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A New Tightly-Coupled Transient Electro-Thermal
Co-Simulator with Capacitance and Matrix Exponential

Method

ABSTRACT
This paper presents a new transient electro-thermal (ET) simula-
tion method for fast 3D chip-level analysis of power electronics
with field solver accuracy. The metallization stacks are meshed and
solved with 3D field solver using nonlinear temperature-dependent
parameters, and the active devices are modeled with nonlinear tab-
ular compact models to avoid time-consuming TCAD simulation.
The main contributions include: 1) A tightly-coupled formulation
that solves the electrical and thermal responses simultaneously for
better convergence property; 2) Explicit account of capacitive ef-
fects, including interconnect parasitic capacitance and gate capac-
itance of power devices, to improve modeling accuracy in high-
frequency applications; 3) A specialized transient solver based on
the matrix exponential method (MEXP) to address the multi-scale
problem caused by the considerably different time scales in elec-
trical and thermal dynamics. Numerical experiments have demon-
strated the advantages of the proposed co-simulation framework.

1. INTRODUCTION
Bipolar-CMOS-DMOS (BCD) integration is a key technology

for power integrated circuits (ICs) offering many advantages by
integrating three distinct types of devices on a single die. New
challenges, however, have also been triggered to the thermal man-
agements in the BCD technology due to the closer proximity of
high-power DMOS transistors to other temperature-sensitive com-
ponents and the more complicated geometry and material config-
urations. Accurate prediction in temperature profile is needed to
guide heat removal design and avoid potential reliability issues such
as electromigration and negative bias temperature instability (NBTI).
To this end, the strong coupling between electrical and thermal dy-
namics, e.g., the nonlinear temperature dependencies of electrical
parameters and device characteristics [10], must be appropriately
accounted. In addition, DMOS is often used as switches in BCD
and operates under pulse inputs. The peak temperature of devices
can go up and down in one pulse period and exceed the maximum
threshold momentarily causing permanent damage, which cannot
be detected by steady-state analysis [2]. Therefore, an accurate
transient electro-thermal (ET) co-simulation is highly desired to
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detect and avoid thermal failures in the early stage of BCD designs.
Most existing transient ET simulation methods fall into the loose

coupling category. Specialized modeling methods, such as field so-
lution or equivalent network analysis, are employed separately to
simulate the electrical and thermal responses, while the ET cou-
pling is achieved by communication between the two solvers via
an appropriate interface [7, 8]. Despite its convenience to imple-
ment, the loose coupling strategy requires a careful bookkeeping of
the interaction between electrical and thermal variables, and a com-
plicated software communication scheme to ensure efficient infor-
mation exchange [12]. The deliberate split of electrical and thermal
dynamics may also lead to slow convergence when the ET coupling
is strong. Moreover, the iteration between the two solvers remains
of a serial nature limiting the parallelizability of the simulation.

Alternatively, a tightly-coupled ET simulation assembles the elec-
trical and thermal dynamics in one numerical system and solves the
two sets of variables simultaneously. The concurrent treatment to
multiple physics generally leads to a more natural and consistent
characterization of the physical interactions, and subsequently to a
more automated analysis, a faster convergence for strongly coupled
cases and more effective parallelization. A recent tightly-coupled
ET co-simulation method was proposed in [12] for transient anal-
ysis of power MOSFETs. The method employs a field-based so-
lution to on-chip metallization to address the quest to model metal
layers with high spatial resolution to predict accurate voltage drop
in the BCD technology and a nonlinear temperature-dependent ta-
ble model for device currents to avoid detailed time-consuming the
TCAD solution. The electrical solver is then coupled with a whole-
domain thermal field solver in a tightly-coupled fashion. Being one
step closer to the “ab initio" simulation, the ET solver in [12] can
determine the voltage drop in the metal structures and the device
temperatures with high accuracy and without limiting the applica-
bility to special cases.

One difficulty usually facing tightly-coupled ET methods is the
multi-scale nature of the resulting numerical system, due to the
large difference in the electrical and thermal time constants. The
fast transients in the electrical system require time step size of typ-
ically ns scale while the temperature varies generally on µs to ms
scale. The tightly-coupled method in [12] avoids this difficulty by
assuming the response of the electrical system, including metallic
wires and power devices, to be instantaneous. Therefore no tem-
poral differential equation needs to be solved for the electrical part,
and the whole ET simulation can be carried out on the thermal scale
only. This simplification, however, is not always valid. When the
devices contain a large summed gate capacitance, e.g., with many
fingers, and operate at relatively high switching frequencies, the
electrical time scale becomes relevant and the capacitive effects in
the structures should be taken into account for the sake of simula-



tion accuracy. The multi-rate integration [11] is a common strategy
to mitigate the high time scale contrast by integrating the subset
of fast-varying variables with a smaller step size than the slow-
varying subset. Nevertheless, the fastest transients in the ET prob-
lem are induced by the small parasitics in on-chip metallization.
These transients are generally not important for heat generation,
but may dictate unnecessarily small step size even in the multi-rate
integration when methods of low accuracy order are applied.

This work proposes a new tightly-coupled transient ET simula-
tion technique for high-speed power devices. The proposed method
adopts the “electrical field solver for metallization + compact mod-
els for devices + thermal field solver” strategy as in [12]. The
capacitive effects in the back-end structure and the front-end de-
vices are explicitly accounted to enhance modeling accuracy. A
specialized matrix exponential (MEXP) method with Rosenbrock-
type formulation, adaptive time stepping and Jacobian bypass is
developed to expedite the time integration involving largely differ-
ent time scales. Numerical experiments are conducted to confirm
the advantages of the proposed ET solver.

2. TIGHTLY-COUPLED ET FORMULATION

2.1 Basic Electrical and Thermal Models
The electrical field solver is applied to the back-end structures,

which solves the current-continuity equation under the electro qua-
sistatic assumption because of the relatively weak magnetic effects
in power electronics [12]

−∇
(
ε∇∂V

∂t

)
+∇ · J = 0, (1)

with {
J = σ(T )E
E = −∇V

where the first term in (1) describes the displacement current den-
sity, J is the conduction current density, E the electrical field, V
the electrical potential, and ε the permittivity. The conductivity
σ(T ) for metals has a temperature dependency modeled by the
Wiedemann-Franz law

σ(T ) = σ0

(
T

T0

)ασ
, (2)

where the exponent ασ is a material-dependent parameter.
The drain-source current of semiconductor devices is modeled

by the table model taking into account the temperature dependence

Ids = f (Vgs, Vds, Tds) , (3)

where Vgs and Vds are the gate-source and the drain-source volt-
ages, and Tds is the device temperature taken as the average of
the temperatures at the source and the drain terminals. To link the
table models to the electrical field solvers, the channel layers of
the MOS devices, which are geometrically negligible compared to
the size of die, are effectively “removed” from the 3D mesh of the
substrate. Relevant terminal voltages are measured at proper metal
ends and passed to the table models, which in turn generates cur-
rents as external current sources at the corresponding terminals in
the field solving process. The table model can be extracted from
TCAD device simulation or measurement data.

The thermal field solver solves the heat conduction equation in
the entire domain:

CT
∂T

∂t
−∇ (κ(T )∇T )−Q = 0, (4)

Where T is the temperature, CT the thermal capacitance and Q
the heat sources or sinks. For the temperature dependent thermal
conductivity κ(T ), we adopt the widely accepted model [9]:

κ(T ) = κ0

(
T

T0

)ακ
, (5)

in which the exponent ακ is again material-dependent. In this work
we assume the thermal capacitance is temperature-independent.

Solving (5) requires knowledge to the heat generation term Q,
which has several contributors: 1) the Joule self-heating of the
metal structures and the substrates; 2) the self-heating of the ac-
tive devices and 3) heat injected or extracted at the boundary of the
simulation domain. Similar to [12], the first two contributions are
calculated by

Q =

{
E · J = σ(T )|∇V |2, conductors
Ids · Vds, active devices (6)

from the information provided by the electrical solver. The third
one is addressed by thermal contacts placed on the domain bound-
ary enforcing fixed temperatures or fixed heat flux.

2.2 Involvement of Capacitance
One main assumption in [12] is that ∂V /∂t = 0, reducing (1)

to an algebraic Laplacian equation with the solution solely deter-
mined by the instantaneous boundary condition. This numerical
convenience, however, comes at the cost of neglecting the capac-
itive effects of the metallization structures and the devices, which
may affect the modeling accuracy for scenarios with nontrivial ca-
pacitances, such as devices with a large number of transistor fingers
and in microwave applications [13]. Therefore, one contribution of
this work is to include these capacitive effects to make the electrical
system not respond instantaneously to external excitations.

The parasitic capacitances of the back-end structures is readily
accounted for by including the displacement current in (1). To
model the gate capacitance of DMOS, each polysilicon finger is di-
vided up into equal sections, and for each section one gate-source
capacitance Cgs and one gate-drain capacitance Cgd are attached,
which are modeled as external capacitors in the field solving pro-
cess of the back-end structures. To account for the charging and
discharging currents of the capacitors, extra terms are added to (1)
when solved at relevant nodes. For instance, the equation at a gate
node reads

−∇
(
ε∇

∂V

∂t

)
+∇·J+Cgs

∂(Vg − Vs)
∂t

+Cgd
∂(Vg − Vd)

∂t
= 0, (7)

where capacitive current paths are introduced between the gate and
the source (drain) terminals. Note that the gate capacitance is gen-
erally dominant over the parasitic capacitance of metal wires.

The values of the gate capacitors are calculated from a specific
capacitance per unit width, a user-input parameter or determined
from the material parameter and geometry of the transistor struc-
ture. In the current work all the device capacitances are considered
independent of terminal voltages and temperatures, though these
dependencies will be incorporated by using temperature-aware com-
pact models of DMOS such as [6].

2.3 Tightly-Coupled Formulation
The tightly-coupled system is formed by combining the electri-

cal system (1) and the thermal system (4), as shown in (8). The
termCd collects the gate capacitors of devices, I(V, T ) denotes the
nonlinear device currents determined by (3) and b(E), b(T ) contain
respectively the electrical and thermal boundary conditions. The
nodal potential vector V of NV length and the nodal temperature
vector T ofNT length are the primary unknowns to be determined.



[
−∇ · (ε∇) + Cd 0

0 CT I

] [
V̇

Ṫ

]
= −

[
−∇ · [σ (T )∇] 0

0 −∇ · [κ (T )∇]

] [
V
T

]
−
[
I (V, T )
Q (V, T )

]
−
[
b(E)

b(T )

]
(8)

After discretizing by the finite volume method (FVM), (8) can
be cast into a matrix equation form

C
dx

dt
= −G(x)x− F (x)− b, (9)

where

C =

[
CE

CT

]
,G =

[
GE

GT

]
, F =

[
I
Q

]
, x =

[
V
T

]
.

(10)
The nonlinear differential equation (9) is commonly solved by

the linear multi-step methods (LMM), which reduces (9) to an al-
gebraic equation using a polynomial approximation to the time
derivative. For instance, the backward Euler (BE) method results
in

C

h
xn+1 +G(xn+1)xn+1 +F (xn+1)− C

h
xn+ bn+1 = 0, (11)

in which h is the time step size between the nth step and the (n +
1)th step. Then the Newton’s method is applied to solve (11) itera-
tively(

J(xkn+1) +
C

h

)
∆xk+1

n+1 =

−
(
F (xkn+1) + G(xkn+1)xkn+1 +

C

h

(
xkn+1 − xn

)
+ bn+1

)
,

(12)

where ∆xk+1
n+1 denotes the update of x at the (k+1)th Newton iter-

ation in the (n+ 1)th step. The Jacobian of the nonlinear function
G(x)x+ F (x) is given by

J =

[
GE + ∂I

∂V
∂(GEV )
∂T

+ ∂I
∂T

∂Q
∂V

∂(GT T )
∂T

+ ∂Q
∂T

]
. (13)

3. TIME INTEGRATION VIA MATRIX EX-
PONENTIAL METHOD

Solving the tightly-coupled system (8) by LMM suffers from the
multi-scale difficulty. The minimum step size has to be sufficiently
small to resolve the fastest transients induced by the metal intercon-
nects, which are several orders slower than the thermal dynamics.
Nevertheless, an accurate capture of the fine-scale details of elec-
trical waveform is not necessary for temperature prediction. The
extremely short duration of these transients limits the amount of
heat generation. More importantly, the power dissipation originates
mainly from power devices operating with high currents and volt-
ages, and to a lesser degree from interconnect metallization. The
pace of power dissipation in power devices, however, can be orders
slower than in metal structures due to the larger device capacitance.
Put it differently, the temperature variation may still be predicted to
a reasonable extent, provided that the relatively slow-varying heat
generation from the active devices is properly captured even on a
coarser time scale. The accurate characterization of on-chip metal-
lization, in this regard, is more relevant in providing correct voltage
drops to determine the operation status of power devices and the
power dissipation thereby generated, than in computing the Joule
heating of the structures themselves [12].

Increasing time step size to bypass the fast transients, however,
is risky for low-order LMM, such as BE and the trapezoidal meth-
ods. Failure in resolving the rapidly varying components may result
in excessive accumulation and propagation of the local truncation
error (LTE), leading to inaccurate and even unstable simulation.
Therefore, it is desired to develop high-order transient simulation
techniques that can skip the fast and less important transients in
metallization in a safe manner, and allow the system to be simu-
lated at the same pace as the operation of the power devices. To this
end, we extend the matrix exponential method (MEXP), originally
developed for circuit simulation [14–16] and later for EM-TCAD
problems [3], to the coupled ET simulation.

3.1 Formulation of MEXP
The MEXP method starts by transforming (9) to a nonlinear

ODE [15]:

dx

dt
= C−1G(x)x−C−1F (x)−C−1b. (14)

Note that the potential singularity in C can be readily removed by
differentiating the Gauss’s law [3] and the input b is assumed piece-
wise linear (PWL) with constant derivative in each step.

To handle the strong nonlinearity, we use a Rosenbrock-type for-
mulation, which employs a linearization of (14) at each time step

dx

dt
= −C−1Jnx−C−1 (G(x)x+ F (x)− Jnx)−C−1b

= −Anx−C−1Dn(x)−C−1b,

(15)

where Jn is the Jacobian (13) evaluated at xn and Dn(x) is a non-
linear difference function. The analytical solution of (15) is

xn+1 = eAhxn+∫ h

0

eA(h−τ) [−C−1Dn(tn + τ)−C−1b(tn + τ)
]
dτ.

(16)

Applying the first-order approximation toDn results in the second-
order MEXP-Rosenbrock method [1]

xn+1 = eAhxn +
eAh − I

A

(
−C−1 (Dn(xn) + bn+1)

)
. (17)

MEXP is attractive in this scenario as it solves the linearized sub-
part of (15), i.e., dx

dt
= Ax exactly and thus avoids in the first place

the error from the finite-difference approximation of time derivative
underlying most existing methods [4]. The main source of error in
MEXP is only from the numerical computation of the matrix ex-
ponential (more precisely the product of matrix exponential with
a vector), and thus the order of accuracy of MEXP can be made
fairly high to allow large step size while maintaining sufficient ac-
curacy [15].

3.2 Computation of eAhv via Rational Krylov
Subspace Method

As shown in (17), the primary computation in MEXP is the prod-
uct of matrix exponential times a vector eAv. Approximation based
on Krylov subspace projection is attracting increasing attention in
recent years for its capability to handle problems with millions un-
knowns [3, 15]. Nevertheless, our target step size is rather aggres-
sive (∼ µs) compared to those reported in [3,16], and MEXP based



on the ordinary Krylov subspace is not efficient for approximat-
ing large-magnitude eigenvalues (corresponding to the slow tran-
sients) [4]. Therefore, we choose to use the shift-and-invert (SAI)
Krylov subspace method, which is essentially an “inverse” version
of the standard Krylov subspace methods and can provide a better
approximation to slow manifold of the waveform to allow larger
step sizes [17, 18]. The main step of SAI-Krylov is an m-step
Arnoldi process applied to (I − γA)−1

(I − γA)−1Vm = VmHm +H(m+ 1,m)vm+1e
T
m, (18)

in which Vm is an orthonormal basis of the m-dimensional Krylov
subspace Km

(
(I − γA)−1, v

)
with γ a shift parameter. H is the

upper Hessenberg coefficient matrix and Hm the leading m × m
submatrix. Then the MEXP-vector product is approximated as its
orthogonal projection onto the SAI-Krylov subspace

eAhv ≈ VmV Tm eAhv = βVme
H̃mh/γe1, (19)

with

H̃m =
(
I −H−1

m

)
, β = ‖v‖2

A posteriori error estimate is given by

errKrylov =
β

γ
H(m+ 1,m)‖(I − γA)vm+1e

T
mH

−1
m eH̃mh/γe1‖.

(20)

3.3 Adaptive Time Step and Jacobian Bypass
Adaptive time step size usually offers better accuracy and perfor-

mance than fixed step size during transient simulation. Such adap-
tivity is in particular desirable in the ET co-simulation since the
conductivities and the electrical time constants may vary substan-
tially with the temperature, rendering an a priori step size selection
more difficult and less efficient. Like the standard Krylov subspace,
the SAI-Krylov subspace also processes the scaling invariant prop-
erty that allows convenient re-computation of the solution without
generating a new subspace. When the step size is changed from h
to h1, the new solution can be updated via

eAh1v ≈ βVmeH̃mh1/γe1, (21)

where Vm and Hm in (18) are re-used, and only a small-sized ma-
trix exponential of H̃mh1/γ needs to be re-evaluated. This is a
marked advantage. LMM methods, in contrast, require a new ma-
trix factorization whenever step size is changed [3]. The adaption
of step size h is based on an embedded local error estimation

err = xn+1 − x̃n+1, (22)

where x̃n+1 is obtained by substituting xn+1 into (17)

x̃n+1 = eAhxn +
eAh − I

A

(
−C−1 (Dn(xn+1) + bn+1)

)
.

(23)

One computation-intensive step in the above MEXP method is
the factorization of the Jacobian matrix in each step. To improve the
computational efficiency, we adopt the Jacobian bypass technique
in [5]. For a given tolerance tol, if the solutions of two adjacent
steps are close enough, i.e.,

‖xn+1 − xn‖ < tol‖xn+1‖, (24)

the Jacobian (13) can be passed from the nth step to the (n+ 1)th
step and the LU factors can be re-used. The Jacobian bypass tech-
nique can be interpreted as an adaptive multi-rate approach [5].

3.4 Complexity Analysis
In this subsection we will briefly analyze the complexity of tran-

sient ET analysis using the loosely-coupled scheme, the tightly-
coupled scheme with LMM and the tightly-coupled scheme with
MEXP, denoted as LC, TC+LMM and TC+MEXP hereafter. For
simplicity we assume fixed step sizes are applied in all time inte-
gration. Since the factorization of the Jacobian matrices is the most
expensive step in all the methods, we use the number and the size
of matrix factorization as the metric to measure the complexity of
different co-simulation schemes.

For the loosely-coupled scheme, suppose nT thermal steps are
used, each of which contains nE electrical steps and requires an
average nloop ET iterations to converge, and each electrical step
needs an average of nNewton1 Newton iterations, the whole calcu-
lation requires nLCfac1 = nT×nE×nloop×nLCNewton1 factorizations
of the electrical Jacobian of the size NV × NV . If each thermal
solving needs nNewton2 Newton iterations, the thermal part needs
nLCfac2 = nT × nloop × nNewton2 factorizations of the thermal
Jacobian of the size NT ×NT .

In the tightly-coupled scheme, both the electrical and thermal
variables evolve with the same step size and no ET loop is needed.
Suppose the LMM methods need nLMM

ET time steps; each requires
NLMM
Newton Newton iterations, then in total nTC+LMM

fac = nLMM
ET ×

nLMM
Newton matrix factorizations are involved in the simulation. The

size of the Jacobian is (NV +NT )× (NV +NT ). For the MEXP
method, only one Jacobian factorization is required in each step,
and thus for nMEXP

ET steps only nTC+MEXP
fac = nMEXP

ET factor-
izations need to be performed.

In general, the loosely-coupled scheme needs more factoriza-
tions of smaller matrices, whereas the tightly-coupled schemes re-
quire fewer factorizations of larger matrices. The best choice is
problem-dependent and must be made based on a combined con-
sideration of all the relevant factors. For instance, a typical relation
NT ≈ 1.5NV is observed in the examples we have tested. As-
sume further that the sparse matrix factorization is of a complex-
ity of O(N2), the cost of the loosely-coupled calculation can be
estimated by

(
nLCfac1 + 2.25nLCfac2

)
O(N2

V ), while the cost of the
tightly-coupled calculation with LMM and MEXP are respectively
6.25nTC+LMM

fac O(N2
V ) and 6.25nTC+MEXP

fac O(N2
V ). As will be

shown in the next section, the TC+MEXP combination generally
offers the smallest pre-factor among the three schemes

4. NUMERICAL RESULTS
The proposed tightly-coupled transient ET simulator is imple-

mented in Matlab. For comparison the loosely-coupled version
is also implemented. A practical LDMOS device is used to ver-
ify the proposed simulator. The 3D view and the specifications of
the test structure are shown in Fig. 1. The 3D FVM discretization
results in a mesh with NV = 217, 202 potential unknowns and
NT = 337, 869 temperature unknowns. Since the MEXP method
uses a second-order formulation, we apply the second-order back-
ward differentiation formula (BDF2) as the LMM solver to ensure
a fair comparison. A 1MHz trapezoidal pulse with 50% duty cy-
cle and 5V amplitude is used as gate driving signal throughout the
testing.

We start with a comparison between the three ET co-simulation
schemes discussed in Sec. 3.4, i.e., LC, TC+LMM and TC+MEXP,
for different degrees of ET coupling. First a small Vds = 5V is
used to limit the current and heat generation, leading to a weak ET
coupling. Then a large Vds = 50V is applied to enable a strong ET
coupling, wherein the current is higher and the temperature varia-
tion is more dramatic. All the transient simulations are performed



Figure 1: 3D view of the power LDMOS structure (the die part
is truncated for better visualization). The back-end structure
consists of 6 metal layers. The die has an area of 750×450µm2

and a thickness of 400µm. The LDMOS has 94 transistor fin-
gers with an 18.45mm total gate length. The summed Cgs and
Cgd are 420pF and 105pF , respectively.

Figure 2: Top: gate driving waveform. Middle: Device 94 tem-
perature with low ET coupling (Vds = 5V ). Bottom: Device 94
temperature with high ET coupling (Vds = 50V ).

with fixed step sizes, which are chosen carefully to be the mini-
mal values that can produce accurate results for both the weak and
strong coupling cases. The transient temperature waveforms of one
device are shown in Fig. 2, in which three schemes agree well with
each other. The temperature starts to increase when the MOSFETs
are turned on and decrease after the devices are turned off. In the
second period of the high ET coupling case, the temperature differ-
ence between the peak and the end point can reach 39K, which will
be omitted if one only simulates the temperature at the end point of
each period and may cause damage to the devices. This indicates
the necessity of a sufficient resolution to the transient temperature
variation for high-power applications.

The performance of the three schemes is summarized in Table 1
for one period. The LC scheme uses 5 thermal steps and each
contains 20 electrical steps, rendering 100 electrical steps in total.
TC+LMM requires the same number of steps to guarantee the same
resolution to the fastest electrical transients. On the other hand,
TC+MEXP can take a 5X larger step size as it can safely bypass the
fast transients induced by the metallization, and thus needs only 20
steps. Regarding the number of Jacobian factorizations, LC needs
nfac1 = 390 factorization of electrical Jacobian and nfac2 = 24
factorizations of thermal Jacobian for the low ET coupling case.
When the coupling becomes stronger, the performance of LC de-

teriorates and nfac1 and nfac2 increase significantly to 552 and
46, due to more ET loops are needed to achieve the ET conver-
gence. On the other hand, the number of Jacobian factorizations
remains nearly constant for the two TC schemes, demonstrating
a better convergence property of the TC strategy when applied to
handle strong ET interactions. In terms of runtime, in spite of fac-
toring fewer Jacobians than LC, TC-LMM is slower than LC due to
the larger matrix size in factorization. The factorization times for
the electrical, thermal and combined Jacobian are 4.1s, 10.3s and
39.2s, respectively. The saving in factorization number in LMM
does not suffice to compensate the speed loss in each factorization.
In contrast, the TC+MEXP combination delivers the best perfor-
mance in both cases owing to the more significant reduction in the
number of Jacobian factorizations.

Figure 3: Top left: gate voltages of 20 fingers at different loca-
tions without capacitance. Top right: drain temperature of 20
fingers without capacitance. Bottom left: gate voltage with ca-
pacitance. Bottom right: drain temperature with capacitance.

Next, we demonstrate the importance of an explicit inclusion of
capacitive effects in the ET co-analysis. We simulate the LDMOS
with and without including the capacitance in TC+MEXP, and mea-
sure the gate voltage and the drain temperature of 20 transistor fin-
gers at different locations of the chip. As shown in Fig. 3, when the
capacitive effects are not included (no RC delay), the gate voltages
at different locations are identical to the instantaneous applied volt-
age. When the capacitance is taken into account, the RC delay in
the gate voltage becomes obvious and the temperature profiles of
the devices at different locations are also modified. Therefore ca-
pacitance inclusion is necessary to guarantee accurate prediction of
the voltage drop over the gate net and the temperature distribution.

Table 2 shows the performance improvements from the adap-
tive time step (AD) and the Jacobian bypass (BP) described in
Sec. 3.3. The step size adaption is based on the LTE estimate (22)
and uses a set of rules similar to [3] with a relative tolerance of
tol = 10−3. The adaptive stepping nearly halves the number of
time steps needed in both LMM and MEXP. However, LMM does
not benefit much in terms of computation, as the step size change in
LMM requires a new matrix factorization. In contrast, the adaptive
stepping is highly efficient for MEXP, owing to the convenient re-
scaling scheme (21) to update solution without extra matrix factor-
ization. The Jacobian bypass uses the same tolerance to determine
when to skip the Jacobian factorization, and is proven to be an ef-
fective technique to accelerate the MEXP solver for both constant
and adaptive step size.

5. CONCLUSION



Table 1: Performance comparison of different ET coupling schemes

Method # of steps low ET coupling high ET coupling
nT × nE or nET nfac time (s) nfac time (s)

LC 5 × 20 390 + 24 1,854 552 + 46 2,747
TC+LMM 100 130 5,252 134 5,413
TC+MEXP 20 20 810 20 810

Table 2: Performance of TC-LMM and TC-MEXP with adap-
tive step size (AD) and Jacobian bypass (BP)

method # of steps nfac runtime (s)

LMM 100 134 5,413
LMM+AD 51 111 4,484

MEXP 20 20 810
MEXP+BP 20 11 451
MEXP+AD 12 12 493

MEXP+AD+BP 12 8 329

We have proposed a new transient ET simulation framework for
accurate chip-level ET analysis for BCD integration technology.
The framework features a tightly-coupled formulation to provide
better handling to the strong ET interactions as a consequence of
the ever-increasing functionality integration density. The capaci-
tive effects of on-chip metallization and power devices are explic-
itly accounted for to improve the modeling accuracy of voltage and
temperature distribution. To address the computational bottleneck
arising from the different electrical and thermal time constants, a
specialized nonlinear MEXP method, augmented by adaptive time
stepping and Jacobian bypass, is developed. The numerical results
have demonstrated the advantages of the proposed framework.
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