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We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation.
In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane us-
ing the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In
our solution, a bandpass filter is used for ECG signal prefiltering and an improvedmethod for detection threshold-level calculation
is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82% and positive predictivity of
99.82%) and tested it on the long-term ST database (sensitivity of 99.72% and positive predictivity of 99.37%). Our algorithm
outperforms several well-known QRS complex detection algorithms, including the original algorithm.
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1. INTRODUCTION

Detecting QRS complexes is the most important task in elec-
trocardiogram (ECG) signal analysis. Physiological variabil-
ity of QRS complexes and various types of artifacts like mus-
cle noise, power line interference, baseline wander, motion
artifacts, and electrode contact noise added to the ECG sig-
nal make QRS complex detection a difficult task.

In the literature, various types of QRS complex detec-
tion algorithms can be found. Köhler et al. [1] divided QRS
complex detection algorithms into algorithms based on sig-
nal derivatives and digital filters, wavelet-based QRS complex
detection, neural network approaches, and additional ap-
proaches. The algorithms from the first two groups are most
widely used for QRS complex detection and can be found in
software (SW) or hardware (HW) implementations.

The first group encompasses algorithms based on sig-
nal derivatives and digital filters. Such approach divides the
search process into two stages: the preprocessing stage and
the decision stage. The preprocessing stage usually consists
of a band-pass linear filter to reduce noise and enhance the
QRS complex [2, 3], and a nonlinear filter, which by signal
differentiation, squaring, and integration differentiates the

QRS complex from the artifacts. The decision stage applies
QRS complex search rules where the detection function is
compared to a certain detection threshold level to find signal
peaks and then the decision is made whether the peak is a
QRS complex or not. One of the best performing algorithms
in this group is an open source ECG analysis SW (OSEA)
[4]; OSEA achieves QRS complex detection sensitivity (Se)
of 99.80% and positive predictivity (+P) of 99.80% on the
MIT-BIH Arrhythmia Database [5]. Further examples of al-
gorithms with lower performance that can be classified into
this group can be found in [6–10].

The variety of QRS complex shape morphologies and ar-
tifacts causes the performance of QRS complex detection al-
gorithms that use fixed bandwidth bandpass filters and fixed
width integration windows to decrease when the QRS mor-
phology changes. To avoid this problem, a new approach to
QRS complex detection based on wavelet transform (WT)
has been introduced. The WT decomposes the ECG signal
into several scales, where each scale has different bandwidth
and time support. WT at any scale is done by filtering the sig-
nal with an appropriate filter. The most common approach
to QRS complex detection is finding local maxima at four
consecutive scales. Detection starts at the largest scale (W2

4)
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Figure 1: QRS complex detection using delay-coordinate mapping [11].

containing low-frequency signal information and continues
to the lowest scale (W2

1) containing high-frequency signal
information. A positive-negative pair of local maxima that
occurs at all the scales at the same time and meets other de-
tection rules is declared as the QRS complex. One of the first
WT-based QRS complex detection algorithms with very high
Se of 99.89% and +P of 99.94% tested on the MIT-BIH Ar-
rhythmia Database was published by Li et al. [12]. This al-
gorithm serves as a starting point for other algorithms which
usually only differ in the usage of different wavelet functions
[13], number of processed scales [14], or modifications to
the original algorithm [15, 16]. These algorithms also have
lower performance than [12].

While algorithms from the first group are usually less
computationally intensive and suitable for microcontroller
implementations in embedded systems, other types of algo-
rithms usually utilize a greater number of filters and decision
rules, making them unsuitable for systems with low-signal
processing power. Most of such algorithms run on personal
computers (PCs) where data is processed further. Regardless
of the type of the algorithm, when a lot of ECG signals need
to be processed on a single PC in a relatively short time, it
is essential to have enough processing power. All the signals
need to be processed without degrading the performance of
other applications running on the PC. One solution to the
problem is upgrading the PC, while the second solution is in
an application-specific HW. Such HW can be based on a dig-
ital signal processor (DSP) or field programmable gate array
(FPGA) added to the PC, so the processor in the PC can be
relieved from most of the computation.

The goal of our research work was development and HW
implementation of a QRS complex detection algorithm in or-
der to set the groundwork for further ECG signal processing
stages in HW. Because of expected high-speed data process-
ing, the HW is aimed to be used as a QRS complex detection
engine in systems where a larger number of ECG signals have
to be processed. In this paper, a HW implementation of the
QRS complex detection algorithm based on phase-space por-
trait of the ECG signal is described. In contrast to the original
algorithm [11], our algorithm processes blocks of ECG data,
has a different input filter, and uses a different method for
detection threshold level calculation. The algorithm was de-
veloped on the MIT-BIH Arrhythmia Database and a com-
parison with some of the well-known QRS complex detec-
tion algorithms in terms of QRS detection performance on

this database was made. Finally, the algorithm was tested on
the long-term ST database (LTST DB) [17].

2. MATERIALS ANDMETHODS

A real-time QRS complex detection algorithm for microcon-
troller implementation was adapted for block data process-
ing in HW. The developed algorithm was first modeled and
tested in SW (Matlab). The SWmodel served as an optimiza-
tion and testing tool for the HW implementation of the al-
gorithm, which was entirely written in very high-speed inte-
grated circuit hardware description language (VHDL) [18].

The QRS complex detection algorithm proposed by Lee
et al. [11] uses time delay to map the input ECG signal. A sin-
gle ECG signal and its time delayed duplicate create a phase-
space portrait, whose geometrical properties are exploited
for QRS complex detection. Based on the size of the poly-
gon bounded by a number of consecutive data points, a QRS
event can be found. Each time a new polygon size (area) ex-
ceeding the current detection threshold level is found, a de-
cision is made whether the peak is indeed a QRS complex
or not, and the detection threshold level is updated. A block
diagram of the algorithm is shown in Figure 1.

Although this scheme requires several multiplications for
area calculation, the algorithm is relatively simple and has
satisfactory performance: Se of 99.69% and +P of 99.88%,
tested on the MIT-BIH Arrhythmia Database. In order to
simplify the preprocessing stage, authors deliberately used
only a lowpass filter, which resulted inmore dynamic changes
of the polygon sizes since P and T waves and motion artifacts
were not filtered out.

Wemodified the algorithm in order to make it more suit-
able for postprocessing, where the ECG signal is processed
block-by-block. It is designed and optimized for QRS com-
plex detection in the ECG signal sampled at 250Hz. How-
ever, other sampling rates can be used with appropriate ad-
justments to the input filter, correct block length, and detec-
tion threshold level calculation. The algorithm we propose is
shown in Figure 2.

As can be seen in Figure 2, the modified algorithm com-
prises a bandpass filter instead of the lowpass filter, and
the detection threshold level calculation is performed before
peak detection. Moreover, a different method for the detec-
tion threshold level calculation is utilized. The algorithm is
described in more detail in the following subsections.
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Figure 2: Modified delay-coordinate mapping algorithm.
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Figure 3: Phase-space portraits of the ECG signal: (a) input ECG signal, (b) phase-space portrait of the ECG signal with the time delay of
4milliseconds, (c) phase-space portrait of the ECG signal with the time delay of 12milliseconds, (d) phase-space portrait of the ECG signal
with the time delay 28milliseconds.

2.1. Phase-space portrait

The phase-space portrait (also phase portrait) of a sig-
nal is constructed in a 2D plane (x-y) from the origi-
nal signal and its time delayed duplicate, so that coordi-
nates of each data point are written as x[nT] = ECG[nT]
and y[nT] = ECG[(n − τ)T], where τ is the time de-
lay. Figure 3 shows exemplary phase-space portraits of two

consecutive heartbeats, where trajectories are generated by
delaying the signal by 4milliseconds, 12milliseconds, and
28milliseconds. In the phase-space portraits, we can distinct
three different areas which the trajectory forms in the 2D
plane: the smaller areas are created by the P and T waves
with a lower amplitude, while the largest area corresponds
to a higher amplitude wave or the QRS complex, respec-
tively.
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Figure 4: Phase-space portraits and the calculated area of the ECG signal: (a) input ECG signal, (b) lowpass filtered ECG signal, (c) band-
pass filtered ECG signal, (d) phase-space portrait of the lowpass filtered ECG signal, (e) phase-space portrait of the bandpass filtered ECG
signal, (f) calculated area of the lowpass filtered ECG signal, (g) calculated area of the bandpass filtered ECG signal.

It is very important that an appropriate signal time de-
lay is chosen in order to get useful phase-space portraits and
to sustain proportions between the sizes of areas created by
different waves. If the time delay is too short (Figure 3(b)),
the resulting trajectory creates rather “flat” areas around the
y = x line, that can potentially be disordered, but on the
other hand, if the time delay is too great (Figure 3(d)), the
contour can create several smaller areas instead of one larger
area. Based on their QRS detection algorithm performance,
Lee et al. [11] determined that the optimal time delay is
20milliseconds.

Some phase-space portrait examples of ECG signals con-
taminated with high-frequency noise and baseline drifts are
shown in [11]. While baseline drifts cause the phase-space

portrait to move along the diagonal axis of the plane, along
the y = x line, and do not influence the size of the area itself,
the high-frequency noise can distort the phase-space portrait
to a point where the distinctive area created by the QRS com-
plex cannot be found anymore. To avoid this, the ECG signal
is to be prefiltered, so the phase-space portrait is constructed
from the filtered ECG signal and its time delayed duplicate.
Figure 4 shows the input ECG signal, lowpass, and bandpass
filtered signals, their phase-space portraits, and sizes of the
areas the trajectories created. The input signal is deliberately
selected to emphasize the difference between the phase-space
portraits created by the two filters.

When the signal is filtered with the lowpass filter, the in-
fluence of baseline drift can be seen; the trajectory created
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by time delaying the signal moves along the y = x line
(Figure 4(d)), while no influence can be seen on the calcu-
lated area (Figure 4(f)). It can also be noted that the low-
pass filter allows waves like P and T to create small areas
(Figure 4(f)), which add to more dynamical area behavior. If
the ECG signal is filtered with a bandpass filter, the trajectory
does not move along the y = x line (Figure 4(e)) and there
are hardly any areas present that would be created by the P
and T waves, as these waves are attenuated (Figure 4(g)). It
can also be noticed that the different frequency characteris-
tics of the bandpass filter result in a different shape and posi-
tion of the shape the trajectory tends to form in the 2D plane
(Figures 4(d), 4(e)).

2.2. Area calculation

As mentioned in the previous subsection, each data point in
the x-y plane has coordinates (x[nT], y[nT]). The size of an
area formed by n data points (n-point data vector) is used
as the detection function for locating QRS complexes. The
area is obtained using plane geometry equation for a planar
non-self-intersecting polygon area calculation:

Area = 1
2

(∣∣∣∣∣x1 x2
y1 y2

∣∣∣∣∣ +
∣∣∣∣∣x2 x3
y2 y3

∣∣∣∣∣ + · · · +
∣∣∣∣∣xn−1 xn
yn−1 yn

∣∣∣∣∣
)
. (1)

Polygon orientation is not important, so the absolute value
of the calculated area (determinant) has to be considered. Lee
et al. [11] calculated the sizes of areas comprised of ten data
points. Their decision was based on the fact that if the average
QRS complex duration is less than 100milliseconds (25 data
points at 250 samples per second), all polygons comprised
of ten data points are nonintersecting. The experiment for
obtaining the optimum number of data points for our algo-
rithm is described in Section 3.

2.3. Filtering

Targeted for HW implementation in FPGA, the chosen filter
belongs to a family of simple nonrecursive filters with inte-
ger multipliers [19, 20]. Impulse response of the filter used
in this work is shown in Figure 5(a). The filter comprises two
sections, where each section of length L calculates the aver-
age value of L neighboring data samples; thus each section
represents a moving average filter. By averaging consecutive
data samples, the high-frequency components of the input
signal are attenuated. To attenuate power-line interference,
the length L of the two sections is calculated so that the fil-
ter has zero gain at 50Hz ( f 50) and multiples of 50Hz. For
250Hz sampling rate ( f s), the section length L is five:

L = f s

f50
. (2)

The filter can be redesigned for other sampling rates accord-
ingly, again attenuating 50Hz. Furthermore, the impulse
response of the filter was chosen in such a way that there
is a step between coefficient values. This results in empha-
sis on high-speed transitions in the input ECG signal, that
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Figure 5: Filter characteristics: (a) impulse response, (b) frequency
response.

is, slopes of the QRS complex, and attenuation of the low-
frequency components. Frequency response of the filter is
shown in Figure 5(b). The difference equation of the filter is
the following:

y[n] = x[n] + x[n− 1] + x[n− 2] + x[n− 3]

+ x[n− 4]− x[n− 5]− x[n− 6]

− x[n− 7]− x[n− 8]− x[n− 9].

(3)

Frequency response of the filter shows attenuation of low-
and high-frequency components.

We can also see approximately linear characteristic below
the center frequency yielding sensitivity of the bandpass filter
to slopes in original signal and cancelation of the 50Hz com-
ponent and its multiples. The center frequency of the filter
designed is at 18.7Hz and its cutoff frequencies are at 9.2Hz
and 29.3Hz.

An example of an input ECG signal and the filtered sig-
nal is shown in Figure 6. It is clearly visible that faster slopes
in the original signal were emphasized or extracted, while
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Figure 6: Original ECG signal and filtered ECG signal.

slowly varying waves like P wave, ST segment, and T wave
composed from low frequencies were attenuated.

2.4. Detection threshold level calculation

The bandpass filter significantly reduces the influence of
lower- and higher-frequency components on the calculated
area, which can be seen when Figures 4(f) and 4(g) are com-
pared. In Figure 4(g), representing the areas created by the
bandpass filtered signal, the peaks produced by the QRS
complexes can clearly be distinguished from other peaks.
This is true even when the signal is noisy, like it is between
the third and the fourth heartbeats in Figure 4. The reduc-
tion of areas created by non-QRS artifacts enables a different
approach to the QRS complex detection threshold level cal-
culation than what was originally used in [11]. Our detection
threshold level evaluation is based on the average value of the
detection function in the current data block. As the average
value of the calculated areas in the block was not high enough
to filter out the peaks that were not due to QRS complexes,
multiplied average values were tested. After extensive testing,
the optimal value to be used as a detection threshold level
was determined to be four times the average area value in the
data block.

Two additional safety mechanisms for error prevention
were incorporated in our algorithm and are depicted in
Figure 7.

The first mechanism assures that blocks, where the cal-
culated detection threshold level is too low, are treated as
blocks with no QRS. Without this fail-safe, in blocks with
no QRS complexes, a peak of any height would be recog-
nized as a QRS complex and the number of false positive (FP)
detections would increase. A search was conducted to find
the optimum lower limiting value that can be represented

Calculate thr new

thr new > thr old/8

Detect peaks,
apply QRS rules at
the end of the block

Yes No

thr = thr new thr = thr old

Yes
QRS found

No

thr old = thr thr old = thr old/2

Stop detection?

Figure 7: Scheme of QRS complex detection threshold level adap-
tation.

with a combination of numbers of power of two. This lim-
itation was set to avoid divisions in HW. Testing results indi-
cated that the detection threshold level in the current block
(thr new) has to be greater than 1/8th of the threshold level
in the previous block (thr old). If this is not the case, the old
value is kept as a valid detection threshold level for the cur-
rent block, otherwise the new value is used and the old one
is updated. The second mechanism serves for recovery from
false negative (FN) detections, as each time no QRS com-
plex is found, the old detection threshold level (thr old) is
decreased by 50%. This proves to be useful in cases when
nondetected weak QRS complexes are present; each time no
QRS is detected, the detection threshold level (thr old) is
lowered, and eventually becomes sufficiently low to start de-
tecting the QRS complexes. However, there is a limit to the
number of the detection threshold level decreases. The al-
gorithm only allows three consecutive detection threshold
level decreases, meaning that the detection threshold level
can drop to 1/8th of its initial value. The detection thresh-
old level remains unchanged for all subsequent consecutive
blocks with no QRS complexes.

2.5. Peak search andQRS complex detection rules

QRS complex detection is based on a set of amplitude and
timing criteria widely used in detection algorithms and is
shown in Figure 9(a). After the detection threshold level (thr)
is set for the calculated areas, the block of the calculated areas
is searched for all peaks above thr and all peaks between thr/2
and thr. All peaks that exceed thr are automatically treated as
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Figure 8: Influence of detection parameters ((a) time delay, (b)
block length, (c) number of polygon points) on the number of
missed and falsely detected beats.

QRS candidates, while the peaks between thr/2 and thr are
stored to a separate list (half peaks). Every time a new QRS
candidate is found, the half peaks list is cleared. If no QRS
candidates are found within 150% of the last RR interval,
the peaks from the half peaks list are added to QRS candi-
dates, and the half peaks list is cleared. This procedure cor-
responds to the “search-back” procedure. After the complete
block of the area values is swept and the QRS candidate list is
obtained, QRS decision rules are applied to the list.

QRS complex decision is based on the peak mutual dis-
tance and amplitude criteria. A sweep through the peaks in
the detection function is performed. The position and height
of every peak in the QRS candidate list are compared to the
position and height of the last known peak in the list that

was recognized to originate from the QRS complex. The first
peak in the candidate list is automatically recognized as the
QRS complex. If the distance between the first and the second
peaks is less than the refractory period (200milliseconds),
the higher of the two peaks is recognized as a QRS complex.
In case the second peak is higher, the first peak is discharged
and the second one is recognized as the first QRS complex. If
the distance is greater than the refractory period, the second
peak is automatically recognized as a new QRS complex. The
third peak would then be compared to the first or the second
peak, depending on which peak was recognized as the QRS
complex.

After all QRS complexes in the block have been located,
the difference between the last two QRS complexes is consid-
ered to be the RR interval. If none or only one QRS complex
is detected in a block, the RR interval remains unchanged.
It is also possible to calculate the RR interval as the mean
value of all RR intervals within one block. The performance
testing showed that the latter method performed worse, for
which its error persistence is to be blamed. If one FP beat is
detected, it takes several true positive (TP) detections to nul-
lify its influence. Since such errors can persist through sev-
eral blocks, the error can increase even further. Every FP de-
tection causes the search-back to be performed sooner than
it should, which can lead to additional FP detections. The
opposite situation is also possible in cases when a few QRS
complexes are missed (FN); the search-back interval can be
increased and the search-back seldom performed. This way,
evenmore FN detections can occur when the QRS complexes
have their amplitude below the detection threshold level.

An additional feature of the QRS complex detection part
of the algorithm is the mechanism for block overlapping.
While in [13] consecutive blocks of data are overlapped by
75%, our algorithm uses the last detected QRS complex in
a block as a starting point for its subsequent block. The
method in [13] thus produces a constant 25% processing
overhead as 25% of the data is always processed twice. The
overhead in our method is variable and spans between 6.7%
(record 234) and 46.8% (record 231), but is with its average
value of 19.1% lower than in [13]. The same mechanism also
sets the starting point when noQRS is found in the processed
block. In such cases, the new starting point of the following
block is set at 450 samples of the currently processed block.
This means that the new block comprises 250 samples of the
old data (one second of the ECG signal) and 450 samples of
the new data. In cases where low-amplitude QRS complexes
are present but not detected, such block composition reduces
the number of FN detections, as some portions of blocks are
always processed twice and each time with a lower detection
threshold level.

To summarize, the main differences between the original
algorithm [11] and the proposed algorithm are the follow-
ing. The influence of the bandpass filter on noise and low-
frequency signals causes the calculated phase-space portrait
area to be smoother. Additionally, the ECG signal is pro-
cessed block-by-block, where block overlapping guarantees
detection of QRS complexes that would normally be split
into two separate blocks. These two features make it possible
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Figure 9: QRS complex detection algorithm: (a) flow chart of the SW implementation, (b) simplified state diagram of the HW implemen-
tation.

to calculate the QRS detection threshold level on the basis
of the average value of the detection function in the current
data block.

3. IMPLEMENTATION

The algorithm performance is highly dependant on the time
delay parameter τ, data block length settings, and the cho-
sen number of polygon points. For testing purposes, the al-
gorithm was first implemented in Matlab, where individual
detection parameters were set to give optimal QRS complex
detection performance in terms of the minimum number of
missed and falsely detected (FN and FP) QRS complexes.

For each of the three parameters, the algorithm perfor-
mance was tested on the complete database. Each test had
two parameters fixed and the third parameter was chang-

ing (Figure 8). First, the time delay parameter selection was
made based on QRS complex detection performance with
blocks of 600 data samples and 8 data points for area cal-
culation (Figure 8(a)). In the next step, the block length
was modified using the selected time delay and the same
number of polygon data points (Figure 8(b)). Finally, the
optimum number of data points used for area calculation
was determined using 20milliseconds delay and block length
of 600 data samples (Figure 8(c)). Parameter settings with
the least detection error rate were chosen for the imple-
mentation and algorithm performance was evaluated on the
MIT-BIH Arrhythmia Database. The time delay was set to
20milliseconds, the block length was set to 700 samples, and
the number of points was set to eight.

Based on the SW implementation in Figure 9(a), a state-
machine adapted copy of the algorithm shown in Figure 9(b)
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was developed in VHDL. The main difference between the
HW implementation and the SW implementation is true
parallel execution that the HW implementation offers.

All grayed parts of the code in Figure 9(a) are in the HW
implementation executed independent of each other. The
SW implementation needs to wait for the outcome of the de-
tection threshold level comparison, while in the HW imple-
mentation both detection threshold level comparisons (thr
and thr/2) are performed at the same time. Such schedul-
ing significantly reduces the number of clock cycles needed
for data processing and improves data processing speed. Fur-
thermore, the average value can be calculated in parallel with
area calculation, which also speeds up block processing.

Another difference in the HW implementation is that in
the entire design only integer arithmetic is used. The deci-
sion to represent the variables with 32 bits or less was made
to reach a compromise between the entered calculation error
and resource utilization. Any variable that requires a greater
number of bits is appropriately modified. Such modification
is only needed at average value calculation, when 700 30-bit
area size variables are to be summed. The HW divider used
for average value calculation can only accept dividends of up
to 32 bits; therefore, before addition, each area value is di-
vided by 256 to achieve a 32-bit sum (dividend). Because of
the high area values, such division has no influence on the
detection accuracy, and does not also influence the process-
ing speed, since divisions with the power of two are in HW
only bit-shifts and zero padding.

The HW implementation of the algorithm is designed to
accept the input data of a single ECG signal as a nonrepeating
stream, meaning that the input logic only accepts as much
data as needed to fill up the input buffer; if 200 samples of a
block need to get overlapped with the next data block, only
500 additional input samples are added to construct the next
data block. The resulting QRS complex detection algorithm
in Figure 9(b) was implemented and tested with the Xilinx
XC2VP7 [24] development board. To prove the concept, an
addition of a soft-core microcontroller and a serial port in-
terface were chosen for data transfer handling between the
development board and a PC.

4. RESULTS ANDDISCUSSION

The algorithm was developed on resampled data from the
MIT-BIH Arrhythmia Database. The database contains 48
half-hour ambulatory records. These records include com-
plex ventricular, junctional, and supraventricular arrhyth-
mias and conduction abnormalities. Several of these records
have interesting rhythm features, QRS morphology varia-
tions, and variety of changes in signal quality, thus repre-
senting “real-world” clinical conditions that may present dif-
ficulty to Arrhythmia detectors.

We tested standard performance measures such as the
sensitivity (Se) and the positive predictivity (+P). The Se re-
ports the percentage of true beats that were correctly detected
by the algorithm, while the +P reports the percentage of beat
detections which were in reality true beats. The test results
presented in Tables 1 and 2 reflect the QRS complex detection

Table 1: Performance of the algorithm on the MIT-BIH Arrhyth-
mia Database.

REC AHB TP FN FP FN + FP Se [%] +P [%]

100 2273 2273 0 0 0 100.00 100.00

101 1865 1864 1 4 5 99.95 99.79

102 2187 2187 0 0 0 100.00 100.00

103 2084 2084 0 0 0 100.00 100.00

104 2229 2221 8 14 22 99.64 99.37

105 2572 2567 5 34 39 99.81 98.69

106 2027 2026 1 0 1 99.95 100.00

107 2137 2135 2 0 2 99.91 100.00

108 1763 1761 2 85 87 99.89 95.40

109 2532 2529 3 0 3 99.88 100.00

111 2124 2123 1 0 1 99.95 100.00

112 2539 2539 0 0 0 100.00 100.00

113 1795 1795 0 0 0 100.00 100.00

114 1879 1871 8 5 13 99.57 99.73

115 1953 1953 0 0 0 100.00 100.00

116 2412 2393 19 3 22 99.21 99.87

117 1535 1535 0 0 0 100.00 100.00

118 2278 2278 0 0 0 100.00 100.00

119 1987 1987 0 0 0 100.00 100.00

121 1863 1862 1 1 2 99.95 99.95

122 2476 2476 0 0 0 100.00 100.00

123 1518 1517 1 0 1 99.93 100.00

124 1619 1619 0 0 0 100.00 100.00

200 2601 2599 2 3 5 99.92 99.88

201 1963 1952 11 2 13 99.44 99.90

202 2136 2134 2 0 2 99.91 100.00

203 2980 2925 55 18 73 98.15 99.39

205 2656 2653 3 0 3 99.89 100.00

207 1860 1857 3 5 8 99.84 99.73

208 2955 2942 13 3 16 99.56 99.90

209 3005 3005 0 0 0 100.00 100.00

210 2650 2633 17 4 21 99.36 99.85

212 2748 2748 0 0 0 100.00 100.00

213 3251 3250 1 0 1 99.97 100.00

214 2262 2259 3 0 3 99.87 100.00

215 3363 3363 0 0 0 100.00 100.00

217 2208 2206 2 1 3 99.91 99.95

219 2154 2154 0 0 0 100.00 100.00

220 2048 2047 1 0 1 99.95 100.00

221 2427 2416 11 0 11 99.55 100.00

222 2483 2477 6 1 7 99.76 99.96

223 2605 2603 2 0 2 99.92 100.00

228 2053 2045 8 11 19 99.61 99.46

230 2256 2256 0 0 0 100.00 100.00

231 1571 1571 0 0 0 100.00 100.00

232 1780 1780 0 6 6 100.00 99.66

233 3079 3072 7 0 7 99.77 100.00

234 2753 2752 1 0 1 99.96 100.00

Total 109494 109294 200 200 400 99.82 99.82
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Table 2: QRS complex detection performance compared to several algorithms (based on [15, Table II]).

QRS detector ANN TP FN FP Error [%] Se [%] +P [%]

Li et al. [12] 104182 104070 112 65 0.17 99.89 99.94

Saxena et al. [14] 103763 103664 99 102 0.19 99.9 99.9

Bahoura et al. [16] 109809 109635 184 135 0.29 99.83 99.88

Martı́nez et al. [15] 109428 109208 220 153 0.34 99.80 99.86

This work 109494 109294 200 200 0.37 99.82 99.82

OSEA [4] 91284∗ 91105 179 180 0.39 99.80 99.80

Lee et al. [11] 109486∗ 109151∗ 335 137 0.43 99.69 99.88

Hamilton and Tompkins [6] 109267 108927 340 248 0.54 99.69 99.77

Zong et al. [7] NA NA NA NA 0.58 99.65 99.77

Pan and Tompkins [2] 109809 109532 277 507 0.71 99.75 99.54

Afonso et al. [21] 90909 90535 374 406 0.86 99.59 99.56

Poli et al. [22] 109963 109522 441 545 0.90 99.60 99.50

Kunzmann et al. [10] 91283 NA NA NA 1.41 98.86 99.73

Aristotle SW [23] 109428 107567 1861 94 1.79 98.30 99.91

∗The numbers are recalculated.

performance obtained utilizing data blocks of 700 samples,
time delay of 20milliseconds and eight data points for area
calculation. Because of initial data resampling to 250 sam-
ples per second, the obtained QRS complex locations were
recalculated to match the 360 samples per second data rate of
the original data and the attribute file. Then the performance
was tested applying a 40milliseconds delay to the MIT-BIH
Arrhythmia Database. The first channel of all 48 two-channel
records throughout their entire length was used for testing
the performance of the algorithm.

The columns in Table 1 represent the record number
(REC), the number of heartbeats in the record (AHBs), the
number of correctly (true positive) (TP) detected heartbeats,
the number of missed (not detected) (FN) heartbeats, the
number of false positive (FP) detections, the sum of falsely
detected and missed heartbeats (FN+ FP), the sensitivity (Se
[%]), and the positive predictivity (+P [%]), respectively.

The results in Table 1 were obtained by the algorithm
modified for nonrepeating data reception through a serial
link. The area calculation was performed on the data stream
and then partitioned to data blocks. In order to enable block
processing through the complete record, 1000 replicates of
the last data sample were added to the end of all records. The
algorithm was based on assumption that every block starts
at the last detected QRS complex, therefore data processing
starts 200milliseconds after the block starts. This is also the
case for the first data block where the first 200milliseconds
of data are not scanned for peaks, which leads to FN detec-
tions at the start of some records (207, 208, 210, 214, 220,
and 233).

The algorithm performs well and stable on all tested
records (Table 1); however, performance on two records is
far worse than on other records. The record 108 is problem-
atic for many detection algorithms because of the first-degree
AV block and high and sharp P waves. The combination of
these two properties allows the P waves to qualify as the QRS
complexes and produce FP detections in several places in the

record. Detection performance on the record 203mainly suf-
fers from nondetected (FN) beats, mostly premature ventric-
ular contractions (PVCs). The nondetected PVCs have low
amplitude and occur between two normal high-amplitude
beats. In such conditions, these beats either do not exceed
any of the detection threshold levels or exceed the lower de-
tection threshold level, but there is no search-back.

To gain the sense of the algorithm performance on the
MIT-BIH Arrhythmia Database, a comparison of detection
results to a set of other well-known published algorithms is
reported in Table 2. The columns in Table 2 represent the
QRS detector (QRS detector), the number of tested (anno-
tated) (ANN) heartbeats, the number of correctly (true pos-
itive) (TP) detected heartbeats, the number of missed (not
detected) (FN) heartbeats, the number of false positive (FP)
detections, percentage of falsely detected and missed heart-
beats among all tested heartbeats (Error %), the sensitiv-
ity (Se [%]), and the positive predictivity (+P [%]), respec-
tively.

With Se of 99.82% and +P of 99.82% the algorithm per-
forms satisfactory when compared to other algorithms, and
outperforms the founding algorithm [11]. When the two al-
gorithms are compared, it is interesting to see how the detec-
tion performance is influenced by different filtering and de-
tection threshold level calculation. While our algorithm ex-
hibits worse detection performance on, for example, records
104 and 108, it performsmuch better on, for example, record
222. We are confident that further algorithm improvements
would lead to even better QRS complex detection results. An
improvement in detection threshold level calculation could
prevent sudden baseline shifts or some QRS complexes from
raising the detection threshold level to a point where no QRS
is detected in a subsequent block, which in the record 203
happens at 108.4 seconds. Furthermore, incorporation of a
positive-negative wave pair detection mechanism similar to
other high-performance detection algorithms would exclude
sudden baseline shifts from the QRS candidate list.
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Table 3: Performance of the algorithm on 43 records of the LTST DB.

REC AHB THB TP FN FP FN + FP Se [%] +P [%]

s20011 100053 99674 99670 4 0 4 100.00 100.00

s20021 88963 88598 88597 1 5 6 100.00 99.99

s20031 109501 109109 109095 14 25 39 99.99 99.98

s20041 109304 108993 108977 16 0 16 99.99 100.00

s20061 117925 117454 117451 3 1 4 100.00 100.00

s20081 112979 112553 112553 0 1 1 100.00 100.00

s20101 78017 77649 77649 0 21 21 100.00 99.97

s20121 85526 85220 85210 10 6 16 99.99 99.99

s20141 116674 116206 116206 0 0 0 100.00 100.00

s20161 83698 83355 83337 18 226 244 99.98 99.73

s20181 106978 106555 106498 57 150 207 99.95 99.86

s20201 91477 91058 91057 1 1 2 100.00 100.00

s20221 119182 118715 118714 1 0 1 100.00 100.00

s20241 92439 91997 91997 0 0 0 100.00 100.00

s20261 102311 101955 101953 2 0 2 100.00 100.00

s20281 73076 72808 72807 1 1 2 100.00 100.00

s20301 106779 106379 106378 1 3 4 100.00 100.00

s20321 91929 91586 91542 44 18 62 99.95 99.98

s20341 100255 99816 99814 2 7 9 100.00 99.99

s20361 105688 105380 105377 3 37 40 100.00 99.96

s20381 102972 102884 102883 1 10 11 100.00 99.99

s20401 77333 77048 77046 2 30 32 100.00 99.96

s20421 92966 92582 92578 4 2 6 100.00 100.00

s20441 93127 92737 92735 2 54 56 100.00 99.94

s20461 98872 98489 98487 2 0 2 100.00 100.00

s20481 91455 91117 91027 90 288 378 99.90 99.68

s20501 142725 142207 142175 32 26 58 99.98 99.98

s20521 75336 74957 74918 39 723 762 99.95 99.04

s20541 115151 114375 114354 21 84 105 99.98 99.93

s20561 100816 100391 100370 21 21 42 99.98 99.98

s20581 84935 84601 84596 5 5 10 99.99 99.99

s20601 116943 116488 116365 123 149 272 99.89 99.87

s20621 112369 111933 111829 104 2320 2424 99.91 97.97

s20641 84854 84426 84423 3 44 47 100.00 99.95

s30661 144447 143932 143925 7 26 33 100.00 99.98

s30681 126651 126101 126097 4 145 149 100.00 99.89

s30701 107078 106719 106715 4 4 8 100.00 100.00

s30721 106636 106234 105818 416 7212 7628 99.61 93.62

s30741 123461 123064 122984 80 2 82 99.93 100.00

s30742 113767 113317 113311 6 0 6 99.99 100.00

s30761 117044 116677 115883 794 313 1107 99.32 99.73

s30781 110087 109635 109231 404 5359 5763 99.63 95.32

s30801 94373 94055 84133 9922 10559 20481 89.45 88.85

Total 4426152 4409029 4396765 12264 27878 40142 99.72 99.37

We then additionally tested the developed algorithm on
the 43 publicly accessible records [25] of the LTST DB. The
complete database contains 86 two- and three-channel 24-
hour annotated ambulatory records, where some records
present great difficulties for accurate QRS complex detec-
tion. The LTST DB contains records contaminated with lots

of noises, arrhythmias, and in addition to this, also se-
vere transient ischemic changes. The algorithm was tested
on the first channel of each of the 43 records with the
first five minutes of each record excluded from performance
analysis. In this way, the algorithm performance was tested
on 4409029 out of 4426152 beats and the results for QRS
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detection Se and +P were 99.72% and 99.37%, respectively,
as shown in Table 3. The performance of the OSEA algo-
rithm on the same data set is 99.79% for Se and 99.37%
for +P. The columns in Table 3 represent the record number
(REC), the number of all heartbeats in the record (AHBs),
the number of tested heartbeats (THBs), the number of cor-
rectly (true positive) (TP) detected heartbeats, the num-
ber of missed (not detected) (FN) heartbeats, the num-
ber of false positive detections (FP), the sum of falsely
detected and missed heartbeats (FN + FP), the sensitivity
(Se [%]), and the positive predictivity (+P [%]), respec-
tively.

We tried to compare our work with other works in this
field, but there is lack of papers that describe detection results
of modified QRS complex detection algorithms and their
HW implementations. Therefore, our work can only be par-
alleled to [26, 27]. Two HW implementations of a QRS com-
plex detector are described in [26]. One implementation is a
modification of the well-known Hamilton-Tompkins [6] de-
tector and the other is a single-scale (W2

4) WT-based QRS
complex detector. Only modest performance results were
given and only descriptive comparisons of the results were
made to [13]. As both [13, 26] were tested on the AHA
database [28], we could not compare the performance of
those two algorithms with the performance of our algorithm.
When the size and speed of the design are compared to the
design in [26], large differences can be seen. The QRS com-
plex detection algorithm in [26] uses less than 1% of the
Xilinx XC2V3000-6 [24] device resources and can operate
at 34MHz. Our QRS complex detection algorithm together
with all communication logic uses approximately 17% of
the XC2V3000 device resources, but the estimated operat-
ing speed of the device is 82MHz. In [27], a lifting WT-
based FPGA implementation of a QRS complex detection al-
gorithm is presented, but no accurate performance results are
supplied. While these two works present pure HW solutions
to QRS complex detection (except coefficient prelearning in
[27]), the HW/SW solution in [29] uses the FPGA as a copro-
cessor engine for cross-correlation coefficient calculation.

An important feature of the HW implementation of the
algorithm is data processing speed. To obtain the most com-
parable results of bothHWand SW implementations, a com-
parison of block processing speed in the HW and SW imple-
mentations was made. The time needed to find all peaks in
one block and determine QRS complex locations was mea-
sured. In average, approximately 132 μs were required by the
HW implementation to perform these operations, while for
the SW implementation in average it took approximately
120 μs to perform the same operations. It needs to be singled
out that the operating frequency of the HW implementation
was only 5MHz, while the SW implementation ran on an
AMD Athlon 2500+ processor with the operating frequency
of 1.8 GHz. Taking into consideration that the HW imple-
mentation can operate at 80MHz, we can conclude that the
HW implementation can process data up to 14 times faster
than SW implementation. This means that in the same time
the HW device can process up to 14 times more data than a
PC.

5. CONCLUSION

An ECG beat detection algorithm based on delay-coordinate
mapping was presented in this paper. Heartbeat detection
was based on the size of the area created in a 2D geometrical
plane by the ECG signal and its time delayed copy. The al-
gorithm processes blocks of data and is applicable in systems
where true real-time beat detection is not needed, but the
data can rather be grouped into blocks and then processed.
Outperforming the founding algorithm, the QRS complex
detection performance of the proposed algorithm is compa-
rable to other detection algorithms. With Se of 99.82% and
+P of 99.82% on the MIT-BIH Arrhythmia Database the al-
gorithm is superior to a large number of well-known algo-
rithms. The performance was additionally tested on the LTST
DB, where Se of 99.72% and +P of 99.37% were achieved.
The algorithm was implemented in both SW and HW, where
with all communication logic and without any code opti-
mization it fits into the Xilinx XC3S400 device. Besides good
detection results, the HW implementation of the algorithm
excels itself with high data processing speed and the possibil-
ity of multiplying data processing cores in a single FPGA de-
vice. Being 14 times faster than the SW solution, the HW so-
lution represents a valuable contribution to ECG signal pro-
cessing, either as an easily upgradeable stand-alone beat de-
tector or as a very powerful coprocessing engine.
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