12 13 14 14 14

Table 2 Values needed to prove that d2(v1) + d2(v2) ≥ n − 1 for 18 ≤ n ≤ 26

n 18 19 20 21 22 23 24 25 26

|V (G)| = n + k + 1 23 24 25 26 27 28 29 30 31
n − 1 17 18 19 20 21 22 23 24 25
t (|V (G)|, C4) 56 59 63 67 71 76 80 85 90
A – – 0 2 3 6 7 10 12
d2(v1) + d2(v2) ≥ 21 24 25 26 26 26 26 26 25

1. 11 ≤ n ≤ 17
In this case δ1(G) = p = 4. The exact values of t (n, C4) are known for all n ≤ 21,

see [1]. In addition, this paper covers all extremal graphs. Table 1 contains all val-
ues needed to prove the inequality d2(v1) + d2(v2) ≥ n − 1.

One can see that for all 11 ≤ n ≤ 15 the proof is complete. For case n = 16 let
us consider the graph G1. If it is the only extremal graph for t (20, C4) [1] then its
maximum degree is 5, so by Ore’s Theorem G ′ contains a C15 and G contains a
W16 in the second color. If |E(G1)| ≤ 45, then A ≤ 5 and d2(v1) + d2(v2) ≥ 15.

By similar considerations in case n = 17, if G1 is the only extremal graph for
t (21, C4) [1] then G ′ contains a C16 and G contains a W17. If |E(G1)| = 49 and
there exists a vertex w ∈ V (G) such that d1(w) = 8, then we obtain a C4 in
color 1 in G (consider δ1(G) = 4 and all possible edges in color 1 from N1(w)

to the remaining vertices of G). If d1(w) ≤ 7 for all vertices w ∈ V (G), then
by Ore’s Theorem G ′ contains a C16 and G contains a W17. Then A ≤ 6 and
d2(v1) + d2(v2) ≥ 16 and we are done.

2. 18 ≤ n ≤ 26 In this case δ1(G) = p = 5. The exact values and extremal graphs
for t (n, C4) are known for all 22 ≤ n ≤ 31, see [11]. Table 2 presents all val-
ues needed to finish the checking the inequality d2(v1) + d2(v2) ≥ n − 1 for
18 ≤ n ≤ 26. We will mark with ′−′ the case when A < 0.

3. n ≥ 27
In this case p ≥ 6. We have that in G ′d1(v1) + d1(v2) ≤ 2δ1(G) + 1 + A, then
in G ′d2(v1) + d2(v2) ≥ 2(n − 2) − (2δ1(G) + 1 + A) = 2n − 2p − 5 − A.

In order to finish the proof we have to show that 2n − 2p − 5 − A ≥ n − 1,

i.e. A ≤ n − 2p − 4. Observe that w(n, p) = t (n + p, C4) − � (n+p)p
2 � ≤

1
4 (n + p)(1 + √

4(n + p) − 3) − � (n+p)p
2 � is an increasing function of n, i.e.

w(n1, p) > w(n2, p) if n1 > n2. Then, the maximal possible value of A holds

for n = p2 + 1. For even p we have that t (n + p, C4) ≤ (p2+p+1)(p+1)
2 − 1

2 and
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� (n+p)p
2 � = (p2+p+1)p

2 . For odd p we have that t (n + p, C4) ≤ (p2+p+1)(p+1)
2

and � (n+p)p
2 � = (p2+p+1)p

2 + 1
2 . In both situations we obtain that A ≤ p2+p

2 and
for all p ≥ 6, A ≤ p2 − 2p − 3.

��
Taking n = q2 + 1 in Theorem 4, we have

Corollary 5 For all integers q, q ≥ 4

R(C4, Wq2+1) ≤ q2 + q + 1.

3 Erdős-Rényi Graph

Let q be a prime power. The famous Erdős-Rényi graph E R(q), first constructed
by Erdős and Rényi in 1962, was studied in detail by Parsons in [4]. We know the
following properties of E R(q) :
– E R(q) has q2 + q + 1 vertices, q + 1 vertices with degree q and q2 vertices with

degree q + 1
– E R(q) does not contain a subgraph C4
– in E R(q) there are no two adjacent vertices of degree q
– in E R(q) no vertex of degree q belongs to a subgraph K3

Let H(q) denote the subgraph of E R(q) obtained by deleting one vertex of degree
q. By the third property of E R(q), the subgraph H(q) contains 2q vertices with degree
q and q2 − q vertices with degree q + 1. One can observe that for all vertices w, the
degree d(w) in the complement of H(q) is at most q2−1. By this fact, the complement
of H(q) does not contain a Wq2+1, so there exists a (C4, Wq2+1; q2 + q)-coloring.
By this fact and by Corollary 5 we have the following

Theorem 6 For q ≥ 4 being a prime power

R(C4, Wq2+1) = q2 + q + 1.

4 Exact Values for Small Wheels

Up to date values for R(C4, Wn) are known only for n ≤ 13. We determined the next
four values as follows:

Theorem 7 1. R(C4, W14) = 18,

2. R(C4, W15) = 19,

3. R(C4, W16) = 20,

4. R(C4, W17) = 21.

Proof By Theorem 6 we immediately obtain R(C4, W17) = 21. In order to determine
an upper bound for all remaining cases we use Theorem 4. For a lower bound we pres-
ent appropriate matrix of critical coloring (see Fig. 1). These matrices were obtained
by using simulated annealing to find C4-free graphs with a minimum degree 4. ��
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Fig. 1 Lower bound for R(C4, Wn), 14 ≤ n ≤ 16

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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